For many printks, we want to know which file system issued the message.
This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.
fs/btrfs/check-integrity.c is left alone for another day.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
/* root node has been locked, we can release @subvol_srcu safely here */
srcu_read_unlock(&fs_info->subvol_srcu, index);
- pr_debug("search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)\n",
+ btrfs_debug(fs_info,
+ "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
ref->root_id, level, ref->count, ret,
ref->key_for_search.objectid, ref->key_for_search.type,
ref->key_for_search.offset);
if (found_key->objectid > logical ||
found_key->objectid + size <= logical) {
- pr_debug("logical %llu is not within any extent\n", logical);
+ btrfs_debug(fs_info,
+ "logical %llu is not within any extent", logical);
return -ENOENT;
}
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
flags = btrfs_extent_flags(eb, ei);
- pr_debug("logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u\n",
+ btrfs_debug(fs_info,
+ "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
logical, logical - found_key->objectid, found_key->objectid,
found_key->offset, flags, item_size);
return 0;
}
-static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
- u64 root, u64 extent_item_objectid,
- iterate_extent_inodes_t *iterate, void *ctx)
+static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
+ struct extent_inode_elem *inode_list,
+ u64 root, u64 extent_item_objectid,
+ iterate_extent_inodes_t *iterate, void *ctx)
{
struct extent_inode_elem *eie;
int ret = 0;
for (eie = inode_list; eie; eie = eie->next) {
- pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu\n", extent_item_objectid,
- eie->inum, eie->offset, root);
+ btrfs_debug(fs_info,
+ "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
+ extent_item_objectid, eie->inum,
+ eie->offset, root);
ret = iterate(eie->inum, eie->offset, root, ctx);
if (ret) {
- pr_debug("stopping iteration for %llu due to ret=%d\n",
- extent_item_objectid, ret);
+ btrfs_debug(fs_info,
+ "stopping iteration for %llu due to ret=%d",
+ extent_item_objectid, ret);
break;
}
}
struct ulist_iterator ref_uiter;
struct ulist_iterator root_uiter;
- pr_debug("resolving all inodes for extent %llu\n",
+ btrfs_debug(fs_info, "resolving all inodes for extent %llu",
extent_item_objectid);
if (!search_commit_root) {
break;
ULIST_ITER_INIT(&root_uiter);
while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
- pr_debug("root %llu references leaf %llu, data list %#llx\n", root_node->val, ref_node->val,
- ref_node->aux);
- ret = iterate_leaf_refs((struct extent_inode_elem *)
+ btrfs_debug(fs_info,
+ "root %llu references leaf %llu, data list %#llx",
+ root_node->val, ref_node->val,
+ ref_node->aux);
+ ret = iterate_leaf_refs(fs_info,
+ (struct extent_inode_elem *)
(uintptr_t)ref_node->aux,
root_node->val,
extent_item_objectid,
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
name_len = btrfs_inode_ref_name_len(eb, iref);
/* path must be released before calling iterate()! */
- pr_debug("following ref at offset %u for inode %llu in tree %llu\n", cur, found_key.objectid,
- fs_root->objectid);
+ btrfs_debug(fs_root->fs_info,
+ "following ref at offset %u for inode %llu in tree %llu",
+ cur, found_key.objectid, fs_root->objectid);
ret = iterate(parent, name_len,
(unsigned long)(iref + 1), eb, ctx);
if (ret)
/* no burst */ 1);
if (__ratelimit(&_rs)) {
- pr_warn("no compression workspaces, low memory, retrying\n");
+ pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
}
}
goto again;
__cold
static inline void assfail(char *expr, char *file, int line)
{
- pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
+ pr_err("assertion failed: %s, file: %s, line: %d\n",
expr, file, line);
BUG();
}
elem = list_first_entry(&fs_info->tree_mod_seq_list,
struct seq_list, list);
if (seq >= elem->seq) {
- pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
- (u32)(seq >> 32), (u32)seq,
- (u32)(elem->seq >> 32), (u32)elem->seq,
- delayed_refs);
+ btrfs_debug(fs_info,
+ "holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)",
+ (u32)(seq >> 32), (u32)seq,
+ (u32)(elem->seq >> 32), (u32)elem->seq,
+ delayed_refs);
ret = 1;
}
}
ret = btrfs_sysfs_add_device_link(tgt_device->fs_devices, tgt_device);
if (ret)
- btrfs_err(fs_info, "kobj add dev failed %d\n", ret);
+ btrfs_err(fs_info, "kobj add dev failed %d", ret);
btrfs_wait_ordered_roots(root->fs_info, -1, 0, (u64)-1);
* Return 0 if the superblock checksum type matches the checksum value of that
* algorithm. Pass the raw disk superblock data.
