x86_64: prepare shared kernel/time.c
authorThomas Gleixner <tglx@linutronix.de>
Thu, 11 Oct 2007 09:14:54 +0000 (11:14 +0200)
committerThomas Gleixner <tglx@linutronix.de>
Thu, 11 Oct 2007 09:14:54 +0000 (11:14 +0200)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/x86_64/kernel/Makefile
arch/x86_64/kernel/time.c [deleted file]
arch/x86_64/kernel/time_64.c [new file with mode: 0644]

index b0a29b510427a151074ee2eae95b0ccae21dc311..1c9ae60f0bf55248f59fcb981851cb75f471a817 100644 (file)
@@ -5,7 +5,7 @@
 extra-y        := head.o head64.o init_task.o vmlinux.lds
 EXTRA_AFLAGS   := -traditional
 obj-y  := process.o signal_64.o entry.o traps_64.o irq.o \
-               ptrace.o time.o ioport_64.o ldt.o setup_64.o i8259_64.o sys_x86_64.o \
+               ptrace.o time_64.o ioport_64.o ldt.o setup_64.o i8259_64.o sys_x86_64.o \
                x8664_ksyms.o i387_64.o syscall.o vsyscall_64.o \
                setup64.o bootflag.o e820_64.o reboot.o quirks.o i8237.o \
                pci-dma_64.o pci-nommu_64.o alternative.o hpet_64.o tsc.o bugs_64.o \
diff --git a/arch/x86_64/kernel/time.c b/arch/x86_64/kernel/time.c
deleted file mode 100644 (file)
index 6d48a4e..0000000
+++ /dev/null
@@ -1,447 +0,0 @@
-/*
- *  linux/arch/x86-64/kernel/time.c
- *
- *  "High Precision Event Timer" based timekeeping.
- *
- *  Copyright (c) 1991,1992,1995  Linus Torvalds
- *  Copyright (c) 1994  Alan Modra
- *  Copyright (c) 1995  Markus Kuhn
- *  Copyright (c) 1996  Ingo Molnar
- *  Copyright (c) 1998  Andrea Arcangeli
- *  Copyright (c) 2002,2006  Vojtech Pavlik
- *  Copyright (c) 2003  Andi Kleen
- *  RTC support code taken from arch/i386/kernel/timers/time_hpet.c
- */
-
-#include <linux/kernel.h>
-#include <linux/sched.h>
-#include <linux/interrupt.h>
-#include <linux/init.h>
-#include <linux/mc146818rtc.h>
-#include <linux/time.h>
-#include <linux/ioport.h>
-#include <linux/module.h>
-#include <linux/device.h>
-#include <linux/sysdev.h>
-#include <linux/bcd.h>
-#include <linux/notifier.h>
-#include <linux/cpu.h>
-#include <linux/kallsyms.h>
-#include <linux/acpi.h>
-#ifdef CONFIG_ACPI
-#include <acpi/achware.h>      /* for PM timer frequency */
-#include <acpi/acpi_bus.h>
-#endif
-#include <asm/8253pit.h>
-#include <asm/i8253.h>
-#include <asm/pgtable.h>
-#include <asm/vsyscall.h>
-#include <asm/timex.h>
-#include <asm/proto.h>
-#include <asm/hpet.h>
-#include <asm/sections.h>
-#include <linux/hpet.h>
-#include <asm/apic.h>
-#include <asm/hpet.h>
-#include <asm/mpspec.h>
-#include <asm/nmi.h>
-#include <asm/vgtod.h>
-
-static char *timename = NULL;
-
-DEFINE_SPINLOCK(rtc_lock);
-EXPORT_SYMBOL(rtc_lock);
-DEFINE_SPINLOCK(i8253_lock);
-EXPORT_SYMBOL(i8253_lock);
-
-volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
-
-unsigned long profile_pc(struct pt_regs *regs)
-{
-       unsigned long pc = instruction_pointer(regs);
-
-       /* Assume the lock function has either no stack frame or a copy
-          of eflags from PUSHF
-          Eflags always has bits 22 and up cleared unlike kernel addresses. */
-       if (!user_mode(regs) && in_lock_functions(pc)) {
-               unsigned long *sp = (unsigned long *)regs->rsp;
-               if (sp[0] >> 22)
-                       return sp[0];
-               if (sp[1] >> 22)
-                       return sp[1];
-       }
-       return pc;
-}
-EXPORT_SYMBOL(profile_pc);
-
-/*
- * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
- * ms after the second nowtime has started, because when nowtime is written
- * into the registers of the CMOS clock, it will jump to the next second
- * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
- * sheet for details.
