[PATCH] powerpc: Add flattened device tree documentation
authorDavid Gibson <dwg@au1.ibm.com>
Wed, 1 Feb 2006 11:05:22 +0000 (03:05 -0800)
committerLinus Torvalds <torvalds@g5.osdl.org>
Wed, 1 Feb 2006 16:53:14 +0000 (08:53 -0800)
The flattened device tree is the only supported way of booting ARCH=powerpc
kernels on non Open Firmware machines.  The documentation for the flattened
tree format and contents has been discussed on mailing lists and lately has
been living in the dtc git tree.  Really, it ought to go in the kernel's
Documentation directory for maximum visibility.

Signed-off-by: David Gibson <dwg@au1.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Documentation/powerpc/booting-without-of.txt [new file with mode: 0644]

diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
new file mode 100644 (file)
index 0000000..1284498
--- /dev/null
@@ -0,0 +1,1420 @@
+           Booting the Linux/ppc kernel without Open Firmware
+           --------------------------------------------------
+
+
+(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
+    IBM Corp.
+(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
+    Freescale Semiconductor, FSL SOC and 32-bit additions
+
+   May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
+
+   May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
+                           clarifies the fact that a lot of things are
+                           optional, the kernel only requires a very
+                           small device tree, though it is encouraged
+                           to provide an as complete one as possible.
+
+   May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
+                        - Misc fixes
+                        - Define version 3 and new format version 16
+                          for the DT block (version 16 needs kernel
+                          patches, will be fwd separately).
+                          String block now has a size, and full path
+                          is replaced by unit name for more
+                          compactness.
+                          linux,phandle is made optional, only nodes
+                          that are referenced by other nodes need it.
+                          "name" property is now automatically
+                          deduced from the unit name
+
+   June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
+                           OF_DT_END_NODE in structure definition.
+                         - Change version 16 format to always align
+                           property data to 4 bytes. Since tokens are
+                           already aligned, that means no specific
+                           required alignement between property size
+                           and property data. The old style variable
+                           alignment would make it impossible to do
+                           "simple" insertion of properties using
+                           memove (thanks Milton for
+                           noticing). Updated kernel patch as well
+                        - Correct a few more alignement constraints
+                        - Add a chapter about the device-tree
+                           compiler and the textural representation of
+                           the tree that can be "compiled" by dtc.
+
+
+   November 21, 2005: Rev 0.5
+                        - Additions/generalizations for 32-bit
+                        - Changed to reflect the new arch/powerpc
+                          structure
+                        - Added chapter VI
+
+
+ ToDo:
+       - Add some definitions of interrupt tree (simple/complex)
+       - Add some definitions for pci host bridges
+       - Add some common address format examples
+       - Add definitions for standard properties and "compatible"
+         names for cells that are not already defined by the existing
+         OF spec.
+       - Compare FSL SOC use of PCI to standard and make sure no new
+         node definition required.
+       - Add more information about node definitions for SOC devices
+         that currently have no standard, like the FSL CPM.
+
+
+I - Introduction
+================
+
+During the recent development of the Linux/ppc64 kernel, and more
+specifically, the addition of new platform types outside of the old
+IBM pSeries/iSeries pair, it was decided to enforce some strict rules
+regarding the kernel entry and bootloader <-> kernel interfaces, in
+order to avoid the degeneration that had become the ppc32 kernel entry
+point and the way a new platform should be added to the kernel. The
+legacy iSeries platform breaks those rules as it predates this scheme,
+but no new board support will be accepted in the main tree that
+doesn't follows them properly.  In addition, since the advent of the
+arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
+platforms and 32-bit platforms which move into arch/powerpc will be
+required to use these rules as well.
+
+The main requirement that will be defined in more detail below is
+the presence of a device-tree whose format is defined after Open
+Firmware specification. However, in order to make life easier
+to embedded board vendors, the kernel doesn't require the device-tree
+to represent every device in the system and only requires some nodes
+and properties to be present. This will be described in detail in
+section III, but, for example, the kernel does not require you to
+create a node for every PCI device in the system. It is a requirement
+to have a node for PCI host bridges in order to provide interrupt
+routing informations and memory/IO ranges, among others. It is also
+recommended to define nodes for on chip devices and other busses that
+don't specifically fit in an existing OF specification. This creates a
+great flexibility in the way the kernel can then probe those and match
+drivers to device, without having to hard code all sorts of tables. It
+also makes it more flexible for board vendors to do minor hardware
+upgrades without significantly impacting the kernel code or cluttering
+it with special cases.
+
+
+1) Entry point for arch/powerpc
+-------------------------------
+
+   There is one and one single entry point to the kernel, at the start
+   of the kernel image. That entry point supports two calling
+   conventions:
+
+        a) Boot from Open Firmware. If your firmware is compatible
+        with Open Firmware (IEEE 1275) or provides an OF compatible
+        client interface API (support for "interpret" callback of
+        forth words isn't required), you can enter the kernel with:
+
+              r5 : OF callback pointer as defined by IEEE 1275
+              bindings to powerpc. Only the 32 bit client interface
+              is currently supported
+
+              r3, r4 : address & length of an initrd if any or 0
+
+              The MMU is either on or off; the kernel will run the
+              trampoline located in arch/powerpc/kernel/prom_init.c to
+              extract the device-tree and other information from open
+              firmware and build a flattened device-tree as described
+              in b). prom_init() will then re-enter the kernel using
+              the second method. This trampoline code runs in the
+              context of the firmware, which is supposed to handle all
+              exceptions during that time.
+
+        b) Direct entry with a flattened device-tree block. This entry
+        point is called by a) after the OF trampoline and can also be
+        called directly by a bootloader that does not support the Open
+        Firmware client interface. It is also used by "kexec" to
+        implement "hot" booting of a new kernel from a previous
+        running one. This method is what I will describe in more
+        details in this document, as method a) is simply standard Open
+        Firmware, and thus should be implemented according to the
+        various standard documents defining it and its binding to the
+        PowerPC platform. The entry point definition then becomes:
+
+                r3 : physical pointer to the device-tree block
+                (defined in chapter II) in RAM
+
+                r4 : physical pointer to the kernel itself. This is
+                used by the assembly code to properly disable the MMU
+                in case you are entering the kernel with MMU enabled
+                and a non-1:1 mapping.
