unsigned long long ll;
unsigned l[2];
} tsc64, result;
- unsigned long tsc, tmp;
+ unsigned long tmp;
unsigned product[3]; /* 96-bit intermediate value */
/* cnt32_to_63() is not safe with preemption */
preempt_disable();
- /* read the TSC value
- */
- tsc = get_cycles();
-
- /* expand to 64-bits.
+ /* expand the tsc to 64-bits.
* - sched_clock() must be called once a minute or better or the
* following will go horribly wrong - see cnt32_to_63()
*/
- tsc64.ll = cnt32_to_63(tsc) & 0x7fffffffffffffffULL;
+ tsc64.ll = cnt32_to_63(get_cycles()) & 0x7fffffffffffffffULL;
preempt_enable();
*
* 2) this code must not be preempted for a duration longer than the
* 32-bit counter half period minus the longest period between two
- * calls to this code.
+ * calls to this code;
*
* Those requirements ensure proper update to the state bit in memory.
* This is usually not a problem in practice, but if it is then a kernel
* timer should be scheduled to manage for this code to be executed often
* enough.
*
+ * And finally:
+ *
+ * 3) the cnt_lo argument must be seen as a globally incrementing value,
+ * meaning that it should be a direct reference to the counter data which
+ * can be evaluated according to a specific ordering within the macro,
+ * and not the result of a previous evaluation stored in a variable.
+ *
+ * For example, this is wrong:
+ *
+ * u32 partial = get_hw_count();
+ * u64 full = cnt32_to_63(partial);
+ * return full;
+ *
+ * This is fine:
+ *
+ * u64 full = cnt32_to_63(get_hw_count());
+ * return full;
+ *
* Note that the top bit (bit 63) in the returned value should be considered
* as garbage. It is not cleared here because callers are likely to use a
* multiplier on the returned value which can get rid of the top bit