- */
-
-static int set_rtc_mmss(unsigned long nowtime)
-{
-       int retval = 0;
-       int real_seconds, real_minutes, cmos_minutes;
-       unsigned char control, freq_select;
-
-/*
- * IRQs are disabled when we're called from the timer interrupt,
- * no need for spin_lock_irqsave()
- */
-
-       spin_lock(&rtc_lock);
-
-/*
- * Tell the clock it's being set and stop it.
- */
-
-       control = CMOS_READ(RTC_CONTROL);
-       CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
-
-       freq_select = CMOS_READ(RTC_FREQ_SELECT);
-       CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
-
-       cmos_minutes = CMOS_READ(RTC_MINUTES);
-               BCD_TO_BIN(cmos_minutes);
-
-/*
- * since we're only adjusting minutes and seconds, don't interfere with hour
- * overflow. This avoids messing with unknown time zones but requires your RTC
- * not to be off by more than 15 minutes. Since we're calling it only when
- * our clock is externally synchronized using NTP, this shouldn't be a problem.
- */
-
-       real_seconds = nowtime % 60;
-       real_minutes = nowtime / 60;
-       if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
-               real_minutes += 30;             /* correct for half hour time zone */
-       real_minutes %= 60;
-
-       if (abs(real_minutes - cmos_minutes) >= 30) {
-               printk(KERN_WARNING "time.c: can't update CMOS clock "
-                      "from %d to %d\n", cmos_minutes, real_minutes);
-               retval = -1;
-       } else {
-               BIN_TO_BCD(real_seconds);
-               BIN_TO_BCD(real_minutes);
-               CMOS_WRITE(real_seconds, RTC_SECONDS);
-               CMOS_WRITE(real_minutes, RTC_MINUTES);
-       }
-
-/*
- * The following flags have to be released exactly in this order, otherwise the
- * DS12887 (popular MC146818A clone with integrated battery and quartz) will
- * not reset the oscillator and will not update precisely 500 ms later. You
- * won't find this mentioned in the Dallas Semiconductor data sheets, but who
- * believes data sheets anyway ... -- Markus Kuhn
- */
-
-       CMOS_WRITE(control, RTC_CONTROL);
-       CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
-
-       spin_unlock(&rtc_lock);
-
-       return retval;
-}
-
-int update_persistent_clock(struct timespec now)
-{
-       return set_rtc_mmss(now.tv_sec);
-}
-
-void main_timer_handler(void)
-{
-/*
- * Here we are in the timer irq handler. We have irqs locally disabled (so we
- * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
- * on the other CPU, so we need a lock. We also need to lock the vsyscall
- * variables, because both do_timer() and us change them -arca+vojtech
- */
-
-       write_seqlock(&xtime_lock);
-
-/*
- * Do the timer stuff.
- */
-
-       do_timer(1);
-#ifndef CONFIG_SMP
-       update_process_times(user_mode(get_irq_regs()));
-#endif
-
-/*
- * In the SMP case we use the local APIC timer interrupt to do the profiling,
- * except when we simulate SMP mode on a uniprocessor system, in that case we
- * have to call the local interrupt handler.
