+++ /dev/null
-/*
- * vrl4 format generator
- *
- * Copyright (C) 2010 Simon Horman
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- */
-
-/*
- * usage: vrl4 < zImage > out
- * dd if=out of=/dev/sdx bs=512 seek=1 # Write the image to sector 1
- *
- * Reads a zImage from stdin and writes a vrl4 image to stdout.
- * In practice this means writing a padded vrl4 header to stdout followed
- * by the zImage.
- *
- * The padding places the zImage at ALIGN bytes into the output.
- * The vrl4 uses ALIGN + START_BASE as the start_address.
- * This is where the mask ROM will jump to after verifying the header.
- *
- * The header sets copy_size to min(sizeof(zImage), MAX_BOOT_PROG_LEN) + ALIGN.
- * That is, the mask ROM will load the padded header (ALIGN bytes)
- * And then MAX_BOOT_PROG_LEN bytes of the image, or the entire image,
- * whichever is smaller.
- *
- * The zImage is not modified in any way.
- */
-
-#define _BSD_SOURCE
-#include <endian.h>
-#include <unistd.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <errno.h>
-#include <tools/endian.h>
-
-struct hdr {
- uint32_t magic1;
- uint32_t reserved1;
- uint32_t magic2;
- uint32_t reserved2;
- uint16_t copy_size;
- uint16_t boot_options;
- uint32_t reserved3;
- uint32_t start_address;
- uint32_t reserved4;
- uint32_t reserved5;
- char reserved6[308];
-};
-
-#define DECLARE_HDR(h) \
- struct hdr (h) = { \
- .magic1 = htole32(0xea000000), \
- .reserved1 = htole32(0x56), \
- .magic2 = htole32(0xe59ff008), \
- .reserved3 = htole16(0x1) }
-
-/* Align to 512 bytes, the MMCIF sector size */
-#define ALIGN_BITS 9
-#define ALIGN (1 << ALIGN_BITS)
-
-#define START_BASE 0xe55b0000
-
-/*
- * With an alignment of 512 the header uses the first sector.
- * There is a 128 sector (64kbyte) limit on the data loaded by the mask ROM.
- * So there are 127 sectors left for the boot programme. But in practice
- * Only a small portion of a zImage is needed, 16 sectors should be more
- * than enough.
- *
- * Note that this sets how much of the zImage is copied by the mask ROM.
- * The entire zImage is present after the header and is loaded
- * by the code in the boot program (which is the first portion of the zImage).
- */
-#define MAX_BOOT_PROG_LEN (16 * 512)
-
-#define ROUND_UP(x) ((x + ALIGN - 1) & ~(ALIGN - 1))
-
-static ssize_t do_read(int fd, void *buf, size_t count)
-{
- size_t offset = 0;
- ssize_t l;
-
- while (offset < count) {
- l = read(fd, buf + offset, count - offset);
- if (!l)
- break;
- if (l < 0) {
- if (errno == EAGAIN || errno == EWOULDBLOCK)
- continue;
- perror("read");
- return -1;
- }
- offset += l;
- }
-
- return offset;
-}
-
-static ssize_t do_write(int fd, const void *buf, size_t count)
-{
- size_t offset = 0;
- ssize_t l;
-
- while (offset < count) {
- l = write(fd, buf + offset, count - offset);
- if (l < 0) {
- if (errno == EAGAIN || errno == EWOULDBLOCK)
- continue;
- perror("write");
- return -1;
- }
- offset += l;
- }
-
- return offset;
-}
-
-static ssize_t write_zero(int fd, size_t len)
-{
- size_t i = len;
-
- while (i--) {
- const char x = 0;
- if (do_write(fd, &x, 1) < 0)
- return -1;
- }
-
- return len;
-}
-
-int main(void)
-{
- DECLARE_HDR(hdr);
- char boot_program[MAX_BOOT_PROG_LEN];
- size_t aligned_hdr_len, alligned_prog_len;
- ssize_t prog_len;
-
- prog_len = do_read(0, boot_program, sizeof(boot_program));
- if (prog_len <= 0)
- return -1;
-
- aligned_hdr_len = ROUND_UP(sizeof(hdr));
