return sched_feat(ENERGY_AWARE);
}
+/*
+ * cpu_norm_util() returns the cpu util relative to a specific capacity,
+ * i.e. it's busy ratio, in the range [0..SCHED_LOAD_SCALE] which is useful for
+ * energy calculations. Using the scale-invariant util returned by
+ * cpu_util() and approximating scale-invariant util by:
+ *
+ * util ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
+ *
+ * the normalized util can be found using the specific capacity.
+ *
+ * capacity = capacity_orig * curr_freq/max_freq
+ *
+ * norm_util = running_time/time ~ util/capacity
+ */
+static unsigned long cpu_norm_util(int cpu, unsigned long capacity)
+{
+ int util = cpu_util(cpu);
+
+ if (util >= capacity)
+ return SCHED_CAPACITY_SCALE;
+
+ return (util << SCHED_CAPACITY_SHIFT)/capacity;
+}
+
+static unsigned long group_max_util(struct sched_group *sg)
+{
+ int i;
+ unsigned long max_util = 0;
+
+ for_each_cpu(i, sched_group_cpus(sg))
+ max_util = max(max_util, cpu_util(i));
+
+ return max_util;
+}
+
+/*
+ * group_norm_util() returns the approximated group util relative to it's
+ * current capacity (busy ratio) in the range [0..SCHED_LOAD_SCALE] for use in
+ * energy calculations. Since task executions may or may not overlap in time in
+ * the group the true normalized util is between max(cpu_norm_util(i)) and
+ * sum(cpu_norm_util(i)) when iterating over all cpus in the group, i. The
+ * latter is used as the estimate as it leads to a more pessimistic energy
+ * estimate (more busy).
+ */
+static unsigned long group_norm_util(struct sched_group *sg, int cap_idx)
+{
+ int i;
+ unsigned long util_sum = 0;
+ unsigned long capacity = sg->sge->cap_states[cap_idx].cap;
+
+ for_each_cpu(i, sched_group_cpus(sg))
+ util_sum += cpu_norm_util(i, capacity);
+
+ if (util_sum > SCHED_CAPACITY_SCALE)
+ return SCHED_CAPACITY_SCALE;
+ return util_sum;
+}
+
+static int find_new_capacity(struct sched_group *sg,
+ const struct sched_group_energy const *sge)
+{
+ int idx;
+ unsigned long util = group_max_util(sg);
+
+ for (idx = 0; idx < sge->nr_cap_states; idx++) {
+ if (sge->cap_states[idx].cap >= util)
+ return idx;
+ }
+
+ return idx;
+}
+
+/*
+ * sched_group_energy(): Computes the absolute energy consumption of cpus
+ * belonging to the sched_group including shared resources shared only by
+ * members of the group. Iterates over all cpus in the hierarchy below the
+ * sched_group starting from the bottom working it's way up before going to
+ * the next cpu until all cpus are covered at all levels. The current
+ * implementation is likely to gather the same util statistics multiple times.
+ * This can probably be done in a faster but more complex way.
+ * Note: sched_group_energy() may fail when racing with sched_domain updates.
+ */
+static int sched_group_energy(struct sched_group *sg_top)
+{
+ struct sched_domain *sd;
+ int cpu, total_energy = 0;
+ struct cpumask visit_cpus;
+ struct sched_group *sg;
+
+ WARN_ON(!sg_top->sge);
+
+ cpumask_copy(&visit_cpus, sched_group_cpus(sg_top));
+
+ while (!cpumask_empty(&visit_cpus)) {
+ struct sched_group *sg_shared_cap = NULL;
+
+ cpu = cpumask_first(&visit_cpus);
+
+ /*
+ * Is the group utilization affected by cpus outside this
+ * sched_group?
+ */
+ sd = rcu_dereference(per_cpu(sd_scs, cpu));
+
+ if (!sd)
+ /*
+ * We most probably raced with hotplug; returning a
+ * wrong energy estimation is better than entering an
+ * infinite loop.
+ */
+ return -EINVAL;
+
+ if (sd->parent)
+ sg_shared_cap = sd->parent->groups;
+
+ for_each_domain(cpu, sd) {
+ sg = sd->groups;
+
+ /* Has this sched_domain already been visited? */
+ if (sd->child && group_first_cpu(sg) != cpu)
+ break;
+
+ do {
+ struct sched_group *sg_cap_util;
+ unsigned long group_util;
+ int sg_busy_energy, sg_idle_energy, cap_idx;
+
+ if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
+ sg_cap_util = sg_shared_cap;
+ else
+ sg_cap_util = sg;
+
+ cap_idx = find_new_capacity(sg_cap_util, sg->sge);
+ group_util = group_norm_util(sg, cap_idx);
+ sg_busy_energy = (group_util * sg->sge->cap_states[cap_idx].power)
+ >> SCHED_CAPACITY_SHIFT;
+ sg_idle_energy = ((SCHED_LOAD_SCALE-group_util) * sg->sge->idle_states[0].power)
+ >> SCHED_CAPACITY_SHIFT;
+
+ total_energy += sg_busy_energy + sg_idle_energy;
+
+ if (!sd->child)
+ cpumask_xor(&visit_cpus, &visit_cpus, sched_group_cpus(sg));
+
+ if (cpumask_equal(sched_group_cpus(sg), sched_group_cpus(sg_top)))
+ goto next_cpu;
+
+ } while (sg = sg->next, sg != sd->groups);
+ }
+next_cpu:
+ continue;
+ }
+
+ return total_energy;
+}
+
/*
* Detect M:N waker/wakee relationships via a switching-frequency heuristic.
* A waker of many should wake a different task than the one last awakened