+
+                r5 : NULL (as to differenciate with method a)
+
+        Note about SMP entry: Either your firmware puts your other
+        CPUs in some sleep loop or spin loop in ROM where you can get
+        them out via a soft reset or some other means, in which case
+        you don't need to care, or you'll have to enter the kernel
+        with all CPUs. The way to do that with method b) will be
+        described in a later revision of this document.
+
+
+2) Board support
+----------------
+
+64-bit kernels:
+
+   Board supports (platforms) are not exclusive config options. An
+   arbitrary set of board supports can be built in a single kernel
+   image. The kernel will "know" what set of functions to use for a
+   given platform based on the content of the device-tree. Thus, you
+   should:
+
+        a) add your platform support as a _boolean_ option in
+        arch/powerpc/Kconfig, following the example of PPC_PSERIES,
+        PPC_PMAC and PPC_MAPLE. The later is probably a good
+        example of a board support to start from.
+
+        b) create your main platform file as
+        "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
+        to the Makefile under the condition of your CONFIG_
+        option. This file will define a structure of type "ppc_md"
+        containing the various callbacks that the generic code will
+        use to get to your platform specific code
+
+        c) Add a reference to your "ppc_md" structure in the
+        "machines" table in arch/powerpc/kernel/setup_64.c if you are
+        a 64-bit platform.
+
+        d) request and get assigned a platform number (see PLATFORM_*
+        constants in include/asm-powerpc/processor.h
+
+32-bit embedded kernels:
+
+  Currently, board support is essentially an exclusive config option.
+  The kernel is configured for a single platform.  Part of the reason
+  for this is to keep kernels on embedded systems small and efficient;
+  part of this is due to the fact the code is already that way. In the
+  future, a kernel may support multiple platforms, but only if the
+  platforms feature the same core architectire.  A single kernel build
+  cannot support both configurations with Book E and configurations
+  with classic Powerpc architectures.
+
+  32-bit embedded platforms that are moved into arch/powerpc using a
+  flattened device tree should adopt the merged tree practice of
+  setting ppc_md up dynamically, even though the kernel is currently
+  built with support for only a single platform at a time.  This allows
+  unification of the setup code, and will make it easier to go to a
+  multiple-platform-support model in the future.
+
+NOTE: I believe the above will be true once Ben's done with the merge
+of the boot sequences.... someone speak up if this is wrong!
+
+  To add a 32-bit embedded platform support, follow the instructions
+  for 64-bit platforms above, with the exception that the Kconfig
+  option should be set up such that the kernel builds exclusively for
+  the platform selected.  The processor type for the platform should
+  enable another config option to select the specific board
+  supported.
+
+NOTE: If ben doesn't merge the setup files, may need to change this to
+point to setup_32.c
+
+
+   I will describe later the boot process and various callbacks that
+   your platform should implement.
+
+
+II - The DT block format
+========================
+
+
+This chapter defines the actual format of the flattened device-tree
+passed to the kernel. The actual content of it and kernel requirements
+are described later. You can find example of code manipulating that
+format in various places, including arch/powerpc/kernel/prom_init.c
+which will generate a flattened device-tree from the Open Firmware
+representation, or the fs2dt utility which is part of the kexec tools
+which will generate one from a filesystem representation. It is
+expected that a bootloader like uboot provides a bit more support,
+that will be discussed later as well.
+
+Note: The block has to be in main memory. It has to be accessible in
+both real mode and virtual mode with no mapping other than main
+memory. If you are writing a simple flash bootloader, it should copy
+the block to RAM before passing it to the kernel.
+
+
+1) Header
+---------
+
+   The kernel is entered with r3 pointing to an area of memory that is
+   roughtly described in include/asm-powerpc/prom.h by the structure
+   boot_param_header:
+
+struct boot_param_header {
+        u32     magic;                  /* magic word OF_DT_HEADER */
+        u32     totalsize;              /* total size of DT block */
+        u32     off_dt_struct;          /* offset to structure */
+        u32     off_dt_strings;         /* offset to strings */
+        u32     off_mem_rsvmap;         /* offset to memory reserve map
+*/
+        u32     version;                /* format version */
+        u32     last_comp_version;      /* last compatible version */
+
+        /* version 2 fields below */
+        u32     boot_cpuid_phys;        /* Which physical CPU id we're
+                                           booting on */
+        /* version 3 fields below */
+        u32     size_dt_strings;        /* size of the strings block */
+};
+
+   Along with the constants:
+
+/* Definitions used by the flattened device tree */
+#define OF_DT_HEADER            0xd00dfeed      /* 4: version,
+                                                  4: total size */
+#define OF_DT_BEGIN_NODE        0x1             /* Start node: full name
+*/
+#define OF_DT_END_NODE          0x2             /* End node */
+#define OF_DT_PROP              0x3             /* Property: name off,
+                                                   size, content */
+#define OF_DT_END               0x9
+
+   All values in this header are in big endian format, the various
+   fields in this header are defined more precisely below. All
+   "offset" values are in bytes from the start of the header; that is
+   from the value of r3.
+
+   - magic
+
+     This is a magic value that "marks" the beginning of the
+     device-tree block header. It contains the value 0xd00dfeed and is
+     defined by the constant OF_DT_HEADER
+
+   - totalsize
+
+     This is the total size of the DT block including the header. The
+     "DT" block should enclose all data structures defined in this
+     chapter (who are pointed to by offsets in this header). That is,
+     the device-tree structure, strings, and the memory reserve map.
+
+   - off_dt_struct
+
+     This is an offset from the beginning of the header to the start
+     of the "structure" part the device tree. (see 2) device tree)
+
+   - off_dt_strings
+
+     This is an offset from the beginning of the header to the start
+     of the "strings" part of the device-tree
+
+   - off_mem_rsvmap
+
+     This is an offset from the beginning of the header to the start
+     of the reserved memory map. This map is a list of pairs of 64
+     bit integers. Each pair is a physical address and a size. The
+
+     list is terminated by an entry of size 0. This map provides the
+     kernel with a list of physical memory areas that are "reserved"
+     and thus not to be used for memory allocations, especially during
+     early initialization. The kernel needs to allocate memory during
+     boot for things like un-flattening the device-tree, allocating an
+     MMU hash table, etc... Those allocations must be done in such a
+     way to avoid overriding critical things like, on Open Firmware
+     capable machines, the RTAS instance, or on some pSeries, the TCE
+     tables used for the iommu. Typically, the reserve map should
+     contain _at least_ this DT block itself (header,total_size). If
+     you are passing an initrd to the kernel, you should reserve it as
+     well. You do not need to reserve the kernel image itself. The map
+     should be 64 bit aligned.
