While here, add missing argument description (ndigits).
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Authors: Salvatore Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
+ * modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
+ * 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
* Authors: Salvatore Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
+ * modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
+ * 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/export.h>
* ecc_is_key_valid() - Validate a given ECDH private key
*
* @curve_id: id representing the curve to use
- * @ndigits: curve number of digits
+ * @ndigits: curve's number of digits
* @private_key: private key to be used for the given curve
- * @private_key_len: private key len
+ * @private_key_len: private key length
*
* Returns 0 if the key is acceptable, a negative value otherwise
*/
* ecdh_make_pub_key() - Compute an ECC public key
*
* @curve_id: id representing the curve to use
+ * @ndigits: curve's number of digits
* @private_key: pregenerated private key for the given curve
* @private_key_len: length of private_key
- * @public_key: buffer for storing the public key generated
+ * @public_key: buffer for storing the generated public key
* @public_key_len: length of the public_key buffer
*
* Returns 0 if the public key was generated successfully, a negative value
* crypto_ecdh_shared_secret() - Compute a shared secret
*
* @curve_id: id representing the curve to use
+ * @ndigits: curve's number of digits
* @private_key: private key of part A
* @private_key_len: length of private_key
* @public_key: public key of counterpart B
* Authors: Salvator Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
+ * modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
+ * 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
* Authors: Salvatore Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
+ * modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
+ * 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/export.h>
/**
* crypto_dh_decode_key() - decode a private key
* @buf: Buffer holding a packet key that should be decoded
- * @len: Lenth of the packet private key buffer
+ * @len: Length of the packet private key buffer
* @params: Buffer allocated by the caller that is filled with the
- * unpacket DH private key.
+ * unpacked DH private key.
*
* The unpacking obtains the private key by pointing @p to the correct location
* in @buf. Thus, both pointers refer to the same memory.
/**
* crypto_ecdh_decode_key() - decode a private key
* @buf: Buffer holding a packet key that should be decoded
- * @len: Lenth of the packet private key buffer
+ * @len: Length of the packet private key buffer
* @p: Buffer allocated by the caller that is filled with the
- * unpacket ECDH private key.
+ * unpacked ECDH private key.
*
* The unpacking obtains the private key by pointing @p to the correct location
* in @buf. Thus, both pointers refer to the same memory.
*
* @set_secret: Function invokes the protocol specific function to
* store the secret private key along with parameters.
- * The implementation knows how to decode thie buffer
+ * The implementation knows how to decode the buffer
* @generate_public_key: Function generate the public key to be sent to the
* counterpart. In case of error, where output is not big
* enough req->dst_len will be updated to the size
* @mask: specifies the mask for the algorithm
*
* Allocate a handle for kpp algorithm. The returned struct crypto_kpp
- * is requeried for any following API invocation
+ * is required for any following API invocation
*
* Return: allocated handle in case of success; IS_ERR() is true in case of
* an error, PTR_ERR() returns the error code.