- */
-
-       if (!using_apic_timer)
-               smp_local_timer_interrupt();
-
-       write_sequnlock(&xtime_lock);
-}
-
-static irqreturn_t timer_interrupt(int irq, void *dev_id)
-{
-       if (apic_runs_main_timer > 1)
-               return IRQ_HANDLED;
-       main_timer_handler();
-       if (using_apic_timer)
-               smp_send_timer_broadcast_ipi();
-       return IRQ_HANDLED;
-}
-
-unsigned long read_persistent_clock(void)
-{
-       unsigned int year, mon, day, hour, min, sec;
-       unsigned long flags;
-       unsigned century = 0;
-
-       spin_lock_irqsave(&rtc_lock, flags);
-
-       do {
-               sec = CMOS_READ(RTC_SECONDS);
-               min = CMOS_READ(RTC_MINUTES);
-               hour = CMOS_READ(RTC_HOURS);
-               day = CMOS_READ(RTC_DAY_OF_MONTH);
-               mon = CMOS_READ(RTC_MONTH);
-               year = CMOS_READ(RTC_YEAR);
-#ifdef CONFIG_ACPI
-               if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
-                                       acpi_gbl_FADT.century)
-                       century = CMOS_READ(acpi_gbl_FADT.century);
-#endif
-       } while (sec != CMOS_READ(RTC_SECONDS));
-
-       spin_unlock_irqrestore(&rtc_lock, flags);
-
-       /*
-        * We know that x86-64 always uses BCD format, no need to check the
-        * config register.
-        */
-
-       BCD_TO_BIN(sec);
-       BCD_TO_BIN(min);
-       BCD_TO_BIN(hour);
-       BCD_TO_BIN(day);
-       BCD_TO_BIN(mon);
-       BCD_TO_BIN(year);
-
-       if (century) {
-               BCD_TO_BIN(century);
-               year += century * 100;
-               printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
-       } else {
-               /*
-                * x86-64 systems only exists since 2002.
-                * This will work up to Dec 31, 2100
-                */
-               year += 2000;
-       }
-
-       return mktime(year, mon, day, hour, min, sec);
-}
-
-/* calibrate_cpu is used on systems with fixed rate TSCs to determine
- * processor frequency */
-#define TICK_COUNT 100000000
-static unsigned int __init tsc_calibrate_cpu_khz(void)
-{
-       int tsc_start, tsc_now;
-       int i, no_ctr_free;
-       unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
-       unsigned long flags;
-
-       for (i = 0; i < 4; i++)
-               if (avail_to_resrv_perfctr_nmi_bit(i))
-                       break;
-       no_ctr_free = (i == 4);
-       if (no_ctr_free) {
-               i = 3;
-               rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
-               wrmsrl(MSR_K7_EVNTSEL3, 0);
-               rdmsrl(MSR_K7_PERFCTR3, pmc3);
-       } else {
-               reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
-               reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
-       }
-       local_irq_save(flags);
-       /* start meauring cycles, incrementing from 0 */
-       wrmsrl(MSR_K7_PERFCTR0 + i, 0);
-       wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
-       rdtscl(tsc_start);
-       do {
-               rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
-               tsc_now = get_cycles_sync();
-       } while ((tsc_now - tsc_start) < TICK_COUNT);
-
-       local_irq_restore(flags);
-       if (no_ctr_free) {
-               wrmsrl(MSR_K7_EVNTSEL3, 0);
-               wrmsrl(MSR_K7_PERFCTR3, pmc3);
-               wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
-       } else {
-               release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
-               release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
-       }
-
-       return pmc_now * tsc_khz / (tsc_now - tsc_start);
-}
-
-/*
- * pit_calibrate_tsc() uses the speaker output (channel 2) of
- * the PIT. This is better than using the timer interrupt output,
- * because we can read the value of the speaker with just one inb(),
- * where we need three i/o operations for the interrupt channel.
- * We count how many ticks the TSC does in 50 ms.