*/
-static int btrfs_check_super_csum(char *raw_disk_sb)
+static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
+ char *raw_disk_sb)
{
struct btrfs_super_block *disk_sb =
(struct btrfs_super_block *)raw_disk_sb;
}
if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
- pr_err("BTRFS: unsupported checksum algorithm %u\n",
+ btrfs_err(fs_info, "unsupported checksum algorithm %u",
csum_type);
ret = 1;
}
* We want to check superblock checksum, the type is stored inside.
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
*/
- if (btrfs_check_super_csum(bh->b_data)) {
+ if (btrfs_check_super_csum(fs_info, bh->b_data)) {
btrfs_err(fs_info, "superblock checksum mismatch");
err = -EINVAL;
brelse(bh);
}
if (min_tolerated == INT_MAX) {
- pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
+ pr_warn("BTRFS: unknown raid flag: %llu", flags);
min_tolerated = 0;
}
int ret = 0;
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
- pr_err("BTRFS: no valid FS found\n");
+ btrfs_err(fs_info, "no valid FS found");
ret = -EINVAL;
}
if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
- pr_warn("BTRFS: unrecognized super flag: %llu\n",
+ btrfs_warn(fs_info, "unrecognized super flag: %llu",
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
- pr_err("BTRFS: tree_root level too big: %d >= %d\n",
+ btrfs_err(fs_info, "tree_root level too big: %d >= %d",
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
- pr_err("BTRFS: chunk_root level too big: %d >= %d\n",
+ btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
- pr_err("BTRFS: log_root level too big: %d >= %d\n",
+ btrfs_err(fs_info, "log_root level too big: %d >= %d",
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
*/
if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
- pr_err("BTRFS: invalid sectorsize %llu\n", sectorsize);
+ btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
ret = -EINVAL;
}
/* Only PAGE SIZE is supported yet */
if (sectorsize != PAGE_SIZE) {
- pr_err("BTRFS: sectorsize %llu not supported yet, only support %lu\n",
- sectorsize, PAGE_SIZE);
+ btrfs_err(fs_info,
+ "sectorsize %llu not supported yet, only support %lu",
+ sectorsize, PAGE_SIZE);
ret = -EINVAL;
}
if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
- pr_err("BTRFS: invalid nodesize %llu\n", nodesize);
+ btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
ret = -EINVAL;
}
if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
- pr_err("BTRFS: invalid leafsize %u, should be %llu\n",
- le32_to_cpu(sb->__unused_leafsize),
- nodesize);
+ btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
+ le32_to_cpu(sb->__unused_leafsize), nodesize);
ret = -EINVAL;
}
/* Root alignment check */
if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
- pr_warn("BTRFS: tree_root block unaligned: %llu\n",
- btrfs_super_root(sb));
+ btrfs_warn(fs_info, "tree_root block unaligned: %llu",
+ btrfs_super_root(sb));
ret = -EINVAL;
}
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
- pr_warn("BTRFS: chunk_root block unaligned: %llu\n",
- btrfs_super_chunk_root(sb));
+ btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
+ btrfs_super_chunk_root(sb));
ret = -EINVAL;
}
if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
- pr_warn("BTRFS: log_root block unaligned: %llu\n",
- btrfs_super_log_root(sb));
+ btrfs_warn(fs_info, "log_root block unaligned: %llu",
+ btrfs_super_log_root(sb));
ret = -EINVAL;
}
if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
- pr_err("BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
- fs_info->fsid, sb->dev_item.fsid);
+ btrfs_err(fs_info,
+ "dev_item UUID does not match fsid: %pU != %pU",
+ fs_info->fsid, sb->dev_item.fsid);
ret = -EINVAL;
}
*/
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
btrfs_err(fs_info, "bytes_used is too small %llu",
- btrfs_super_bytes_used(sb));
+ btrfs_super_bytes_used(sb));
ret = -EINVAL;
}
if (!is_power_of_2(btrfs_super_stripesize(sb))) {
btrfs_err(fs_info, "invalid stripesize %u",
- btrfs_super_stripesize(sb));
+ btrfs_super_stripesize(sb));
ret = -EINVAL;
}
