* it with privilege level 3 because the IVE uses non-privileged accesses to these
* tables. IA-32 segmentation is used to protect against IA-32 accesses to them.
*/
- vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (vma) {
- memset(vma, 0, sizeof(*vma));
vma->vm_mm = current->mm;
vma->vm_start = IA32_GDT_OFFSET;
vma->vm_end = vma->vm_start + PAGE_SIZE;
* code is locked in specific gate page, which is pointed by pretcode
* when setup_frame_ia32
*/
- vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (vma) {
- memset(vma, 0, sizeof(*vma));
vma->vm_mm = current->mm;
vma->vm_start = IA32_GATE_OFFSET;
vma->vm_end = vma->vm_start + PAGE_SIZE;
* Install LDT as anonymous memory. This gives us all-zero segment descriptors
* until a task modifies them via modify_ldt().
*/
- vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (vma) {
- memset(vma, 0, sizeof(*vma));
vma->vm_mm = current->mm;
vma->vm_start = IA32_LDT_OFFSET;
vma->vm_end = vma->vm_start + PAGE_ALIGN(IA32_LDT_ENTRIES*IA32_LDT_ENTRY_SIZE);
bprm->loader += stack_base;
bprm->exec += stack_base;
- mpnt = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!mpnt)
return -ENOMEM;
- memset(mpnt, 0, sizeof(*mpnt));
-
down_write(¤t->mm->mmap_sem);
{
mpnt->vm_mm = current->mm;
DPRINT(("smpl_buf @%p\n", smpl_buf));
/* allocate vma */
- vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
DPRINT(("Cannot allocate vma\n"));
goto error_kmem;
}
- memset(vma, 0, sizeof(*vma));
/*
* partially initialize the vma for the sampling buffer
* the problem. When the process attempts to write to the register backing store
* for the first time, it will get a SEGFAULT in this case.
*/
- vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (vma) {
- memset(vma, 0, sizeof(*vma));
vma->vm_mm = current->mm;
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
vma->vm_end = vma->vm_start + PAGE_SIZE;
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
if (!(current->personality & MMAP_PAGE_ZERO)) {
- vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (vma) {
- memset(vma, 0, sizeof(*vma));
vma->vm_mm = current->mm;
vma->vm_end = PAGE_SIZE;
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
bprm->loader += stack_base;
bprm->exec += stack_base;
- mpnt = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!mpnt)
return -ENOMEM;
- memset(mpnt, 0, sizeof(*mpnt));
-
down_write(&mm->mmap_sem);
{
mpnt->vm_mm = mm;
if (cqe >= 0xFFFFFFFF - 64 - additional_cqe)
return ERR_PTR(-EINVAL);
- my_cq = kmem_cache_alloc(cq_cache, GFP_KERNEL);
+ my_cq = kmem_cache_zalloc(cq_cache, GFP_KERNEL);
if (!my_cq) {
ehca_err(device, "Out of memory for ehca_cq struct device=%p",
device);
return ERR_PTR(-ENOMEM);
}
- memset(my_cq, 0, sizeof(struct ehca_cq));
memset(¶m, 0, sizeof(struct ehca_alloc_cq_parms));
spin_lock_init(&my_cq->spinlock);
{
struct ehca_mr *me;
- me = kmem_cache_alloc(mr_cache, GFP_KERNEL);
+ me = kmem_cache_zalloc(mr_cache, GFP_KERNEL);
if (me) {
- memset(me, 0, sizeof(struct ehca_mr));
spin_lock_init(&me->mrlock);
} else
ehca_gen_err("alloc failed");
{
struct ehca_mw *me;
- me = kmem_cache_alloc(mw_cache, GFP_KERNEL);
+ me = kmem_cache_zalloc(mw_cache, GFP_KERNEL);
if (me) {
- memset(me, 0, sizeof(struct ehca_mw));
spin_lock_init(&me->mwlock);
} else
ehca_gen_err("alloc failed");
{
struct ehca_pd *pd;
- pd = kmem_cache_alloc(pd_cache, GFP_KERNEL);
+ pd = kmem_cache_zalloc(pd_cache, GFP_KERNEL);
if (!pd) {
ehca_err(device, "device=%p context=%p out of memory",
device, context);
return ERR_PTR(-ENOMEM);
}
- memset(pd, 0, sizeof(struct ehca_pd));
pd->ownpid = current->tgid;
/*
if (pd->uobject && udata)
context = pd->uobject->context;
- my_qp = kmem_cache_alloc(qp_cache, GFP_KERNEL);
+ my_qp = kmem_cache_zalloc(qp_cache, GFP_KERNEL);
if (!my_qp) {
ehca_err(pd->device, "pd=%p not enough memory to alloc qp", pd);