- */
-
-static unsigned int __init pit_calibrate_tsc(void)
-{
-       unsigned long start, end;
-       unsigned long flags;
-
-       spin_lock_irqsave(&i8253_lock, flags);
-
-       outb((inb(0x61) & ~0x02) | 0x01, 0x61);
-
-       outb(0xb0, 0x43);
-       outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
-       outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
-       start = get_cycles_sync();
-       while ((inb(0x61) & 0x20) == 0);
-       end = get_cycles_sync();
-
-       spin_unlock_irqrestore(&i8253_lock, flags);
-
-       return (end - start) / 50;
-}
-
-#define PIT_MODE 0x43
-#define PIT_CH0  0x40
-
-static void __pit_init(int val, u8 mode)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&i8253_lock, flags);
-       outb_p(mode, PIT_MODE);
-       outb_p(val & 0xff, PIT_CH0);    /* LSB */
-       outb_p(val >> 8, PIT_CH0);      /* MSB */
-       spin_unlock_irqrestore(&i8253_lock, flags);
-}
-
-void __init pit_init(void)
-{
-       __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
-}
-
-void pit_stop_interrupt(void)
-{
-       __pit_init(0, 0x30); /* mode 0 */
-}
-
-void stop_timer_interrupt(void)
-{
-       char *name;
-       if (hpet_address) {
-               name = "HPET";
-               hpet_timer_stop_set_go(0);
-       } else {
-               name = "PIT";
-               pit_stop_interrupt();
-       }
-       printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
-}
-
-static struct irqaction irq0 = {
-       .handler        = timer_interrupt,
-       .flags          = IRQF_DISABLED | IRQF_IRQPOLL,
-       .mask           = CPU_MASK_NONE,
-       .name           = "timer"
-};
-
-void __init time_init(void)
-{
-       if (nohpet)
-               hpet_address = 0;
-
-       if (hpet_arch_init())
-               hpet_address = 0;
-
-       if (hpet_use_timer) {
-               /* set tick_nsec to use the proper rate for HPET */
-               tick_nsec = TICK_NSEC_HPET;
-               tsc_khz = hpet_calibrate_tsc();
-               timename = "HPET";
-       } else {
-               pit_init();
-               tsc_khz = pit_calibrate_tsc();
-               timename = "PIT";
-       }
-
-       cpu_khz = tsc_khz;
-       if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
-               boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
-               boot_cpu_data.x86 == 16)
-               cpu_khz = tsc_calibrate_cpu_khz();
-
-       if (unsynchronized_tsc())
-               mark_tsc_unstable("TSCs unsynchronized");
-
-       if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
-               vgetcpu_mode = VGETCPU_RDTSCP;
-       else
-               vgetcpu_mode = VGETCPU_LSL;
-
-       set_cyc2ns_scale(tsc_khz);
-       printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
-               cpu_khz / 1000, cpu_khz % 1000);
-       init_tsc_clocksource();
-
-       setup_irq(0, &irq0);
-}
-
-/*
- * sysfs support for the timer.
- */
-
-static int timer_suspend(struct sys_device *dev, pm_message_t state)
-{
-       return 0;
-}
-
-static int timer_resume(struct sys_device *dev)
-{
-       if (hpet_address)
-               hpet_reenable();
-       else
-               i8254_timer_resume();
-       return 0;
-}
-
-static struct sysdev_class timer_sysclass = {
-       .resume = timer_resume,
-       .suspend = timer_suspend,
-       set_kset_name("timer"),
-};
-
-/* XXX this sysfs stuff should probably go elsewhere later -john */
-static struct sys_device device_timer = {
-       .id     = 0,
-       .cls    = &timer_sysclass,
-};
-
-static int time_init_device(void)
-{
-       int error = sysdev_class_register(&timer_sysclass);
-       if (!error)
-               error = sysdev_register(&device_timer);
-       return error;
-}
-
-device_initcall(time_init_device);
diff --git a/arch/x86_64/kernel/time_64.c b/arch/x86_64/kernel/time_64.c
new file mode 100644 (file)
index 0000000..6d48a4e
--- /dev/null
@@ -0,0 +1,447 @@
+/*
+ *  linux/arch/x86-64/kernel/time.c
+ *
+ *  "High Precision Event Timer" based timekeeping.