if (btrfs_super_num_devices(sb) > (1UL << 31))
- pr_warn("BTRFS: suspicious number of devices: %llu\n",
- btrfs_super_num_devices(sb));
+ btrfs_warn(fs_info, "suspicious number of devices: %llu",
+ btrfs_super_num_devices(sb));
if (btrfs_super_num_devices(sb) == 0) {
- pr_err("BTRFS: number of devices is 0\n");
+ btrfs_err(fs_info, "number of devices is 0");
ret = -EINVAL;
}
if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
- pr_err("BTRFS: super offset mismatch %llu != %u\n",
- btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
+ btrfs_err(fs_info, "super offset mismatch %llu != %u",
+ btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
ret = -EINVAL;
}
* and one chunk
*/
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
- pr_err("BTRFS: system chunk array too big %u > %u\n",
- btrfs_super_sys_array_size(sb),
- BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
+ btrfs_err(fs_info, "system chunk array too big %u > %u",
+ btrfs_super_sys_array_size(sb),
+ BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ret = -EINVAL;
}
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk)) {
- pr_err("BTRFS: system chunk array too small %u < %zu\n",
- btrfs_super_sys_array_size(sb),
- sizeof(struct btrfs_disk_key)
- + sizeof(struct btrfs_chunk));
+ btrfs_err(fs_info, "system chunk array too small %u < %zu",
+ btrfs_super_sys_array_size(sb),
+ sizeof(struct btrfs_disk_key)
+ + sizeof(struct btrfs_chunk));
ret = -EINVAL;
}
* but it's still possible that it's the one that's wrong.
*/
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
- pr_warn("BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
- btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
+ btrfs_warn(fs_info,
+ "suspicious: generation < chunk_root_generation: %llu < %llu",
+ btrfs_super_generation(sb),
+ btrfs_super_chunk_root_generation(sb));
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
&& btrfs_super_cache_generation(sb) != (u64)-1)
- pr_warn("BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
- btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
+ btrfs_warn(fs_info,
+ "suspicious: generation < cache_generation: %llu < %llu",
+ btrfs_super_generation(sb),
+ btrfs_super_cache_generation(sb));
return ret;
}
int force);
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key);
-static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+static void dump_space_info(struct btrfs_fs_info *fs_info,
+ struct btrfs_space_info *info, u64 bytes,
int dump_block_groups);
static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
u64 ram_bytes, u64 num_bytes, int delalloc);
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
- ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
- cache->key.objectid, bytenr,
- 0, &logical, &nr, &stripe_len);
+ ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
+ bytenr, 0, &logical, &nr, &stripe_len);
if (ret)
return ret;
if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
left, thresh, type);
- dump_space_info(info, 0, 0);
+ dump_space_info(root->fs_info, info, 0, 0);
}
if (left < thresh) {
return ret;
}
-static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+static void dump_space_info(struct btrfs_fs_info *fs_info,
+ struct btrfs_space_info *info, u64 bytes,
int dump_block_groups)
{
struct btrfs_block_group_cache *cache;
int index = 0;
spin_lock(&info->lock);
- pr_info("BTRFS: space_info %llu has %llu free, is %sfull\n",
- info->flags,
- info->total_bytes - info->bytes_used - info->bytes_pinned -
- info->bytes_reserved - info->bytes_readonly -
- info->bytes_may_use, (info->full) ? "" : "not ");
- pr_info("BTRFS: space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu\n",
- info->total_bytes, info->bytes_used, info->bytes_pinned,
- info->bytes_reserved, info->bytes_may_use,
- info->bytes_readonly);
+ btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
+ info->flags,
+ info->total_bytes - info->bytes_used - info->bytes_pinned -
+ info->bytes_reserved - info->bytes_readonly -
+ info->bytes_may_use, (info->full) ? "" : "not ");
+ btrfs_info(fs_info,
