Each PHB maintains an array helping to translate 2-bytes Request
ID (RID) to PE# with the assumption that PE# takes one byte, meaning
that we can't have more than 256 PEs. However, pci_dn->pe_number
already had 4-bytes for the PE#.
This extends the PE# capacity for every PHB. After that, the PE number
is represented by 4-bytes value. Then we can reuse IODA_INVALID_PE to
check the PE# in phb->pe_rmap[] is valid or not.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
/* Clear the reverse map */
for (rid = pe->rid; rid < rid_end; rid++)
- phb->ioda.pe_rmap[rid] = 0;
+ phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
/* Release from all parents PELT-V */
while (parent) {
if (prop32)
phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
+ /* Invalidate RID to PE# mapping */
+ for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
+ phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
+
/* Parse 64-bit MMIO range */
pnv_ioda_parse_m64_window(phb);
struct list_head pe_list;
struct mutex pe_list_mutex;
- /* Reverse map of PEs, will have to extend if
- * we are to support more than 256 PEs, indexed
- * bus { bus, devfn }
- */
- unsigned char pe_rmap[0x10000];
+ /* Reverse map of PEs, indexed by {bus, devfn} */
+ unsigned int pe_rmap[0x10000];
/* TCE cache invalidate registers (physical and
* remapped)