+
+   - version
+
+     This is the version of this structure. Version 1 stops
+     here. Version 2 adds an additional field boot_cpuid_phys.
+     Version 3 adds the size of the strings block, allowing the kernel
+     to reallocate it easily at boot and free up the unused flattened
+     structure after expansion. Version 16 introduces a new more
+     "compact" format for the tree itself that is however not backward
+     compatible. You should always generate a structure of the highest
+     version defined at the time of your implementation. Currently
+     that is version 16, unless you explicitely aim at being backward
+     compatible.
+
+   - last_comp_version
+
+     Last compatible version. This indicates down to what version of
+     the DT block you are backward compatible. For example, version 2
+     is backward compatible with version 1 (that is, a kernel build
+     for version 1 will be able to boot with a version 2 format). You
+     should put a 1 in this field if you generate a device tree of
+     version 1 to 3, or 0x10 if you generate a tree of version 0x10
+     using the new unit name format.
+
+   - boot_cpuid_phys
+
+     This field only exist on version 2 headers. It indicate which
+     physical CPU ID is calling the kernel entry point. This is used,
+     among others, by kexec. If you are on an SMP system, this value
+     should match the content of the "reg" property of the CPU node in
+     the device-tree corresponding to the CPU calling the kernel entry
+     point (see further chapters for more informations on the required
+     device-tree contents)
+
+
+   So the typical layout of a DT block (though the various parts don't
+   need to be in that order) looks like this (addresses go from top to
+   bottom):
+
+
+             ------------------------------
+       r3 -> |  struct boot_param_header  |
+             ------------------------------
+             |      (alignment gap) (*)   |
+             ------------------------------
+             |      memory reserve map    |
+             ------------------------------
+             |      (alignment gap)       |
+             ------------------------------
+             |                            |
+             |    device-tree structure   |
+             |                            |
+             ------------------------------
+             |      (alignment gap)       |
+             ------------------------------
+             |                            |
+             |     device-tree strings    |
+             |                            |
+      -----> ------------------------------
+      |
+      |
+      --- (r3 + totalsize)
+
+  (*) The alignment gaps are not necessarily present; their presence
+      and size are dependent on the various alignment requirements of
+      the individual data blocks.
+
+
+2) Device tree generalities
+---------------------------
+
+This device-tree itself is separated in two different blocks, a
+structure block and a strings block. Both need to be aligned to a 4
+byte boundary.
+
+First, let's quickly describe the device-tree concept before detailing
+the storage format. This chapter does _not_ describe the detail of the
+required types of nodes & properties for the kernel, this is done
+later in chapter III.
+
+The device-tree layout is strongly inherited from the definition of
+the Open Firmware IEEE 1275 device-tree. It's basically a tree of
+nodes, each node having two or more named properties. A property can
+have a value or not.
+
+It is a tree, so each node has one and only one parent except for the
+root node who has no parent.
+
+A node has 2 names. The actual node name is generally contained in a
+property of type "name" in the node property list whose value is a
+zero terminated string and is mandatory for version 1 to 3 of the
+format definition (as it is in Open Firmware). Version 0x10 makes it
+optional as it can generate it from the unit name defined below.
+
+There is also a "unit name" that is used to differenciate nodes with
+the same name at the same level, it is usually made of the node
+name's, the "@" sign, and a "unit address", which definition is
+specific to the bus type the node sits on.
+
+The unit name doesn't exist as a property per-se but is included in
+the device-tree structure. It is typically used to represent "path" in
+the device-tree. More details about the actual format of these will be
+below.
+
+The kernel powerpc generic code does not make any formal use of the
+unit address (though some board support code may do) so the only real
+requirement here for the unit address is to ensure uniqueness of
+the node unit name at a given level of the tree. Nodes with no notion
+of address and no possible sibling of the same name (like /memory or
+/cpus) may omit the unit address in the context of this specification,
+or use the "@0" default unit address. The unit name is used to define
+a node "full path", which is the concatenation of all parent node
+unit names separated with "/".
+
+The root node doesn't have a defined name, and isn't required to have
+a name property either if you are using version 3 or earlier of the
+format. It also has no unit address (no @ symbol followed by a unit
+address). The root node unit name is thus an empty string. The full
+path to the root node is "/".
+
+Every node which actually represents an actual device (that is, a node
+which isn't only a virtual "container" for more nodes, like "/cpus"
+is) is also required to have a "device_type" property indicating the
+type of node .
+
+Finally, every node that can be referenced from a property in another
+node is required to have a "linux,phandle" property. Real open
+firmware implementations provide a unique "phandle" value for every
+node that the "prom_init()" trampoline code turns into
+"linux,phandle" properties. However, this is made optional if the
+flattened device tree is used directly. An example of a node
+referencing another node via "phandle" is when laying out the
+interrupt tree which will be described in a further version of this
+document.
+
+This "linux, phandle" property is a 32 bit value that uniquely
+identifies a node. You are free to use whatever values or system of
+values, internal pointers, or whatever to generate these, the only
+requirement is that every node for which you provide that property has
+a unique value for it.
+
+Here is an example of a simple device-tree. In this example, an "o"
+designates a node followed by the node unit name. Properties are
+presented with their name followed by their content. "content"
+represents an ASCII string (zero terminated) value, while <content>
+represents a 32 bit hexadecimal value. The various nodes in this
+example will be discussed in a later chapter. At this point, it is
+only meant to give you a idea of what a device-tree looks like. I have
+purposefully kept the "name" and "linux,phandle" properties which
+aren't necessary in order to give you a better idea of what the tree
+looks like in practice.
+
+  / o device-tree
+      |- name = "device-tree"
+      |- model = "MyBoardName"
+      |- compatible = "MyBoardFamilyName"
+      |- #address-cells = <2>
+      |- #size-cells = <2>
+      |- linux,phandle = <0>
+      |
+      o cpus
+      | | - name = "cpus"
+      | | - linux,phandle = <1>
+      | | - #address-cells = <1>
+      | | - #size-cells = <0>
+      | |
+      | o PowerPC,970@0
+      |   |- name = "PowerPC,970"
+      |   |- device_type = "cpu"
+      |   |- reg = <0>
+      |   |- clock-frequency = <5f5e1000>
+      |   |- linux,boot-cpu
+      |   |- linux,phandle = <2>
+      |
+      o memory@0
+      | |- name = "memory"
+      | |- device_type = "memory"
+      | |- reg = <00000000 00000000 00000000 20000000>
+      | |- linux,phandle = <3>
+      |
+      o chosen
+        |- name = "chosen"
+        |- bootargs = "root=/dev/sda2"
+        |- linux,platform = <00000600>
+        |- linux,phandle = <4>
+
+This tree is almost a minimal tree. It pretty much contains the
+minimal set of required nodes and properties to boot a linux kernel;
+that is, some basic model informations at the root, the CPUs, and the
+physical memory layout.  It also includes misc information passed
+through /chosen, like in this example, the platform type (mandatory)
+and the kernel command line arguments (optional).