+ "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
+ info->total_bytes, info->bytes_used, info->bytes_pinned,
+ info->bytes_reserved, info->bytes_may_use,
+ info->bytes_readonly);
spin_unlock(&info->lock);
if (!dump_block_groups)
again:
list_for_each_entry(cache, &info->block_groups[index], list) {
spin_lock(&cache->lock);
- pr_info("BTRFS: block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
- cache->key.objectid, cache->key.offset,
- btrfs_block_group_used(&cache->item), cache->pinned,
- cache->reserved, cache->ro ? "[readonly]" : "");
+ btrfs_info(fs_info,
+ "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
+ cache->key.objectid, cache->key.offset,
+ btrfs_block_group_used(&cache->item), cache->pinned,
+ cache->reserved, cache->ro ? "[readonly]" : "");
btrfs_dump_free_space(cache, bytes);
spin_unlock(&cache->lock);
}
u64 empty_size, u64 hint_byte,
struct btrfs_key *ins, int is_data, int delalloc)
{
+ struct btrfs_fs_info *fs_info = root->fs_info;
bool final_tried = num_bytes == min_alloc_size;
u64 flags;
int ret;
ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
hint_byte, ins, flags, delalloc);
if (!ret && !is_data) {
- btrfs_dec_block_group_reservations(root->fs_info,
- ins->objectid);
+ btrfs_dec_block_group_reservations(fs_info, ins->objectid);
} else if (ret == -ENOSPC) {
if (!final_tried && ins->offset) {
num_bytes = min(num_bytes >> 1, ins->offset);
if (num_bytes == min_alloc_size)
final_tried = true;
goto again;
- } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
+ } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
struct btrfs_space_info *sinfo;
- sinfo = __find_space_info(root->fs_info, flags);
+ sinfo = __find_space_info(fs_info, flags);
btrfs_err(root->fs_info,
"allocation failed flags %llu, wanted %llu",
flags, num_bytes);
if (sinfo)
- dump_space_info(sinfo, num_bytes, 1);
+ dump_space_info(fs_info, sinfo, num_bytes, 1);
}
}
struct btrfs_block_rsv *block_rsv, int update_ref,
int for_reloc)
{
+ struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_path *path;
struct btrfs_trans_handle *trans;
- struct btrfs_root *tree_root = root->fs_info->tree_root;
+ struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root_item *root_item = &root->root_item;
struct walk_control *wc;
struct btrfs_key key;
int level;
bool root_dropped = false;
- btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
+ btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
path = btrfs_alloc_path();
if (!path) {
btrfs_end_transaction_throttle(trans, tree_root);
if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
- pr_debug("BTRFS: drop snapshot early exit\n");
+ btrfs_debug(fs_info,
+ "drop snapshot early exit");
err = -EAGAIN;
goto out_free;
}
if (!for_reloc && root_dropped == false)
btrfs_add_dead_root(root);
if (err && err != -EAGAIN)
- btrfs_handle_fs_error(root->fs_info, err, NULL);
+ btrfs_handle_fs_error(fs_info, err, NULL);
return err;
}
if (WARN_ON(space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0))
- dump_space_info(space_info, 0, 0);
+ dump_space_info(info, space_info, 0, 0);
list_del(&space_info->list);
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
struct kobject *kobj;
return;
out_err:
- pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
+ btrfs_warn(cache->fs_info,
+ "failed to add kobject for block cache, ignoring");
}
static struct btrfs_block_group_cache *
if (failrec->in_validation) {
/* there was no real error, just free the record */
- pr_debug("clean_io_failure: freeing dummy error at %llu\n",
- failrec->start);
+ btrfs_debug(fs_info,
+ "clean_io_failure: freeing dummy error at %llu",
+ failrec->start);
goto out;
}
if (fs_info->sb->s_flags & MS_RDONLY)
int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
struct io_failure_record **failrec_ret)
{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct io_failure_record *failrec;
struct extent_map *em;
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
em->compress_type);
}
- pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
- logical, start, failrec->len);