+ *
+ *  Copyright (c) 1991,1992,1995  Linus Torvalds
+ *  Copyright (c) 1994  Alan Modra
+ *  Copyright (c) 1995  Markus Kuhn
+ *  Copyright (c) 1996  Ingo Molnar
+ *  Copyright (c) 1998  Andrea Arcangeli
+ *  Copyright (c) 2002,2006  Vojtech Pavlik
+ *  Copyright (c) 2003  Andi Kleen
+ *  RTC support code taken from arch/i386/kernel/timers/time_hpet.c
+ */
+
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/mc146818rtc.h>
+#include <linux/time.h>
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/sysdev.h>
+#include <linux/bcd.h>
+#include <linux/notifier.h>
+#include <linux/cpu.h>
+#include <linux/kallsyms.h>
+#include <linux/acpi.h>
+#ifdef CONFIG_ACPI
+#include <acpi/achware.h>      /* for PM timer frequency */
+#include <acpi/acpi_bus.h>
+#endif
+#include <asm/8253pit.h>
+#include <asm/i8253.h>
+#include <asm/pgtable.h>
+#include <asm/vsyscall.h>
+#include <asm/timex.h>
+#include <asm/proto.h>
+#include <asm/hpet.h>
+#include <asm/sections.h>
+#include <linux/hpet.h>
+#include <asm/apic.h>
+#include <asm/hpet.h>
+#include <asm/mpspec.h>
+#include <asm/nmi.h>
+#include <asm/vgtod.h>
+
+static char *timename = NULL;
+
+DEFINE_SPINLOCK(rtc_lock);
+EXPORT_SYMBOL(rtc_lock);
+DEFINE_SPINLOCK(i8253_lock);
+EXPORT_SYMBOL(i8253_lock);
+
+volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
+
+unsigned long profile_pc(struct pt_regs *regs)
+{
+       unsigned long pc = instruction_pointer(regs);
+
+       /* Assume the lock function has either no stack frame or a copy
+          of eflags from PUSHF
+          Eflags always has bits 22 and up cleared unlike kernel addresses. */
+       if (!user_mode(regs) && in_lock_functions(pc)) {
+               unsigned long *sp = (unsigned long *)regs->rsp;
+               if (sp[0] >> 22)
+                       return sp[0];
+               if (sp[1] >> 22)
+                       return sp[1];
+       }
+       return pc;
+}
+EXPORT_SYMBOL(profile_pc);
+
+/*
+ * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
+ * ms after the second nowtime has started, because when nowtime is written
+ * into the registers of the CMOS clock, it will jump to the next second
+ * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
+ * sheet for details.
+ */
+
+static int set_rtc_mmss(unsigned long nowtime)
+{
+       int retval = 0;
+       int real_seconds, real_minutes, cmos_minutes;
+       unsigned char control, freq_select;
+
+/*
+ * IRQs are disabled when we're called from the timer interrupt,
+ * no need for spin_lock_irqsave()
+ */
+
+       spin_lock(&rtc_lock);
+
+/*
+ * Tell the clock it's being set and stop it.
+ */
+
+       control = CMOS_READ(RTC_CONTROL);
+       CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
+
+       freq_select = CMOS_READ(RTC_FREQ_SELECT);
+       CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
+
+       cmos_minutes = CMOS_READ(RTC_MINUTES);
+               BCD_TO_BIN(cmos_minutes);
+
+/*
+ * since we're only adjusting minutes and seconds, don't interfere with hour
+ * overflow. This avoids messing with unknown time zones but requires your RTC
+ * not to be off by more than 15 minutes. Since we're calling it only when
+ * our clock is externally synchronized using NTP, this shouldn't be a problem.
+ */
+
+       real_seconds = nowtime % 60;
+       real_minutes = nowtime / 60;
+       if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
+               real_minutes += 30;             /* correct for half hour time zone */
+       real_minutes %= 60;
+
+       if (abs(real_minutes - cmos_minutes) >= 30) {
+               printk(KERN_WARNING "time.c: can't update CMOS clock "
+                      "from %d to %d\n", cmos_minutes, real_minutes);
+               retval = -1;
+       } else {
+               BIN_TO_BCD(real_seconds);
+               BIN_TO_BCD(real_minutes);
+               CMOS_WRITE(real_seconds, RTC_SECONDS);
+               CMOS_WRITE(real_minutes, RTC_MINUTES);
+       }
+
+/*
+ * The following flags have to be released exactly in this order, otherwise the
+ * DS12887 (popular MC146818A clone with integrated battery and quartz) will
+ * not reset the oscillator and will not update precisely 500 ms later. You
+ * won't find this mentioned in the Dallas Semiconductor data sheets, but who
+ * believes data sheets anyway ... -- Markus Kuhn
+ */
+
+       CMOS_WRITE(control, RTC_CONTROL);
+       CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
+
+       spin_unlock(&rtc_lock);
+
+       return retval;
+}
+
+int update_persistent_clock(struct timespec now)
+{
+       return set_rtc_mmss(now.tv_sec);
+}
+
+void main_timer_handler(void)
+{
+/*
+ * Here we are in the timer irq handler. We have irqs locally disabled (so we
+ * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
+ * on the other CPU, so we need a lock. We also need to lock the vsyscall
+ * variables, because both do_timer() and us change them -arca+vojtech
+ */
+
+       write_seqlock(&xtime_lock);
+
+/*
+ * Do the timer stuff.
