}
}
+/*
+ * This function must be called before we write the current
+ * task's fpstate.
+ *
+ * This call gets the current FPU register state and moves
+ * it in to the 'fpstate'. Preemption is disabled so that
+ * no writes to the 'fpstate' can occur from context
+ * swiches.
+ *
+ * Must be followed by a fpu__current_fpstate_write_end().
+ */
+void fpu__current_fpstate_write_begin(void)
+{
+ struct fpu *fpu = ¤t->thread.fpu;
+
+ /*
+ * Ensure that the context-switching code does not write
+ * over the fpstate while we are doing our update.
+ */
+ preempt_disable();
+
+ /*
+ * Move the fpregs in to the fpu's 'fpstate'.
+ */
+ fpu__activate_fpstate_read(fpu);
+
+ /*
+ * The caller is about to write to 'fpu'. Ensure that no
+ * CPU thinks that its fpregs match the fpstate. This
+ * ensures we will not be lazy and skip a XRSTOR in the
+ * future.
+ */
+ fpu->last_cpu = -1;
+}
+
+/*
+ * This function must be paired with fpu__current_fpstate_write_begin()
+ *
+ * This will ensure that the modified fpstate gets placed back in
+ * the fpregs if necessary.
+ *
+ * Note: This function may be called whether or not an _actual_
+ * write to the fpstate occurred.
+ */
+void fpu__current_fpstate_write_end(void)
+{
+ struct fpu *fpu = ¤t->thread.fpu;
+
+ /*
+ * 'fpu' now has an updated copy of the state, but the
+ * registers may still be out of date. Update them with
+ * an XRSTOR if they are active.
+ */
+ if (fpregs_active())
+ copy_kernel_to_fpregs(&fpu->state);
+
+ /*
+ * Our update is done and the fpregs/fpstate are in sync
+ * if necessary. Context switches can happen again.
+ */
+ preempt_enable();
+}
+
/*
* 'fpu__restore()' is called to copy FPU registers from
* the FPU fpstate to the live hw registers and to activate
xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
}
+/*
+ * Given an xstate feature mask, calculate where in the xsave
+ * buffer the state is. Callers should ensure that the buffer
+ * is valid.
+ *
+ * Note: does not work for compacted buffers.
+ */
+void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
+{
+ int feature_nr = fls64(xstate_feature_mask) - 1;
+
+ return (void *)xsave + xstate_comp_offsets[feature_nr];
+}
/*
* Given the xsave area and a state inside, this function returns the
* address of the state.
*/
void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
{
- int feature_nr = fls64(xstate_feature) - 1;
/*
* Do we even *have* xsave state?
*/
if (!(xsave->header.xfeatures & xstate_feature))
return NULL;
- return (void *)xsave + xstate_comp_offsets[feature_nr];
+ return __raw_xsave_addr(xsave, xstate_feature);
}
EXPORT_SYMBOL_GPL(get_xsave_addr);
return get_xsave_addr(&fpu->state.xsave, xsave_state);
}
+
+
+/*
+ * Set xfeatures (aka XSTATE_BV) bit for a feature that we want
+ * to take out of its "init state". This will ensure that an
+ * XRSTOR actually restores the state.
+ */
+static void fpu__xfeature_set_non_init(struct xregs_state *xsave,
+ int xstate_feature_mask)
+{
+ xsave->header.xfeatures |= xstate_feature_mask;
+}
+
+/*
+ * This function is safe to call whether the FPU is in use or not.
+ *
+ * Note that this only works on the current task.
+ *
+ * Inputs:
+ * @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
+ * XFEATURE_MASK_SSE, etc...)
+ * @xsave_state_ptr: a pointer to a copy of the state that you would
+ * like written in to the current task's FPU xsave state. This pointer
+ * must not be located in the current tasks's xsave area.
+ * Output:
+ * address of the state in the xsave area or NULL if the state
+ * is not present or is in its 'init state'.
+ */
+static void fpu__xfeature_set_state(int xstate_feature_mask,
+ void *xstate_feature_src, size_t len)
+{
+ struct xregs_state *xsave = ¤t->thread.fpu.state.xsave;
+ struct fpu *fpu = ¤t->thread.fpu;
+ void *dst;
+
+ if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
+ WARN_ONCE(1, "%s() attempted with no xsave support", __func__);
+ return;
+ }
+
+ /*
+ * Tell the FPU code that we need the FPU state to be in
+ * 'fpu' (not in the registers), and that we need it to
+ * be stable while we write to it.
+ */
+ fpu__current_fpstate_write_begin();
+
+ /*
+ * This method *WILL* *NOT* work for compact-format
+ * buffers. If the 'xstate_feature_mask' is unset in
+ * xcomp_bv then we may need to move other feature state
+ * "up" in the buffer.
+ */
+ if (xsave->header.xcomp_bv & xstate_feature_mask) {
+ WARN_ON_ONCE(1);
+ goto out;
+ }
+
+ /* find the location in the xsave buffer of the desired state */
+ dst = __raw_xsave_addr(&fpu->state.xsave, xstate_feature_mask);
+
+ /*
+ * Make sure that the pointer being passed in did not
+ * come from the xsave buffer itself.
+ */
+ WARN_ONCE(xstate_feature_src == dst, "set from xsave buffer itself");
+
+ /* put the caller-provided data in the location */
+ memcpy(dst, xstate_feature_src, len);
+
+ /*
+ * Mark the xfeature so that the CPU knows there is state
+ * in the buffer now.
+ */
+ fpu__xfeature_set_non_init(xsave, xstate_feature_mask);
+out:
+ /*
+ * We are done writing to the 'fpu'. Reenable preeption
+ * and (possibly) move the fpstate back in to the fpregs.
+ */
+ fpu__current_fpstate_write_end();
+}