+ btrfs_debug(fs_info,
+ "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
+ logical, start, failrec->len);
failrec->logical = logical;
free_extent_map(em);
return ret;
}
} else {
- pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
- failrec->logical, failrec->start, failrec->len,
- failrec->in_validation);
+ btrfs_debug(fs_info,
+ "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
+ failrec->logical, failrec->start, failrec->len,
+ failrec->in_validation);
/*
* when data can be on disk more than twice, add to failrec here
* (e.g. with a list for failed_mirror) to make
int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
struct io_failure_record *failrec, int failed_mirror)
{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
int num_copies;
- num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
- failrec->logical, failrec->len);
+ num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
if (num_copies == 1) {
/*
* we only have a single copy of the data, so don't bother with
* all the retry and error correction code that follows. no
* matter what the error is, it is very likely to persist.
*/
- pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
- num_copies, failrec->this_mirror, failed_mirror);
+ btrfs_debug(fs_info,
+ "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
+ num_copies, failrec->this_mirror, failed_mirror);
return 0;
}
}
if (failrec->this_mirror > num_copies) {
- pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
- num_copies, failrec->this_mirror, failed_mirror);
+ btrfs_debug(fs_info,
+ "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
+ num_copies, failrec->this_mirror, failed_mirror);
return 0;
}
}
bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
- pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
- read_mode, failrec->this_mirror, failrec->in_validation);
+ btrfs_debug(btrfs_sb(inode->i_sb),
+ "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
+ read_mode, failrec->this_mirror, failrec->in_validation);
ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
failrec->bio_flags, 0);
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
struct inode *inode = page->mapping->host;
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
- pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u\n",
- (u64)bio->bi_iter.bi_sector,
- bio->bi_error, io_bio->mirror_num);
+ btrfs_debug(fs_info,
+ "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
+ (u64)bio->bi_iter.bi_sector, bio->bi_error,
+ io_bio->mirror_num);
tree = &BTRFS_I(inode)->io_tree;
/* We always issue full-page reads, but if some block
* if they don't add up to a full page. */
if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
- btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
- "partial page read in btrfs with offset %u and length %u",
+ btrfs_err(fs_info,
+ "partial page read in btrfs with offset %u and length %u",
bvec->bv_offset, bvec->bv_len);
else
- btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
- "incomplete page read in btrfs with offset %u and length %u",
+ btrfs_info(fs_info,
+ "incomplete page read in btrfs with offset %u and length %u",
bvec->bv_offset, bvec->bv_len);
}
}
}
-int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
+int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
+ struct btrfs_free_space_ctl *ctl,
u64 offset, u64 bytes)
{
struct btrfs_free_space *info;
spin_unlock(&ctl->tree_lock);
if (ret) {
- pr_crit("BTRFS: unable to add free space :%d\n", ret);
+ btrfs_crit(fs_info, "unable to add free space :%d", ret);
ASSERT(ret != -EEXIST);
}
spin_unlock(&ctl->tree_lock);
if (align_gap_len)
- __btrfs_add_free_space(ctl, align_gap, align_gap_len);
+ __btrfs_add_free_space(block_group->fs_info, ctl,
+ align_gap, align_gap_len);
return ret;
}
struct inode *inode);
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group);
-int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
+int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
+ struct btrfs_free_space_ctl *ctl,
u64 bytenr, u64 size);
static inline int
btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
u64 bytenr, u64 size)
{
- return __btrfs_add_free_space(block_group->free_space_ctl,
+ return __btrfs_add_free_space(block_group->fs_info,
+ block_group->free_space_ctl,
bytenr, size);
}
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
if (ret < 0)
return ERR_PTR(ret);
if (ret != 0) {
- btrfs_warn(fs_info, "missing free space info for %llu\n",
+ btrfs_warn(fs_info, "missing free space info for %llu",
block_group->key.objectid);
ASSERT(0);
return ERR_PTR(-ENOENT);
break;
if (last != (u64)-1 && last + 1 != key.objectid) {
- __btrfs_add_free_space(ctl, last + 1,
+ __btrfs_add_free_space(fs_info, ctl, last + 1,
key.objectid - last - 1);
wake_up(&root->ino_cache_wait);
}
}
if (last < root->highest_objectid - 1) {
- __btrfs_add_free_space(ctl, last + 1,
+ __btrfs_add_free_space(fs_info, ctl, last + 1,
root->highest_objectid - last - 1);
}
static void start_caching(struct btrfs_root *root)
{
+ struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
struct task_struct *tsk;
int ret;
u64 objectid;
- if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
+ if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
return;
spin_lock(&root->ino_cache_lock);
root->ino_cache_state = BTRFS_CACHE_STARTED;
spin_unlock(&root->ino_cache_lock);
- ret = load_free_ino_cache(root->fs_info, root);
+ ret = load_free_ino_cache(fs_info, root);
if (ret == 1) {
spin_lock(&root->ino_cache_lock);
root->ino_cache_state = BTRFS_CACHE_FINISHED;
*/
ret = btrfs_find_free_objectid(root, &objectid);
if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
- __btrfs_add_free_space(ctl, objectid,
+ __btrfs_add_free_space(fs_info, ctl, objectid,
BTRFS_LAST_FREE_OBJECTID - objectid + 1);
}
tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
root->root_key.objectid);
if (IS_ERR(tsk)) {
- btrfs_warn(root->fs_info, "failed to start inode caching task");
- btrfs_clear_pending_and_info(root->fs_info, INODE_MAP_CACHE,
+ btrfs_warn(fs_info, "failed to start inode caching task");
+ btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
"disabling inode map caching");
}
}
void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
{
+ struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
- if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
+ if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
return;
again:
if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
- __btrfs_add_free_space(pinned, objectid, 1);
+ __btrfs_add_free_space(fs_info, pinned, objectid, 1);
} else {
- down_write(&root->fs_info->commit_root_sem);
+ down_write(&fs_info->commit_root_sem);
spin_lock(&root->ino_cache_lock);
if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
spin_unlock(&root->ino_cache_lock);
- up_write(&root->fs_info->commit_root_sem);
+ up_write(&fs_info->commit_root_sem);
goto again;
}
spin_unlock(&root->ino_cache_lock);
start_caching(root);
- __btrfs_add_free_space(pinned, objectid, 1);
+ __btrfs_add_free_space(fs_info, pinned, objectid, 1);
- up_write(&root->fs_info->commit_root_sem);
+ up_write(&fs_info->commit_root_sem);
}
}
rb_erase(&info->offset_index, rbroot);
spin_unlock(rbroot_lock);
if (add_to_ctl)
- __btrfs_add_free_space(ctl, info->offset, count);
+ __btrfs_add_free_space(root->fs_info, ctl,
+ info->offset, count);
kmem_cache_free(btrfs_free_space_cachep, info);
}
}
if (PTR_ERR(root) == -ENOENT)
return 0;
WARN_ON(1);
- pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
+ btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
inum, offset, root_id);
return PTR_ERR(root);
}
struct io_failure_record *failrec,
int failed_mirror)
{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
int num_copies;
- num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
- failrec->logical, failrec->len);
+ num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
if (num_copies == 1) {
/*
* we only have a single copy of the data, so don't bother with
* all the retry and error correction code that follows. no
* matter what the error is, it is very likely to persist.
