return 0;
}
+/* check whether old rule contains new rule */
+static bool rule_contains(struct ieee80211_reg_rule *r1,
+ struct ieee80211_reg_rule *r2)
+{
+ /* for simplicity, currently consider only same flags */
+ if (r1->flags != r2->flags)
+ return false;
+
+ /* verify r1 is more restrictive */
+ if ((r1->power_rule.max_antenna_gain >
+ r2->power_rule.max_antenna_gain) ||
+ r1->power_rule.max_eirp > r2->power_rule.max_eirp)
+ return false;
+
+ /* make sure r2's range is contained within r1 */
+ if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
+ r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
+ return false;
+
+ /* and finally verify that r1.max_bw >= r2.max_bw */
+ if (r1->freq_range.max_bandwidth_khz <
+ r2->freq_range.max_bandwidth_khz)
+ return false;
+
+ return true;
+}
+
+/* add or extend current rules. do nothing if rule is already contained */
+static void add_rule(struct ieee80211_reg_rule *rule,
+ struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
+{
+ struct ieee80211_reg_rule *tmp_rule;
+ int i;
+
+ for (i = 0; i < *n_rules; i++) {
+ tmp_rule = ®_rules[i];
+ /* rule is already contained - do nothing */
+ if (rule_contains(tmp_rule, rule))
+ return;
+
+ /* extend rule if possible */
+ if (rule_contains(rule, tmp_rule)) {
+ memcpy(tmp_rule, rule, sizeof(*rule));
+ return;
+ }
+ }
+
+ memcpy(®_rules[*n_rules], rule, sizeof(*rule));
+ (*n_rules)++;
+}
+
/**
* regdom_intersect - do the intersection between two regulatory domains
* @rd1: first regulatory domain
{
int r, size_of_regd;
unsigned int x, y;
- unsigned int num_rules = 0, rule_idx = 0;
+ unsigned int num_rules = 0;
const struct ieee80211_reg_rule *rule1, *rule2;
- struct ieee80211_reg_rule *intersected_rule;
+ struct ieee80211_reg_rule intersected_rule;
struct ieee80211_regdomain *rd;
- /* This is just a dummy holder to help us count */
- struct ieee80211_reg_rule dummy_rule;
if (!rd1 || !rd2)
return NULL;
for (y = 0; y < rd2->n_reg_rules; y++) {
rule2 = &rd2->reg_rules[y];
if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
- &dummy_rule))
+ &intersected_rule))
num_rules++;
}
}
if (!rd)
return NULL;
- for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
+ for (x = 0; x < rd1->n_reg_rules; x++) {
rule1 = &rd1->reg_rules[x];
- for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
+ for (y = 0; y < rd2->n_reg_rules; y++) {
rule2 = &rd2->reg_rules[y];
- /*
- * This time around instead of using the stack lets
- * write to the target rule directly saving ourselves
- * a memcpy()
- */
- intersected_rule = &rd->reg_rules[rule_idx];
r = reg_rules_intersect(rd1, rd2, rule1, rule2,
- intersected_rule);
+ &intersected_rule);
/*
* No need to memset here the intersected rule here as
* we're not using the stack anymore
*/
if (r)
continue;
- rule_idx++;
- }
- }
- if (rule_idx != num_rules) {
- kfree(rd);
- return NULL;
+ add_rule(&intersected_rule, rd->reg_rules,
+ &rd->n_reg_rules);
+ }
}
- rd->n_reg_rules = num_rules;
rd->alpha2[0] = '9';
rd->alpha2[1] = '8';
rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,