+
+The /cpus/PowerPC,970@0/linux,boot-cpu property is an example of a
+property without a value. All other properties have a value. The
+significance of the #address-cells and #size-cells properties will be
+explained in chapter IV which defines precisely the required nodes and
+properties and their content.
+
+
+3) Device tree "structure" block
+
+The structure of the device tree is a linearized tree structure. The
+"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
+ends that node definition. Child nodes are simply defined before
+"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
+bit value. The tree has to be "finished" with a OF_DT_END token
+
+Here's the basic structure of a single node:
+
+     * token OF_DT_BEGIN_NODE (that is 0x00000001)
+     * for version 1 to 3, this is the node full path as a zero
+       terminated string, starting with "/". For version 16 and later,
+       this is the node unit name only (or an empty string for the
+       root node)
+     * [align gap to next 4 bytes boundary]
+     * for each property:
+        * token OF_DT_PROP (that is 0x00000003)
+        * 32 bit value of property value size in bytes (or 0 of no
+     * value)
+        * 32 bit value of offset in string block of property name
+        * property value data if any
+        * [align gap to next 4 bytes boundary]
+     * [child nodes if any]
+     * token OF_DT_END_NODE (that is 0x00000002)
+
+So the node content can be summmarised as a start token, a full path,
+a list of properties, a list of child node and an end token. Every
+child node is a full node structure itself as defined above.
+
+4) Device tree 'strings" block
+
+In order to save space, property names, which are generally redundant,
+are stored separately in the "strings" block. This block is simply the
+whole bunch of zero terminated strings for all property names
+concatenated together. The device-tree property definitions in the
+structure block will contain offset values from the beginning of the
+strings block.
+
+
+III - Required content of the device tree
+=========================================
+
+WARNING: All "linux,*" properties defined in this document apply only
+to a flattened device-tree. If your platform uses a real
+implementation of Open Firmware or an implementation compatible with
+the Open Firmware client interface, those properties will be created
+by the trampoline code in the kernel's prom_init() file. For example,
+that's where you'll have to add code to detect your board model and
+set the platform number. However, when using the flatenned device-tree
+entry point, there is no prom_init() pass, and thus you have to
+provide those properties yourself.
+
+
+1) Note about cells and address representation
+----------------------------------------------
+
+The general rule is documented in the various Open Firmware
+documentations. If you chose to describe a bus with the device-tree
+and there exist an OF bus binding, then you should follow the
+specification. However, the kernel does not require every single
+device or bus to be described by the device tree.
+
+In general, the format of an address for a device is defined by the
+parent bus type, based on the #address-cells and #size-cells
+property. In the absence of such a property, the parent's parent
+values are used, etc... The kernel requires the root node to have
+those properties defining addresses format for devices directly mapped
+on the processor bus.
+
+Those 2 properties define 'cells' for representing an address and a
+size. A "cell" is a 32 bit number. For example, if both contain 2
+like the example tree given above, then an address and a size are both
+composed of 2 cells, and each is a 64 bit number (cells are
+concatenated and expected to be in big endian format). Another example
+is the way Apple firmware defines them, with 2 cells for an address
+and one cell for a size.  Most 32-bit implementations should define
+#address-cells and #size-cells to 1, which represents a 32-bit value.
+Some 32-bit processors allow for physical addresses greater than 32
+bits; these processors should define #address-cells as 2.
+
+"reg" properties are always a tuple of the type "address size" where
+the number of cells of address and size is specified by the bus
+#address-cells and #size-cells. When a bus supports various address
+spaces and other flags relative to a given address allocation (like
+prefetchable, etc...) those flags are usually added to the top level
+bits of the physical address. For example, a PCI physical address is
+made of 3 cells, the bottom two containing the actual address itself
+while the top cell contains address space indication, flags, and pci
+bus & device numbers.
+
+For busses that support dynamic allocation, it's the accepted practice
+to then not provide the address in "reg" (keep it 0) though while
+providing a flag indicating the address is dynamically allocated, and
+then, to provide a separate "assigned-addresses" property that
+contains the fully allocated addresses. See the PCI OF bindings for
+details.
+
+In general, a simple bus with no address space bits and no dynamic
+allocation is preferred if it reflects your hardware, as the existing
+kernel address parsing functions will work out of the box. If you
+define a bus type with a more complex address format, including things
+like address space bits, you'll have to add a bus translator to the
+prom_parse.c file of the recent kernels for your bus type.
+
+The "reg" property only defines addresses and sizes (if #size-cells
+is
+non-0) within a given bus. In order to translate addresses upward
+(that is into parent bus addresses, and possibly into cpu physical
+addresses), all busses must contain a "ranges" property. If the
+"ranges" property is missing at a given level, it's assumed that
+translation isn't possible. The format of the "ranges" proprety for a
+bus is a list of:
+
+       bus address, parent bus address, size
+
+"bus address" is in the format of the bus this bus node is defining,
+that is, for a PCI bridge, it would be a PCI address. Thus, (bus
+address, size) defines a range of addresses for child devices. "parent
+bus address" is in the format of the parent bus of this bus. For
+example, for a PCI host controller, that would be a CPU address. For a
+PCI<->ISA bridge, that would be a PCI address. It defines the base
+address in the parent bus where the beginning of that range is mapped.
+
+For a new 64 bit powerpc board, I recommend either the 2/2 format or
+Apple's 2/1 format which is slightly more compact since sizes usually
+fit in a single 32 bit word.   New 32 bit powerpc boards should use a
+1/1 format, unless the processor supports physical addresses greater
+than 32-bits, in which case a 2/1 format is recommended.
+
+
+2) Note about "compatible" properties
+-------------------------------------
+
+These properties are optional, but recommended in devices and the root
+node. The format of a "compatible" property is a list of concatenated
+zero terminated strings. They allow a device to express its
+compatibility with a family of similar devices, in some cases,
+allowing a single driver to match against several devices regardless
+of their actual names.