*/
- pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
- num_copies, failrec->this_mirror, failed_mirror);
+ btrfs_debug(fs_info,
+ "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
+ num_copies, failrec->this_mirror, failed_mirror);
return 0;
}
failrec->this_mirror++;
if (failrec->this_mirror > num_copies) {
- pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
- num_copies, failrec->this_mirror, failed_mirror);
+ btrfs_debug(fs_info,
+ "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
+ num_copies, failrec->this_mirror, failed_mirror);
return 0;
}
&fs_info->qgroup_rescan_progress,
path, 1, 0);
- pr_debug("current progress key (%llu %u %llu), search_slot ret %d\n",
- fs_info->qgroup_rescan_progress.objectid,
- fs_info->qgroup_rescan_progress.type,
- fs_info->qgroup_rescan_progress.offset, ret);
+ btrfs_debug(fs_info,
+ "current progress key (%llu %u %llu), search_slot ret %d",
+ fs_info->qgroup_rescan_progress.objectid,
+ fs_info->qgroup_rescan_progress.type,
+ fs_info->qgroup_rescan_progress.offset, ret);
if (ret) {
/*
ret = update_qgroup_status_item(trans, fs_info, fs_info->quota_root);
if (ret < 0) {
err = ret;
- btrfs_err(fs_info, "fail to update qgroup status: %d\n", err);
+ btrfs_err(fs_info, "fail to update qgroup status: %d", err);
}
btrfs_end_transaction(trans, fs_info->quota_root);
spin_lock(&fs_info->reada_lock);
list_for_each_entry(device, &fs_devices->devices, dev_list) {
- pr_debug("dev %lld has %d in flight\n", device->devid,
+ btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
atomic_read(&device->reada_in_flight));
index = 0;
while (1) {
if (ret == 0)
break;
pr_debug(" zone %llu-%llu elems %llu locked %d devs",
- zone->start, zone->end, zone->elems,
- zone->locked);
+ zone->start, zone->end, zone->elems,
+ zone->locked);
for (j = 0; j < zone->ndevs; ++j) {
pr_cont(" %lld",
zone->devs[j]->devid);
sb->s_iflags |= SB_I_CGROUPWB;
err = open_ctree(sb, fs_devices, (char *)data);
if (err) {
- pr_err("BTRFS: open_ctree failed\n");
+ btrfs_err(fs_info, "open_ctree failed");
return err;
}
if (!IS_ERR(root)) {
struct super_block *s = root->d_sb;
+ struct btrfs_fs_info *fs_info = btrfs_sb(s);
struct inode *root_inode = d_inode(root);
u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
ret = 0;
if (!is_subvolume_inode(root_inode)) {
- pr_err("BTRFS: '%s' is not a valid subvolume\n",
+ btrfs_err(fs_info, "'%s' is not a valid subvolume",
subvol_name);
ret = -EINVAL;
}
* subvolume which was passed by ID is renamed and
* another subvolume is renamed over the old location.