return ERR_PTR(-ENOMEM);
}
- memset(my_qp, 0, sizeof(struct ehca_qp));
memset (&parms, 0, sizeof(struct ehca_alloc_qp_parms));
spin_lock_init(&my_qp->spinlock_s);
spin_lock_init(&my_qp->spinlock_r);
struct asd_ascb *ascb;
unsigned long flags;
- ascb = kmem_cache_alloc(asd_ascb_cache, gfp_flags);
+ ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
if (ascb) {
- memset(ascb, 0, sizeof(*ascb));
ascb->dma_scb.size = sizeof(struct scb);
ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
gfp_flags,
int err = 0;
int write = (data_direction == DMA_TO_DEVICE);
- sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
+ sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
if (!sioc)
return DRIVER_ERROR << 24;
- memset(sioc, 0, sizeof(*sioc));
req = blk_get_request(sdev->request_queue, write, gfp);
if (!req)
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
- sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG);
+ sb_desc = kmem_cache_zalloc(usb_desc_cache, SLAB_FLAG);
assert(sb_desc != NULL);
- memset(sb_desc, 0, sizeof(USB_SB_Desc_t));
if (usb_pipeout(urb->pipe)) {
{
struct urb_priv *urbp;
- urbp = kmem_cache_alloc(uhci_up_cachep, GFP_ATOMIC);
+ urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC);
if (!urbp)
return NULL;
- memset((void *)urbp, 0, sizeof(*urbp));
-
urbp->urb = urb;
urb->hcpriv = urbp;
if ((unsigned long)nr_events > aio_max_nr)
return ERR_PTR(-EAGAIN);
- ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
+ ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
- memset(ctx, 0, sizeof(*ctx));
ctx->max_reqs = nr_events;
mm = ctx->mm = current->mm;
atomic_inc(&mm->mm_count);
{
struct configfs_dirent * sd;
- sd = kmem_cache_alloc(configfs_dir_cachep, GFP_KERNEL);
+ sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
if (!sd)
return NULL;
- memset(sd, 0, sizeof(*sd));
atomic_set(&sd->s_count, 1);
INIT_LIST_HEAD(&sd->s_links);
INIT_LIST_HEAD(&sd->s_children);
{
struct dlm_lkb *lkb;
- lkb = kmem_cache_alloc(lkb_cache, GFP_KERNEL);
- if (lkb)
- memset(lkb, 0, sizeof(*lkb));
+ lkb = kmem_cache_zalloc(lkb_cache, GFP_KERNEL);
return lkb;
}
{
struct dquot *dquot;
- dquot = kmem_cache_alloc(dquot_cachep, GFP_NOFS);
+ dquot = kmem_cache_zalloc(dquot_cachep, GFP_NOFS);
if(!dquot)
return NODQUOT;
- memset((caddr_t)dquot, 0, sizeof(struct dquot));
mutex_init(&dquot->dq_lock);
INIT_LIST_HEAD(&dquot->dq_free);
INIT_LIST_HEAD(&dquot->dq_inuse);
goto out;
}
/* Released in this function */
- page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, GFP_USER);
+ page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
if (!page_virt) {
ecryptfs_printk(KERN_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
- memset(page_virt, 0, PAGE_CACHE_SIZE);
+
rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry);
if (unlikely(rc)) {
int lower_flags;
/* Released in ecryptfs_release or end of function if failure */
- file_info = kmem_cache_alloc(ecryptfs_file_info_cache, GFP_KERNEL);
+ file_info = kmem_cache_zalloc(ecryptfs_file_info_cache, GFP_KERNEL);
ecryptfs_set_file_private(file, file_info);
if (!file_info) {
ecryptfs_printk(KERN_ERR,
rc = -ENOMEM;
goto out;
}
- memset(file_info, 0, sizeof(*file_info));
lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
mount_crypt_stat = &ecryptfs_superblock_to_private(
goto out;
}
/* Released in this function */
- page_virt =
- (char *)kmem_cache_alloc(ecryptfs_header_cache_2,
+ page_virt = kmem_cache_zalloc(ecryptfs_header_cache_2,
GFP_USER);
if (!page_virt) {
rc = -ENOMEM;
"Cannot ecryptfs_kmalloc a page\n");
goto out_dput;
}
- memset(page_virt, 0, PAGE_CACHE_SIZE);
+
rc = ecryptfs_read_header_region(page_virt, lower_dentry, nd->mnt);
crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat;
if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_POLICY_APPLIED))