+
+3) Note about "name" properties
+-------------------------------
+
+While earlier users of Open Firmware like OldWorld macintoshes tended
+to use the actual device name for the "name" property, it's nowadays
+considered a good practice to use a name that is closer to the device
+class (often equal to device_type). For example, nowadays, ethernet
+controllers are named "ethernet", an additional "model" property
+defining precisely the chip type/model, and "compatible" property
+defining the family in case a single driver can driver more than one
+of these chips. However, the kernel doesn't generally put any
+restriction on the "name" property; it is simply considered good
+practice to follow the standard and its evolutions as closely as
+possible.
+
+Note also that the new format version 16 makes the "name" property
+optional. If it's absent for a node, then the node's unit name is then
+used to reconstruct the name. That is, the part of the unit name
+before the "@" sign is used (or the entire unit name if no "@" sign
+is present).
+
+4) Note about node and property names and character set
+-------------------------------------------------------
+
+While open firmware provides more flexibe usage of 8859-1, this
+specification enforces more strict rules. Nodes and properties should
+be comprised only of ASCII characters 'a' to 'z', '0' to
+'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
+allow uppercase characters 'A' to 'Z' (property names should be
+lowercase. The fact that vendors like Apple don't respect this rule is
+irrelevant here). Additionally, node and property names should always
+begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
+names).
+
+The maximum number of characters for both nodes and property names
+is 31. In the case of node names, this is only the leftmost part of
+a unit name (the pure "name" property), it doesn't include the unit
+address which can extend beyond that limit.
+
+
+5) Required nodes and properties
+--------------------------------
+  These are all that are currently required. However, it is strongly
+  recommended that you expose PCI host bridges as documented in the
+  PCI binding to open firmware, and your interrupt tree as documented
+  in OF interrupt tree specification.
+
+  a) The root node
+
+  The root node requires some properties to be present:
+
+    - model : this is your board name/model
+    - #address-cells : address representation for "root" devices
+    - #size-cells: the size representation for "root" devices
+
+  Additionally, some recommended properties are:
+
+    - compatible : the board "family" generally finds its way here,
+      for example, if you have 2 board models with a similar layout,
+      that typically get driven by the same platform code in the
+      kernel, you would use a different "model" property but put a
+      value in "compatible". The kernel doesn't directly use that
+      value (see /chosen/linux,platform for how the kernel choses a
+      platform type) but it is generally useful.
+
+  The root node is also generally where you add additional properties
+  specific to your board like the serial number if any, that sort of
+  thing. it is recommended that if you add any "custom" property whose
+  name may clash with standard defined ones, you prefix them with your
+  vendor name and a comma.
+
+  b) The /cpus node
+
+  This node is the parent of all individual CPU nodes. It doesn't
+  have any specific requirements, though it's generally good practice
+  to have at least:
+
+               #address-cells = <00000001>
+               #size-cells    = <00000000>
+
+  This defines that the "address" for a CPU is a single cell, and has
+  no meaningful size. This is not necessary but the kernel will assume
+  that format when reading the "reg" properties of a CPU node, see
+  below
+
+  c) The /cpus/* nodes
+
+  So under /cpus, you are supposed to create a node for every CPU on
+  the machine. There is no specific restriction on the name of the
+  CPU, though It's common practice to call it PowerPC,<name>. For
+  example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
+
+  Required properties:
+
+    - device_type : has to be "cpu"
+    - reg : This is the physical cpu number, it's a single 32 bit cell
+      and is also used as-is as the unit number for constructing the
+      unit name in the full path. For example, with 2 CPUs, you would
+      have the full path:
+        /cpus/PowerPC,970FX@0
+        /cpus/PowerPC,970FX@1
+      (unit addresses do not require leading zeroes)
+    - d-cache-line-size : one cell, L1 data cache line size in bytes
+    - i-cache-line-size : one cell, L1 instruction cache line size in
+      bytes
+    - d-cache-size : one cell, size of L1 data cache in bytes
+    - i-cache-size : one cell, size of L1 instruction cache in bytes
+    - linux, boot-cpu : Should be defined if this cpu is the boot cpu.
+
+  Recommended properties:
+
+    - timebase-frequency : a cell indicating the frequency of the
+      timebase in Hz. This is not directly used by the generic code,
+      but you are welcome to copy/paste the pSeries code for setting
+      the kernel timebase/decrementer calibration based on this
+      value.
+    - clock-frequency : a cell indicating the CPU core clock frequency
+      in Hz. A new property will be defined for 64 bit values, but if
+      your frequency is < 4Ghz, one cell is enough. Here as well as
+      for the above, the common code doesn't use that property, but
+      you are welcome to re-use the pSeries or Maple one. A future
+      kernel version might provide a common function for this.
+
+  You are welcome to add any property you find relevant to your board,
+  like some information about the mechanism used to soft-reset the
+  CPUs. For example, Apple puts the GPIO number for CPU soft reset
+  lines in there as a "soft-reset" property since they start secondary
+  CPUs by soft-resetting them.
+
+
+  d) the /memory node(s)
+
+  To define the physical memory layout of your board, you should
+  create one or more memory node(s). You can either create a single
+  node with all memory ranges in its reg property, or you can create
+  several nodes, as you wish. The unit address (@ part) used for the
+  full path is the address of the first range of memory defined by a
+  given node. If you use a single memory node, this will typically be
+  @0.
+
+  Required properties:
+
+    - device_type : has to be "memory"
+    - reg : This property contains all the physical memory ranges of
+      your board. It's a list of addresses/sizes concatenated
+      together, with the number of cells of each defined by the
+      #address-cells and #size-cells of the root node. For example,
+      with both of these properties beeing 2 like in the example given
+      earlier, a 970 based machine with 6Gb of RAM could typically
+      have a "reg" property here that looks like:
+
+      00000000 00000000 00000000 80000000
+      00000001 00000000 00000001 00000000
+
+      That is a range starting at 0 of 0x80000000 bytes and a range
+      starting at 0x100000000 and of 0x100000000 bytes. You can see
+      that there is no memory covering the IO hole between 2Gb and
+      4Gb. Some vendors prefer splitting those ranges into smaller
+      segments, but the kernel doesn't care.
+
+  e) The /chosen node
+
+  This node is a bit "special". Normally, that's where open firmware
+  puts some variable environment information, like the arguments, or
+  phandle pointers to nodes like the main interrupt controller, or the
+  default input/output devices.
