Testing the load which led to this heuristic (nfs4 kbuild) shows that it has
outlived it's usefullness. With intervening load balancing changes, I cannot
see any difference with/without, so recover there fastpath cycles.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <
1268301062.6785.29.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
u64 nr_migrations;
- u64 start_runtime;
- u64 avg_wakeup;
-
#ifdef CONFIG_SCHEDSTATS
struct sched_statistics statistics;
#endif
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
{
- if (wakeup)
- p->se.start_runtime = p->se.sum_exec_runtime;
-
sched_info_queued(p);
p->sched_class->enqueue_task(rq, p, wakeup, head);
p->se.on_rq = 1;
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
{
- if (sleep) {
- if (p->se.last_wakeup) {
- update_avg(&p->se.avg_overlap,
- p->se.sum_exec_runtime - p->se.last_wakeup);
- p->se.last_wakeup = 0;
- } else {
- update_avg(&p->se.avg_wakeup,
- sysctl_sched_wakeup_granularity);
- }
+ if (sleep && p->se.last_wakeup) {
+ update_avg(&p->se.avg_overlap,
+ p->se.sum_exec_runtime - p->se.last_wakeup);
+ p->se.last_wakeup = 0;
}
-
sched_info_dequeued(p);
p->sched_class->dequeue_task(rq, p, sleep);
p->se.on_rq = 0;
*/
if (!in_interrupt()) {
struct sched_entity *se = ¤t->se;
- u64 sample = se->sum_exec_runtime;
-
- if (se->last_wakeup)
- sample -= se->last_wakeup;
- else
- sample -= se->start_runtime;
- update_avg(&se->avg_wakeup, sample);
se->last_wakeup = se->sum_exec_runtime;
}
p->se.nr_migrations = 0;
p->se.last_wakeup = 0;
p->se.avg_overlap = 0;
- p->se.start_runtime = 0;
- p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
#ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
PN(se.vruntime);
PN(se.sum_exec_runtime);
PN(se.avg_overlap);
- PN(se.avg_wakeup);
nr_switches = p->nvcsw + p->nivcsw;
}
#endif /* CONFIG_SMP */
-/*
- * Adaptive granularity
- *
- * se->avg_wakeup gives the average time a task runs until it does a wakeup,
- * with the limit of wakeup_gran -- when it never does a wakeup.
- *
- * So the smaller avg_wakeup is the faster we want this task to preempt,
- * but we don't want to treat the preemptee unfairly and therefore allow it
- * to run for at least the amount of time we'd like to run.
- *
- * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
- *
- * NOTE: we use *nr_running to scale with load, this nicely matches the
- * degrading latency on load.
- */
-static unsigned long
-adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
-{
- u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
- u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
- u64 gran = 0;
-
- if (this_run < expected_wakeup)
- gran = expected_wakeup - this_run;
-
- return min_t(s64, gran, sysctl_sched_wakeup_granularity);
-}
-
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
{
unsigned long gran = sysctl_sched_wakeup_granularity;
- if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
- gran = adaptive_gran(curr, se);
-
/*
* Since its curr running now, convert the gran from real-time
* to virtual-time in his units.
*/
SCHED_FEAT(WAKEUP_PREEMPT, 1)
-/*
- * Compute wakeup_gran based on task behaviour, clipped to
- * [0, sched_wakeup_gran_ns]
- */
-SCHED_FEAT(ADAPTIVE_GRAN, 1)
-
/*
* When converting the wakeup granularity to virtual time, do it such
* that heavier tasks preempting a lighter task have an edge.