#endif
cpumask_set_cpu(cpu, mm_cpumask(next));
- /* Re-load page tables */
+ /*
+ * Re-load page tables.
+ *
+ * This logic has an ordering constraint:
+ *
+ * CPU 0: Write to a PTE for 'next'
+ * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
+ * CPU 1: set bit 1 in next's mm_cpumask
+ * CPU 1: load from the PTE that CPU 0 writes (implicit)
+ *
+ * We need to prevent an outcome in which CPU 1 observes
+ * the new PTE value and CPU 0 observes bit 1 clear in
+ * mm_cpumask. (If that occurs, then the IPI will never
+ * be sent, and CPU 0's TLB will contain a stale entry.)
+ *
+ * The bad outcome can occur if either CPU's load is
+ * reordered before that CPU's store, so both CPUs much
+ * execute full barriers to prevent this from happening.
+ *
+ * Thus, switch_mm needs a full barrier between the
+ * store to mm_cpumask and any operation that could load
+ * from next->pgd. This barrier synchronizes with
+ * remote TLB flushers. Fortunately, load_cr3 is
+ * serializing and thus acts as a full barrier.
+ *
+ */
load_cr3(next->pgd);
/* Stop flush ipis for the previous mm */
* schedule, protecting us from simultaneous changes.
*/
cpumask_set_cpu(cpu, mm_cpumask(next));
+
/*
* We were in lazy tlb mode and leave_mm disabled
* tlb flush IPI delivery. We must reload CR3
* to make sure to use no freed page tables.
+ *
+ * As above, this is a barrier that forces
+ * TLB repopulation to be ordered after the
+ * store to mm_cpumask.
*/
load_cr3(next->pgd);
load_LDT_nolock(&next->context);
preempt_disable();
+ /* This is an implicit full barrier that synchronizes with switch_mm. */
local_flush_tlb();
+
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
preempt_enable();
unsigned act_entries, tlb_entries = 0;
preempt_disable();
- if (current->active_mm != mm)
+ if (current->active_mm != mm) {
+ /* Synchronize with switch_mm. */
+ smp_mb();
+
goto flush_all;
+ }
if (!current->mm) {
leave_mm(smp_processor_id());
+
+ /* Synchronize with switch_mm. */
+ smp_mb();
+
goto flush_all;
}
preempt_disable();
if (current->active_mm == mm) {
- if (current->mm)
+ if (current->mm) {
+ /*
+ * Implicit full barrier (INVLPG) that synchronizes
+ * with switch_mm.
+ */
__flush_tlb_one(start);
- else
+ } else {
leave_mm(smp_processor_id());
+
+ /* Synchronize with switch_mm. */
+ smp_mb();
+ }
}
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)