/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
* at end of function upon failure */
auth_tok_list_item =
- kmem_cache_alloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
+ kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
if (!auth_tok_list_item) {
ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
rc = -ENOMEM;
goto out;
}
- memset(auth_tok_list_item, 0,
- sizeof(struct ecryptfs_auth_tok_list_item));
(*new_auth_tok) = &auth_tok_list_item->auth_tok;
/* check for body size - one to two bytes */
/* Released in ecryptfs_put_super() */
ecryptfs_set_superblock_private(sb,
- kmem_cache_alloc(ecryptfs_sb_info_cache,
+ kmem_cache_zalloc(ecryptfs_sb_info_cache,
GFP_KERNEL));
if (!ecryptfs_superblock_to_private(sb)) {
ecryptfs_printk(KERN_WARNING, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
- memset(ecryptfs_superblock_to_private(sb), 0,
- sizeof(struct ecryptfs_sb_info));
sb->s_op = &ecryptfs_sops;
/* Released through deactivate_super(sb) from get_sb_nodev */
sb->s_root = d_alloc(NULL, &(const struct qstr) {
/* Released in d_release when dput(sb->s_root) is called */
/* through deactivate_super(sb) from get_sb_nodev() */
ecryptfs_set_dentry_private(sb->s_root,
- kmem_cache_alloc(ecryptfs_dentry_info_cache,
+ kmem_cache_zalloc(ecryptfs_dentry_info_cache,
GFP_KERNEL));
if (!ecryptfs_dentry_to_private(sb->s_root)) {
ecryptfs_printk(KERN_ERR,
rc = -ENOMEM;
goto out;
}
- memset(ecryptfs_dentry_to_private(sb->s_root), 0,
- sizeof(struct ecryptfs_dentry_info));
rc = 0;
out:
/* Should be able to rely on deactivate_super called from
bprm->loader += stack_base;
bprm->exec += stack_base;
- mpnt = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
+ mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!mpnt)
return -ENOMEM;
- memset(mpnt, 0, sizeof(*mpnt));
-
down_write(&mm->mmap_sem);
{
mpnt->vm_mm = mm;
return;
}
- bd = kmem_cache_alloc(gfs2_bufdata_cachep, GFP_NOFS | __GFP_NOFAIL),
- memset(bd, 0, sizeof(struct gfs2_bufdata));
+ bd = kmem_cache_zalloc(gfs2_bufdata_cachep, GFP_NOFS | __GFP_NOFAIL),
bd->bd_bh = bh;
bd->bd_gl = gl;
struct vfsmount *alloc_vfsmnt(const char *name)
{
- struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
+ struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
if (mnt) {
- memset(mnt, 0, sizeof(struct vfsmount));
atomic_set(&mnt->mnt_count, 1);
INIT_LIST_HEAD(&mnt->mnt_hash);
INIT_LIST_HEAD(&mnt->mnt_child);
struct smb_request *req;
unsigned char *buf = NULL;
- req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
+ req = kmem_cache_zalloc(req_cachep, GFP_KERNEL);
VERBOSE("allocating request: %p\n", req);
if (!req)
goto out;
}
}
- memset(req, 0, sizeof(struct smb_request));
req->rq_buffer = buf;
req->rq_bufsize = bufsize;
req->rq_server = server;
{
struct sysfs_dirent * sd;
- sd = kmem_cache_alloc(sysfs_dir_cachep, GFP_KERNEL);
+ sd = kmem_cache_zalloc(sysfs_dir_cachep, GFP_KERNEL);
if (!sd)
return NULL;
- memset(sd, 0, sizeof(*sd));
atomic_set(&sd->s_count, 1);
atomic_set(&sd->s_event, 1);
INIT_LIST_HEAD(&sd->s_children);
static inline struct sas_task *sas_alloc_task(gfp_t flags)
{
extern struct kmem_cache *sas_task_cache;
- struct sas_task *task = kmem_cache_alloc(sas_task_cache, flags);
+ struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
if (task) {
- memset(task, 0, sizeof(*task));
INIT_LIST_HEAD(&task->list);
spin_lock_init(&task->task_state_lock);
task->task_state_flags = SAS_TASK_STATE_PENDING;
static struct k_itimer * alloc_posix_timer(void)
{
struct k_itimer *tmr;
- tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
+ tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
if (!tmr)
return tmr;
- memset(tmr, 0, sizeof (struct k_itimer));
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
kmem_cache_free(posix_timers_cache, tmr);
tmr = NULL;