+ */
+
+       do_timer(1);
+#ifndef CONFIG_SMP
+       update_process_times(user_mode(get_irq_regs()));
+#endif
+
+/*
+ * In the SMP case we use the local APIC timer interrupt to do the profiling,
+ * except when we simulate SMP mode on a uniprocessor system, in that case we
+ * have to call the local interrupt handler.
+ */
+
+       if (!using_apic_timer)
+               smp_local_timer_interrupt();
+
+       write_sequnlock(&xtime_lock);
+}
+
+static irqreturn_t timer_interrupt(int irq, void *dev_id)
+{
+       if (apic_runs_main_timer > 1)
+               return IRQ_HANDLED;
+       main_timer_handler();
+       if (using_apic_timer)
+               smp_send_timer_broadcast_ipi();
+       return IRQ_HANDLED;
+}
+
+unsigned long read_persistent_clock(void)
+{
+       unsigned int year, mon, day, hour, min, sec;
+       unsigned long flags;
+       unsigned century = 0;
+
+       spin_lock_irqsave(&rtc_lock, flags);
+
+       do {
+               sec = CMOS_READ(RTC_SECONDS);
+               min = CMOS_READ(RTC_MINUTES);
+               hour = CMOS_READ(RTC_HOURS);
+               day = CMOS_READ(RTC_DAY_OF_MONTH);
+               mon = CMOS_READ(RTC_MONTH);
+               year = CMOS_READ(RTC_YEAR);
+#ifdef CONFIG_ACPI
+               if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
+                                       acpi_gbl_FADT.century)
+                       century = CMOS_READ(acpi_gbl_FADT.century);
+#endif
+       } while (sec != CMOS_READ(RTC_SECONDS));
+
+       spin_unlock_irqrestore(&rtc_lock, flags);
+
+       /*
+        * We know that x86-64 always uses BCD format, no need to check the
+        * config register.
+        */
+
+       BCD_TO_BIN(sec);
+       BCD_TO_BIN(min);
+       BCD_TO_BIN(hour);
+       BCD_TO_BIN(day);
+       BCD_TO_BIN(mon);
+       BCD_TO_BIN(year);
+
+       if (century) {
+               BCD_TO_BIN(century);
+               year += century * 100;
+               printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
+       } else {
+               /*
+                * x86-64 systems only exists since 2002.
+                * This will work up to Dec 31, 2100
+                */
+               year += 2000;
+       }
+
+       return mktime(year, mon, day, hour, min, sec);
+}
+
+/* calibrate_cpu is used on systems with fixed rate TSCs to determine
+ * processor frequency */
+#define TICK_COUNT 100000000
+static unsigned int __init tsc_calibrate_cpu_khz(void)
+{
+       int tsc_start, tsc_now;
+       int i, no_ctr_free;
+       unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
+       unsigned long flags;
+
+       for (i = 0; i < 4; i++)
+               if (avail_to_resrv_perfctr_nmi_bit(i))
+                       break;
+       no_ctr_free = (i == 4);
+       if (no_ctr_free) {
+               i = 3;
+               rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
+               wrmsrl(MSR_K7_EVNTSEL3, 0);
+               rdmsrl(MSR_K7_PERFCTR3, pmc3);
+       } else {
+               reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
+               reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
+       }
+       local_irq_save(flags);
+       /* start meauring cycles, incrementing from 0 */
+       wrmsrl(MSR_K7_PERFCTR0 + i, 0);
+       wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
+       rdtscl(tsc_start);
+       do {
+               rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
+               tsc_now = get_cycles_sync();
+       } while ((tsc_now - tsc_start) < TICK_COUNT);
+
+       local_irq_restore(flags);
+       if (no_ctr_free) {
+               wrmsrl(MSR_K7_EVNTSEL3, 0);
+               wrmsrl(MSR_K7_PERFCTR3, pmc3);
+               wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
+       } else {
+               release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
+               release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
+       }
+
+       return pmc_now * tsc_khz / (tsc_now - tsc_start);
+}
+
+/*
+ * pit_calibrate_tsc() uses the speaker output (channel 2) of
+ * the PIT. This is better than using the timer interrupt output,
+ * because we can read the value of the speaker with just one inb(),
+ * where we need three i/o operations for the interrupt channel.
