/* First we put the Switcher up in very high virtual memory. */
err = map_switcher();
if (err)
- return err;
+ goto out;
/* Now we set up the pagetable implementation for the Guests. */
err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
- if (err) {
- unmap_switcher();
- return err;
- }
+ if (err)
+ goto unmap;
/* The I/O subsystem needs some things initialized. */
lguest_io_init();
+ /* We might need to reserve an interrupt vector. */
+ err = init_interrupts();
+ if (err)
+ goto free_pgtables;
+
/* /dev/lguest needs to be registered. */
err = lguest_device_init();
- if (err) {
- free_pagetables();
- unmap_switcher();
- return err;
- }
+ if (err)
+ goto free_interrupts;
/* Finally we do some architecture-specific setup. */
lguest_arch_host_init();
/* All good! */
return 0;
+
+free_interrupts:
+ free_interrupts();
+free_pgtables:
+ free_pagetables();
+unmap:
+ unmap_switcher();
+out:
+ return err;
}
/* Cleaning up is just the same code, backwards. With a little French. */
static void __exit fini(void)
{
lguest_device_remove();
+ free_interrupts();
free_pagetables();
unmap_switcher();
* them first, so we also have a way of "reflecting" them into the Guest as if
* they had been delivered to it directly. :*/
#include <linux/uaccess.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
#include "lg.h"
+/* Allow Guests to use a non-128 (ie. non-Linux) syscall trap. */
+static unsigned int syscall_vector = SYSCALL_VECTOR;
+module_param(syscall_vector, uint, 0444);
+
/* The address of the interrupt handler is split into two bits: */
static unsigned long idt_address(u32 lo, u32 hi)
{
* timer interrupt. */
write_timestamp(lg);
}
+/*:*/
+
+/* Linux uses trap 128 for system calls. Plan9 uses 64, and Ron Minnich sent
+ * me a patch, so we support that too. It'd be a big step for lguest if half
+ * the Plan 9 user base were to start using it.
+ *
+ * Actually now I think of it, it's possible that Ron *is* half the Plan 9
+ * userbase. Oh well. */
+static bool could_be_syscall(unsigned int num)
+{
+ /* Normal Linux SYSCALL_VECTOR or reserved vector? */
+ return num == SYSCALL_VECTOR || num == syscall_vector;
+}
+
+/* The syscall vector it wants must be unused by Host. */
+bool check_syscall_vector(struct lguest *lg)
+{
+ u32 vector;
+
+ if (get_user(vector, &lg->lguest_data->syscall_vec))
+ return false;
+
+ return could_be_syscall(vector);
+}
+
+int init_interrupts(void)
+{
+ /* If they want some strange system call vector, reserve it now */
+ if (syscall_vector != SYSCALL_VECTOR
+ && test_and_set_bit(syscall_vector, used_vectors)) {
+ printk("lg: couldn't reserve syscall %u\n", syscall_vector);
+ return -EBUSY;
+ }
+ return 0;
+}
+
+void free_interrupts(void)
+{
+ if (syscall_vector != SYSCALL_VECTOR)
+ clear_bit(syscall_vector, used_vectors);
+}
/*H:220 Now we've got the routines to deliver interrupts, delivering traps
* like page fault is easy. The only trick is that Intel decided that some
{
/* Hardware interrupts don't go to the Guest at all (except system
* call). */
- if (num >= FIRST_EXTERNAL_VECTOR && num != SYSCALL_VECTOR)
+ if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
return 0;
/* The Host needs to see page faults (for shadow paging and to save the