+
+  This specification makes a few of these mandatory, but also defines
+  some linux-specific properties that would be normally constructed by
+  the prom_init() trampoline when booting with an OF client interface,
+  but that you have to provide yourself when using the flattened format.
+
+  Required properties:
+
+    - linux,platform : This is your platform number as assigned by the
+      architecture maintainers
+
+  Recommended properties:
+
+    - bootargs : This zero-terminated string is passed as the kernel
+      command line
+    - linux,stdout-path : This is the full path to your standard
+      console device if any. Typically, if you have serial devices on
+      your board, you may want to put the full path to the one set as
+      the default console in the firmware here, for the kernel to pick
+      it up as it's own default console. If you look at the funciton
+      set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
+      that the kernel tries to find out the default console and has
+      knowledge of various types like 8250 serial ports. You may want
+      to extend this function to add your own.
+    - interrupt-controller : This is one cell containing a phandle
+      value that matches the "linux,phandle" property of your main
+      interrupt controller node. May be used for interrupt routing.
+
+
+  Note that u-boot creates and fills in the chosen node for platforms
+  that use it.
+
+  f) the /soc<SOCname> node
+
+  This node is used to represent a system-on-a-chip (SOC) and must be
+  present if the processor is a SOC. The top-level soc node contains
+  information that is global to all devices on the SOC. The node name
+  should contain a unit address for the SOC, which is the base address
+  of the memory-mapped register set for the SOC. The name of an soc
+  node should start with "soc", and the remainder of the name should
+  represent the part number for the soc.  For example, the MPC8540's
+  soc node would be called "soc8540".
+
+  Required properties:
+
+    - device_type : Should be "soc"
+    - ranges : Should be defined as specified in 1) to describe the
+      translation of SOC addresses for memory mapped SOC registers.
+
+  Recommended properties:
+
+    - reg : This property defines the address and size of the
+      memory-mapped registers that are used for the SOC node itself.
+      It does not include the child device registers - these will be
+      defined inside each child node.  The address specified in the
+      "reg" property should match the unit address of the SOC node.
+    - #address-cells : Address representation for "soc" devices.  The
+      format of this field may vary depending on whether or not the
+      device registers are memory mapped.  For memory mapped
+      registers, this field represents the number of cells needed to
+      represent the address of the registers.  For SOCs that do not
+      use MMIO, a special address format should be defined that
+      contains enough cells to represent the required information.
+      See 1) above for more details on defining #address-cells.
+    - #size-cells : Size representation for "soc" devices
+    - #interrupt-cells : Defines the width of cells used to represent
+       interrupts.  Typically this value is <2>, which includes a
+       32-bit number that represents the interrupt number, and a
+       32-bit number that represents the interrupt sense and level.
+       This field is only needed if the SOC contains an interrupt
+       controller.
+
+  The SOC node may contain child nodes for each SOC device that the
+  platform uses.  Nodes should not be created for devices which exist
+  on the SOC but are not used by a particular platform. See chapter VI
+  for more information on how to specify devices that are part of an
+SOC.
+
+  Example SOC node for the MPC8540:
+
+       soc8540@e0000000 {
+               #address-cells = <1>;
+               #size-cells = <1>;
+               #interrupt-cells = <2>;
+               device_type = "soc";
+               ranges = <00000000 e0000000 00100000>
+               reg = <e0000000 00003000>;
+       }
+
+
+
+IV - "dtc", the device tree compiler
+====================================
+
+
+dtc source code can be found at
+<http://ozlabs.org/~dgibson/dtc/dtc.tar.gz>
+
+WARNING: This version is still in early development stage; the
+resulting device-tree "blobs" have not yet been validated with the
+kernel. The current generated bloc lacks a useful reserve map (it will
+be fixed to generate an empty one, it's up to the bootloader to fill
+it up) among others. The error handling needs work, bugs are lurking,
+etc...
+
+dtc basically takes a device-tree in a given format and outputs a
+device-tree in another format. The currently supported formats are:
+
+  Input formats:
+  -------------
+
+     - "dtb": "blob" format, that is a flattened device-tree block
+       with
+        header all in a binary blob.
+     - "dts": "source" format. This is a text file containing a
+       "source" for a device-tree. The format is defined later in this
+        chapter.
+     - "fs" format. This is a representation equivalent to the
+        output of /proc/device-tree, that is nodes are directories and
+       properties are files
+
+ Output formats:
+ ---------------
+
+     - "dtb": "blob" format
+     - "dts": "source" format
+     - "asm": assembly language file. This is a file that can be
+       sourced by gas to generate a device-tree "blob". That file can
+       then simply be added to your Makefile. Additionally, the
+       assembly file exports some symbols that can be use
+
+
+The syntax of the dtc tool is
+
+    dtc [-I <input-format>] [-O <output-format>]
+        [-o output-filename] [-V output_version] input_filename
+
+
+The "output_version" defines what versio of the "blob" format will be
+generated. Supported versions are 1,2,3 and 16. The default is
+currently version 3 but that may change in the future to version 16.
+
+Additionally, dtc performs various sanity checks on the tree, like the
+uniqueness of linux,phandle properties, validity of strings, etc...
+
+The format of the .dts "source" file is "C" like, supports C and C++
+style commments.
+
+/ {
+}
+
+The above is the "device-tree" definition. It's the only statement
+supported currently at the toplevel.
+
+/ {
+  property1 = "string_value";  /* define a property containing a 0
+                                 * terminated string
+                                */
+
+  property2 = <1234abcd>;      /* define a property containing a
+                                 * numerical 32 bits value (hexadecimal)
+                                */
+
+  property3 = <12345678 12345678 deadbeef>;
+                                /* define a property containing 3
+                                 * numerical 32 bits values (cells) in
+                                 * hexadecimal
+                                */
+  property4 = [0a 0b 0c 0d de ea ad be ef];
+                                /* define a property whose content is
+                                 * an arbitrary array of bytes
+                                 */
+
+  childnode@addresss { /* define a child node named "childnode"
+                                 * whose unit name is "childnode at
+                                * address"
+                                 */
+
+    childprop = "hello\n";      /* define a property "childprop" of
+                                 * childnode (in this case, a string)
+                                 */
+  };
+};
+
+Nodes can contain other nodes etc... thus defining the hierarchical
+structure of the tree.