- hdr.start_address = htole32(START_BASE + aligned_hdr_len);
- alligned_prog_len = ROUND_UP(prog_len);
- hdr.copy_size = htole16(aligned_hdr_len + alligned_prog_len);
-
- if (do_write(1, &hdr, sizeof(hdr)) < 0)
- return -1;
- if (write_zero(1, aligned_hdr_len - sizeof(hdr)) < 0)
- return -1;
-
- if (do_write(1, boot_program, prog_len) < 0)
- return 1;
-
- /* Write out the rest of the kernel */
- while (1) {
- prog_len = do_read(0, boot_program, sizeof(boot_program));
- if (prog_len < 0)
- return 1;
- if (prog_len == 0)
- break;
- if (do_write(1, boot_program, prog_len) < 0)
- return 1;
- }
-
- return 0;
-}
+++ /dev/null
-ROM-able zImage boot from MMC
------------------------------
-
-An ROM-able zImage compiled with ZBOOT_ROM_MMCIF may be written to MMC and
-SuperH Mobile ARM will to boot directly from the MMCIF hardware block.
-
-This is achieved by the mask ROM loading the first portion of the image into
-MERAM and then jumping to it. This portion contains loader code which
-copies the entire image to SDRAM and jumps to it. From there the zImage
-boot code proceeds as normal, uncompressing the image into its final
-location and then jumping to it.
-
-This code has been tested on an AP4EB board using the developer 1A eMMC
-boot mode which is configured using the following jumper settings.
-The board used for testing required a patched mask ROM in order for
-this mode to function.
-
- 8 7 6 5 4 3 2 1
- x|x|x|x|x| |x|
-S4 -+-+-+-+-+-+-+-
- | | | | |x| |x on
-
-The zImage must be written to the MMC card at sector 1 (512 bytes) in
-vrl4 format. A utility vrl4 is supplied to accomplish this.
-
-e.g.
- vrl4 < zImage | dd of=/dev/sdX bs=512 seek=1
-
-A dual-voltage MMC 4.0 card was used for testing.
+++ /dev/null
-ROM-able zImage boot from eSD
------------------------------
-
-An ROM-able zImage compiled with ZBOOT_ROM_SDHI may be written to eSD and
-SuperH Mobile ARM will to boot directly from the SDHI hardware block.
-
-This is achieved by the mask ROM loading the first portion of the image into
-MERAM and then jumping to it. This portion contains loader code which
-copies the entire image to SDRAM and jumps to it. From there the zImage
-boot code proceeds as normal, uncompressing the image into its final
-location and then jumping to it.
-
-This code has been tested on an mackerel board using the developer 1A eSD
-boot mode which is configured using the following jumper settings.
-
- 8 7 6 5 4 3 2 1
- x|x|x|x| |x|x|
-S4 -+-+-+-+-+-+-+-
- | | | |x| | |x on
-
-The eSD card needs to be present in SDHI slot 1 (CN7).
-As such S1 and S33 also need to be configured as per
-the notes in arch/arm/mach-shmobile/board-mackerel.c.
-
-A partial zImage must be written to physical partition #1 (boot)
-of the eSD at sector 0 in vrl4 format. A utility vrl4 is supplied to
-accomplish this.
-
-e.g.
- vrl4 < zImage | dd of=/dev/sdX bs=512 count=17
-
-A full copy of _the same_ zImage should be written to physical partition #1
-(boot) of the eSD at sector 0. This should _not_ be in vrl4 format.
-
- vrl4 < zImage | dd of=/dev/sdX bs=512
-
-Note: The commands above assume that the physical partition has been
-switched. No such facility currently exists in the Linux Kernel.
-
-Physical partitions are described in the eSD specification. At the time of
-writing they are not the same as partitions that are typically configured
-using fdisk and visible through /proc/partitions