if (ops->gc())
return NULL;
}
- dst = kmem_cache_alloc(ops->kmem_cachep, GFP_ATOMIC);
+ dst = kmem_cache_zalloc(ops->kmem_cachep, GFP_ATOMIC);
if (!dst)
return NULL;
- memset(dst, 0, ops->entry_size);
atomic_set(&dst->__refcnt, 0);
dst->ops = ops;
dst->lastuse = jiffies;
goto out_entries;
}
- n = kmem_cache_alloc(tbl->kmem_cachep, GFP_ATOMIC);
+ n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
if (!n)
goto out_entries;
- memset(n, 0, tbl->entry_size);
-
skb_queue_head_init(&n->arp_queue);
rwlock_init(&n->lock);
n->updated = n->used = now;
replace:
err = -ENOBUFS;
- new_f = kmem_cache_alloc(dn_hash_kmem, GFP_KERNEL);
+ new_f = kmem_cache_zalloc(dn_hash_kmem, GFP_KERNEL);
if (new_f == NULL)
goto out;
- memset(new_f, 0, sizeof(struct dn_fib_node));
-
new_f->fn_key = key;
new_f->fn_type = type;
new_f->fn_scope = r->rtm_scope;
*/
static struct mfc_cache *ipmr_cache_alloc(void)
{
- struct mfc_cache *c=kmem_cache_alloc(mrt_cachep, GFP_KERNEL);
+ struct mfc_cache *c=kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
if(c==NULL)
return NULL;
- memset(c, 0, sizeof(*c));
c->mfc_un.res.minvif = MAXVIFS;
return c;
}
static struct mfc_cache *ipmr_cache_alloc_unres(void)
{
- struct mfc_cache *c=kmem_cache_alloc(mrt_cachep, GFP_ATOMIC);
+ struct mfc_cache *c=kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
if(c==NULL)
return NULL;
- memset(c, 0, sizeof(*c));
skb_queue_head_init(&c->mfc_un.unres.unresolved);
c->mfc_un.unres.expires = jiffies + 10*HZ;
return c;
struct ip_vs_conn *cp;
struct ip_vs_protocol *pp = ip_vs_proto_get(proto);
- cp = kmem_cache_alloc(ip_vs_conn_cachep, GFP_ATOMIC);
+ cp = kmem_cache_zalloc(ip_vs_conn_cachep, GFP_ATOMIC);
if (cp == NULL) {
IP_VS_ERR_RL("ip_vs_conn_new: no memory available.\n");
return NULL;
}
- memset(cp, 0, sizeof(*cp));
INIT_LIST_HEAD(&cp->c_list);
init_timer(&cp->timer);
cp->timer.data = (unsigned long)cp;
}
}
- conntrack = kmem_cache_alloc(ip_conntrack_cachep, GFP_ATOMIC);
+ conntrack = kmem_cache_zalloc(ip_conntrack_cachep, GFP_ATOMIC);
if (!conntrack) {
DEBUGP("Can't allocate conntrack.\n");
atomic_dec(&ip_conntrack_count);
return ERR_PTR(-ENOMEM);
}
- memset(conntrack, 0, sizeof(*conntrack));
atomic_set(&conntrack->ct_general.use, 1);
conntrack->ct_general.destroy = destroy_conntrack;
conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
{
struct fib6_node *fn;
- if ((fn = kmem_cache_alloc(fib6_node_kmem, GFP_ATOMIC)) != NULL)
- memset(fn, 0, sizeof(struct fib6_node));
+ fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
return fn;
}
{
struct sctp_chunk *retval;
- retval = kmem_cache_alloc(sctp_chunk_cachep, GFP_ATOMIC);
+ retval = kmem_cache_zalloc(sctp_chunk_cachep, GFP_ATOMIC);
if (!retval)
goto nodata;
- memset(retval, 0, sizeof(struct sctp_chunk));
if (!sk) {
SCTP_DEBUG_PRINTK("chunkifying skb %p w/o an sk\n", skb);
{
struct avc_node *node;
- node = kmem_cache_alloc(avc_node_cachep, GFP_ATOMIC);
+ node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
if (!node)
goto out;
- memset(node, 0, sizeof(*node));
INIT_RCU_HEAD(&node->rhead);
INIT_LIST_HEAD(&node->list);
atomic_set(&node->ae.used, 1);
struct task_security_struct *tsec = current->security;
struct inode_security_struct *isec;
- isec = kmem_cache_alloc(sel_inode_cache, GFP_KERNEL);
+ isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
if (!isec)
return -ENOMEM;
- memset(isec, 0, sizeof(*isec));
mutex_init(&isec->lock);
INIT_LIST_HEAD(&isec->list);
isec->inode = inode;
struct avtab_key *key, struct avtab_datum *datum)
{
struct avtab_node * newnode;
- newnode = kmem_cache_alloc(avtab_node_cachep, GFP_KERNEL);
+ newnode = kmem_cache_zalloc(avtab_node_cachep, GFP_KERNEL);
if (newnode == NULL)
return NULL;
- memset(newnode, 0, sizeof(struct avtab_node));
newnode->key = *key;
newnode->datum = *datum;
if (prev) {