+ * We count how many ticks the TSC does in 50 ms.
+ */
+
+static unsigned int __init pit_calibrate_tsc(void)
+{
+       unsigned long start, end;
+       unsigned long flags;
+
+       spin_lock_irqsave(&i8253_lock, flags);
+
+       outb((inb(0x61) & ~0x02) | 0x01, 0x61);
+
+       outb(0xb0, 0x43);
+       outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
+       outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
+       start = get_cycles_sync();
+       while ((inb(0x61) & 0x20) == 0);
+       end = get_cycles_sync();
+
+       spin_unlock_irqrestore(&i8253_lock, flags);
+
+       return (end - start) / 50;
+}
+
+#define PIT_MODE 0x43
+#define PIT_CH0  0x40
+
+static void __pit_init(int val, u8 mode)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&i8253_lock, flags);
+       outb_p(mode, PIT_MODE);
+       outb_p(val & 0xff, PIT_CH0);    /* LSB */
+       outb_p(val >> 8, PIT_CH0);      /* MSB */
+       spin_unlock_irqrestore(&i8253_lock, flags);
+}
+
+void __init pit_init(void)
+{
+       __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
+}
+
+void pit_stop_interrupt(void)
+{
+       __pit_init(0, 0x30); /* mode 0 */
+}
+
+void stop_timer_interrupt(void)
+{
+       char *name;
+       if (hpet_address) {
+               name = "HPET";
+               hpet_timer_stop_set_go(0);
+       } else {
+               name = "PIT";
+               pit_stop_interrupt();
+       }
+       printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
+}
+
+static struct irqaction irq0 = {
+       .handler        = timer_interrupt,
+       .flags          = IRQF_DISABLED | IRQF_IRQPOLL,
+       .mask           = CPU_MASK_NONE,
+       .name           = "timer"
+};
+
+void __init time_init(void)
+{
+       if (nohpet)
+               hpet_address = 0;
+
+       if (hpet_arch_init())
+               hpet_address = 0;
+
+       if (hpet_use_timer) {
+               /* set tick_nsec to use the proper rate for HPET */
+               tick_nsec = TICK_NSEC_HPET;
+               tsc_khz = hpet_calibrate_tsc();
+               timename = "HPET";
+       } else {
+               pit_init();
+               tsc_khz = pit_calibrate_tsc();
+               timename = "PIT";
+       }
+
+       cpu_khz = tsc_khz;
+       if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
+               boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
+               boot_cpu_data.x86 == 16)
+               cpu_khz = tsc_calibrate_cpu_khz();
+
+       if (unsynchronized_tsc())
+               mark_tsc_unstable("TSCs unsynchronized");
+
+       if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
+               vgetcpu_mode = VGETCPU_RDTSCP;
+       else
+               vgetcpu_mode = VGETCPU_LSL;
+
+       set_cyc2ns_scale(tsc_khz);
+       printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
+               cpu_khz / 1000, cpu_khz % 1000);
+       init_tsc_clocksource();
+
+       setup_irq(0, &irq0);
+}
+
+/*
+ * sysfs support for the timer.
+ */
+
+static int timer_suspend(struct sys_device *dev, pm_message_t state)
+{
+       return 0;
+}
+
+static int timer_resume(struct sys_device *dev)
+{
+       if (hpet_address)
+               hpet_reenable();
+       else
+               i8254_timer_resume();
+       return 0;
+}
+
+static struct sysdev_class timer_sysclass = {
+       .resume = timer_resume,
+       .suspend = timer_suspend,
+       set_kset_name("timer"),
+};
+
+/* XXX this sysfs stuff should probably go elsewhere later -john */
+static struct sys_device device_timer = {
+       .id     = 0,
+       .cls    = &timer_sysclass,
+};
+
+static int time_init_device(void)
+{
+       int error = sysdev_class_register(&timer_sysclass);
+       if (!error)
+               error = sysdev_register(&device_timer);
+       return error;
+}
+
+device_initcall(time_init_device);