*/
- pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
- subvol_name, subvol_objectid);
+ btrfs_err(fs_info,
+ "subvol '%s' does not match subvolid %llu",
+ subvol_name, subvol_objectid);
ret = -EINVAL;
}
if (ret) {
BUG_ON(!list_empty(&transaction->list));
WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
if (transaction->delayed_refs.pending_csums)
- pr_err("pending csums is %llu\n",
- transaction->delayed_refs.pending_csums);
+ btrfs_err(transaction->fs_info,
+ "pending csums is %llu",
+ transaction->delayed_refs.pending_csums);
while (!list_empty(&transaction->pending_chunks)) {
struct extent_map *em;
return -EROFS;
}
+ cur_trans->fs_info = fs_info;
atomic_set(&cur_trans->num_writers, 1);
extwriter_counter_init(cur_trans, type);
init_waitqueue_head(&cur_trans->writer_wait);
btrfs_btree_balance_dirty(info->tree_root);
cond_resched();
- if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
+ if (btrfs_fs_closing(info) || ret != -EAGAIN)
break;
- if (btrfs_defrag_cancelled(root->fs_info)) {
- pr_debug("BTRFS: defrag_root cancelled\n");
+ if (btrfs_defrag_cancelled(info)) {
+ btrfs_debug(info, "defrag_root cancelled");
ret = -EAGAIN;
break;
}
list_del_init(&root->root_list);
spin_unlock(&fs_info->trans_lock);
- pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
+ btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
btrfs_kill_all_delayed_nodes(root);
spinlock_t dropped_roots_lock;
struct btrfs_delayed_ref_root delayed_refs;
int aborted;
+ struct btrfs_fs_info *fs_info;
};
#define __TRANS_FREEZABLE (1U << 0)
mirror_num, need_raid_map);
}
-int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
+int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
u64 chunk_start, u64 physical, u64 devid,
u64 **logical, int *naddrs, int *stripe_len)
{
+ struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct extent_map_tree *em_tree = &map_tree->map_tree;
struct extent_map *em;
struct map_lookup *map;
read_unlock(&em_tree->lock);
if (!em) {
- pr_err("BTRFS: couldn't find em for chunk %Lu\n",
- chunk_start);
+ btrfs_err(fs_info, "couldn't find em for chunk %Lu",
+ chunk_start);
return -EIO;
}
if (em->start != chunk_start) {
- pr_err("BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
+ btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
em->start, chunk_start);
free_extent_map(em);
return -EIO;
rcu_read_lock();
name = rcu_dereference(dev->name);
- pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u\n",
- bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
- (u_long)dev->bdev->bd_dev, name->str, dev->devid,
- bio->bi_iter.bi_size);
+ btrfs_debug(fs_info,
+ "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
+ bio_op(bio), bio->bi_opf,
+ (u64)bio->bi_iter.bi_sector,
+ (u_long)dev->bdev->bd_dev, name->str, dev->devid,
+ bio->bi_iter.bi_size);
rcu_read_unlock();
}
#endif
int btrfs_read_sys_array(struct btrfs_root *root)
{
- struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_super_block *super_copy = fs_info->super_copy;
struct extent_buffer *sb;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
if (!num_stripes) {
- pr_err("BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
+ btrfs_err(fs_info,
+ "invalid number of stripes %u in sys_array at offset %u",
num_stripes, cur_offset);
ret = -EIO;
break;
type = btrfs_chunk_type(sb, chunk);
if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
- btrfs_err(root->fs_info,
+ btrfs_err(fs_info,
"invalid chunk type %llu in sys_array at offset %u",
type, cur_offset);
ret = -EIO;
if (ret)
break;
} else {
- pr_err("BTRFS: unexpected item type %u in sys_array at offset %u\n",
- (u32)key.type, cur_offset);
+ btrfs_err(fs_info,
+ "unexpected item type %u in sys_array at offset %u",
+ (u32)key.type, cur_offset);
ret = -EIO;
break;
}
return ret;
out_short_read:
- pr_err("BTRFS: sys_array too short to read %u bytes at offset %u\n",
+ btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
len, cur_offset);
clear_extent_buffer_uptodate(sb);
free_extent_buffer_stale(sb);
u64 logical, u64 *length,
struct btrfs_bio **bbio_ret, int mirror_num,
int need_raid_map);
-int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
+int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
u64 chunk_start, u64 physical, u64 devid,
u64 **logical, int *naddrs, int *stripe_len);
int btrfs_read_sys_array(struct btrfs_root *root);