+
+Strings support common escape sequences from C: "\n", "\t", "\r",
+"\(octal value)", "\x(hex value)".
+
+It is also suggested that you pipe your source file through cpp (gcc
+preprocessor) so you can use #include's, #define for constants, etc...
+
+Finally, various options are planned but not yet implemented, like
+automatic generation of phandles, labels (exported to the asm file so
+you can point to a property content and change it easily from whatever
+you link the device-tree with), label or path instead of numeric value
+in some cells to "point" to a node (replaced by a phandle at compile
+time), export of reserve map address to the asm file, ability to
+specify reserve map content at compile time, etc...
+
+We may provide a .h include file with common definitions of that
+proves useful for some properties (like building PCI properties or
+interrupt maps) though it may be better to add a notion of struct
+definitions to the compiler...
+
+
+V - Recommendations for a bootloader
+====================================
+
+
+Here are some various ideas/recommendations that have been proposed
+while all this has been defined and implemented.
+
+  - The bootloader may want to be able to use the device-tree itself
+    and may want to manipulate it (to add/edit some properties,
+    like physical memory size or kernel arguments). At this point, 2
+    choices can be made. Either the bootloader works directly on the
+    flattened format, or the bootloader has its own internal tree
+    representation with pointers (similar to the kernel one) and
+    re-flattens the tree when booting the kernel. The former is a bit
+    more difficult to edit/modify, the later requires probably a bit
+    more code to handle the tree structure. Note that the structure
+    format has been designed so it's relatively easy to "insert"
+    properties or nodes or delete them by just memmoving things
+    around. It contains no internal offsets or pointers for this
+    purpose.
+
+  - An example of code for iterating nodes & retreiving properties
+    directly from the flattened tree format can be found in the kernel
+    file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function,
+    it's usage in early_init_devtree(), and the corresponding various
+    early_init_dt_scan_*() callbacks. That code can be re-used in a
+    GPL bootloader, and as the author of that code, I would be happy
+    do discuss possible free licencing to any vendor who wishes to
+    integrate all or part of this code into a non-GPL bootloader.
+
+
+
+VI - System-on-a-chip devices and nodes
+=======================================
+
+Many companies are now starting to develop system-on-a-chip
+processors, where the processor core (cpu) and many peripheral devices
+exist on a single piece of silicon.  For these SOCs, an SOC node
+should be used that defines child nodes for the devices that make
+up the SOC. While platforms are not required to use this model in
+order to boot the kernel, it is highly encouraged that all SOC
+implementations define as complete a flat-device-tree as possible to
+describe the devices on the SOC.  This will allow for the
+genericization of much of the kernel code.
+
+
+1) Defining child nodes of an SOC
+---------------------------------
+
+Each device that is part of an SOC may have its own node entry inside
+the SOC node.  For each device that is included in the SOC, the unit
+address property represents the address offset for this device's
+memory-mapped registers in the parent's address space.  The parent's
+address space is defined by the "ranges" property in the top-level soc
+node. The "reg" property for each node that exists directly under the
+SOC node should contain the address mapping from the child address space
+to the parent SOC address space and the size of the device's
+memory-mapped register file.
+
+For many devices that may exist inside an SOC, there are predefined
+specifications for the format of the device tree node.  All SOC child
+nodes should follow these specifications, except where noted in this
+document.
+
+See appendix A for an example partial SOC node definition for the
+MPC8540.
+
+
+2) Specifying interrupt information for SOC devices
+---------------------------------------------------
+
+Each device that is part of an SOC and which generates interrupts
+should have the following properties:
+
+       - interrupt-parent : contains the phandle of the interrupt
+          controller which handles interrupts for this device
+       - interrupts : a list of tuples representing the interrupt
+          number and the interrupt sense and level for each interupt
+          for this device.
+
+This information is used by the kernel to build the interrupt table
+for the interrupt controllers in the system.
+
+Sense and level information should be encoded as follows:
+
+   Devices connected to openPIC-compatible controllers should encode
+   sense and polarity as follows:
+
+       0 = high to low edge sensitive type enabled
+       1 = active low level sensitive type enabled
+       2 = low to high edge sensitive type enabled
+       3 = active high level sensitive type enabled
+
+   ISA PIC interrupt controllers should adhere to the ISA PIC
+   encodings listed below:
+
+       0 =  active low level sensitive type enabled
+       1 =  active high level sensitive type enabled
+       2 =  high to low edge sensitive type enabled
+       3 =  low to high edge sensitive type enabled
+
+
+
+3) Representing devices without a current OF specification
+----------------------------------------------------------
+
+Currently, there are many devices on SOCs that do not have a standard
+representation pre-defined as part of the open firmware
+specifications, mainly because the boards that contain these SOCs are
+not currently booted using open firmware.   This section contains
+descriptions for the SOC devices for which new nodes have been
+defined; this list will expand as more and more SOC-containing
+platforms are moved over to use the flattened-device-tree model.
+
+  a) MDIO IO device
+
+  The MDIO is a bus to which the PHY devices are connected.  For each
+  device that exists on this bus, a child node should be created.  See
+  the definition of the PHY node below for an example of how to define
+  a PHY.
+
+  Required properties:
+    - reg : Offset and length of the register set for the device
+    - device_type : Should be "mdio"
+    - compatible : Should define the compatible device type for the
+      mdio.  Currently, this is most likely to be "gianfar"
+
+  Example:
+
+       mdio@24520 {
+               reg = <24520 20>;
+
+               ethernet-phy@0 {
+                       ......
+               };
+       };
+
+
+  b) Gianfar-compatible ethernet nodes
+
+  Required properties:
+
+    - device_type : Should be "network"
+    - model : Model of the device.  Can be "TSEC", "eTSEC", or "FEC"
+    - compatible : Should be "gianfar"
+    - reg : Offset and length of the register set for the device
+    - address : List of bytes representing the ethernet address of
+      this controller
+    - interrupts : <a b> where a is the interrupt number and b is a
+      field that represents an encoding of the sense and level
+      information for the interrupt.  This should be encoded based on
+      the information in section 2) depending on the type of interrupt
+      controller you have.
+    - interrupt-parent : the phandle for the interrupt controller that
+      services interrupts for this device.
+    - phy-handle : The phandle for the PHY connected to this ethernet
+      controller.
+
+  Example:
+
+       ethernet@24000 {
+               #size-cells = <0>;
+               device_type = "network";
+               model = "TSEC";
+               compatible = "gianfar";
+               reg = <24000 1000>;
+               address = [ 00 E0 0C 00 73 00 ];
+               interrupts = <d 3 e 3 12 3>;
+               interrupt-parent = <40000>;
+               phy-handle = <2452000>
+       };
+
+
+
+   c) PHY nodes
+
+   Required properties:
+
+    - device_type : Should be "ethernet-phy"
+    - interrupts : <a b> where a is the interrupt number and b is a
+      field that represents an encoding of the sense and level
+      information for the interrupt.  This should be encoded based on
+      the information in section 2) depending on the type of interrupt
+      controller you have.
+    - interrupt-parent : the phandle for the interrupt controller that
+      services interrupts for this device.
+    - reg : The ID number for the phy, usually a small integer
+    - linux,phandle :  phandle for this node; likely referenced by an
+      ethernet controller node.
+
+
+   Example:
+
+       ethernet-phy@0 {
+               linux,phandle = <2452000>
+               interrupt-parent = <40000>;
+               interrupts = <35 1>;
+               reg = <0>;
+               device_type = "ethernet-phy";
+       };
+
+
+   d) Interrupt controllers
+
+   Some SOC devices contain interrupt controllers that are different
+   from the standard Open PIC specification.  The SOC device nodes for
+   these types of controllers should be specified just like a standard
+   OpenPIC controller.  Sense and level information should be encoded
+   as specified in section 2) of this chapter for each device that
+   specifies an interrupt.
+
+   Example :
+
+       pic@40000 {
+               linux,phandle = <40000>;
+               clock-frequency = <0>;
+               interrupt-controller;
+               #address-cells = <0>;
+               reg = <40000 40000>;
+               built-in;
+               compatible = "chrp,open-pic";
+               device_type = "open-pic";
+               big-endian;
+       };
+
+
+   e) I2C
+
+   Required properties :
+
+    - device_type : Should be "i2c"
+    - reg : Offset and length of the register set for the device
+
+   Recommended properties :
+
+    - compatible : Should be "fsl-i2c" for parts compatible with
+      Freescale I2C specifications.
+    - interrupts : <a b> where a is the interrupt number and b is a
+      field that represents an encoding of the sense and level
+      information for the interrupt.  This should be encoded based on
+      the information in section 2) depending on the type of interrupt
+      controller you have.
+    - interrupt-parent : the phandle for the interrupt controller that
+      services interrupts for this device.
+    - dfsrr : boolean; if defined, indicates that this I2C device has
+      a digital filter sampling rate register
+    - fsl5200-clocking : boolean; if defined, indicated that this device
+      uses the FSL 5200 clocking mechanism.
+
+   Example :
+
+       i2c@3000 {
+               interrupt-parent = <40000>;
+               interrupts = <1b 3>;
+               reg = <3000 18>;
+               device_type = "i2c";
+               compatible  = "fsl-i2c";
+               dfsrr;
+       };
+
+
+   More devices will be defined as this spec matures.
+
+
+Appendix A - Sample SOC node for MPC8540
+========================================
+
+Note that the #address-cells and #size-cells for the SoC node
+in this example have been explicitly listed; these are likely
+not necessary as they are usually the same as the root node.
+
+       soc8540@e0000000 {
+               #address-cells = <1>;
+               #size-cells = <1>;
+               #interrupt-cells = <2>;
+               device_type = "soc";
+               ranges = <00000000 e0000000 00100000>
+               reg = <e0000000 00003000>;
+
+               mdio@24520 {
+                       reg = <24520 20>;
+                       device_type = "mdio";
+                       compatible = "gianfar";
+
+                       ethernet-phy@0 {
+                               linux,phandle = <2452000>
+                               interrupt-parent = <40000>;
+                               interrupts = <35 1>;
+                               reg = <0>;
+                               device_type = "ethernet-phy";
+                       };
+
+                       ethernet-phy@1 {
+                               linux,phandle = <2452001>
+                               interrupt-parent = <40000>;
+                               interrupts = <35 1>;
+                               reg = <1>;
+                               device_type = "ethernet-phy";
+                       };
+
+                       ethernet-phy@3 {
+                               linux,phandle = <2452002>
+                               interrupt-parent = <40000>;
+                               interrupts = <35 1>;
+                               reg = <3>;
+                               device_type = "ethernet-phy";
+                       };
+
+               };
+
+               ethernet@24000 {
+                       #size-cells = <0>;
+                       device_type = "network";
+                       model = "TSEC";
+                       compatible = "gianfar";
+                       reg = <24000 1000>;
+                       address = [ 00 E0 0C 00 73 00 ];
+                       interrupts = <d 3 e 3 12 3>;
+                       interrupt-parent = <40000>;
+                       phy-handle = <2452000>;
+               };
+
+               ethernet@25000 {
+                       #address-cells = <1>;
+                       #size-cells = <0>;
+                       device_type = "network";
+                       model = "TSEC";
+                       compatible = "gianfar";
+                       reg = <25000 1000>;
+                       address = [ 00 E0 0C 00 73 01 ];
+                       interrupts = <13 3 14 3 18 3>;
+                       interrupt-parent = <40000>;
+                       phy-handle = <2452001>;
+               };
+
+               ethernet@26000 {
+                       #address-cells = <1>;
+                       #size-cells = <0>;
+                       device_type = "network";
+                       model = "FEC";
+                       compatible = "gianfar";
+                       reg = <26000 1000>;
+                       address = [ 00 E0 0C 00 73 02 ];
+                       interrupts = <19 3>;
+                       interrupt-parent = <40000>;
+                       phy-handle = <2452002>;
+               };
+
+               serial@4500 {
+                       device_type = "serial";
+                       compatible = "ns16550";
+                       reg = <4500 100>;
+                       clock-frequency = <0>;
+                       interrupts = <1a 3>;
+                       interrupt-parent = <40000>;
+               };
+
+               pic@40000 {
+                       linux,phandle = <40000>;
+                       clock-frequency = <0>;
+                       interrupt-controller;
+                       #address-cells = <0>;
+                       reg = <40000 40000>;
+                       built-in;
+                       compatible = "chrp,open-pic";
+                       device_type = "open-pic";
+                        big-endian;
+               };
+
+               i2c@3000 {
+                       interrupt-parent = <40000>;
+                       interrupts = <1b 3>;
+                       reg = <3000 18>;
+                       device_type = "i2c";
+                       compatible  = "fsl-i2c";
+                       dfsrr;
+               };
+
+       };