want = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
want);
- /*
- * No page mapped into given range. If we are searching holes
- * and if this is the first time we got into the loop, it means
- * that the given offset is landed in a hole, return it.
- *
- * If we have already stepped through some block buffers to find
- * holes but they all contains data. In this case, the last
- * offset is already updated and pointed to the end of the last
- * mapped page, if it does not reach the endpoint to search,
- * that means there should be a hole between them.
- */
- if (nr_pages == 0) {
- /* Data search found nothing */
- if (type == DATA_OFF)
- break;
-
- ASSERT(type == HOLE_OFF);
- if (lastoff == startoff || lastoff < endoff) {
- found = true;
- *offset = lastoff;
- }
+ if (nr_pages == 0)
break;
- }
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/*
* The number of returned pages less than our desired, search
- * done. In this case, nothing was found for searching data,
- * but we found a hole behind the last offset.
+ * done.
*/
- if (nr_pages < want) {
- if (type == HOLE_OFF) {
- *offset = lastoff;
- found = true;
- }
+ if (nr_pages < want)
break;
- }
index = pvec.pages[i - 1]->index + 1;
pagevec_release(&pvec);
} while (index <= end);
+ /* No page at lastoff and we are not done - we found a hole. */
+ if (type == HOLE_OFF && lastoff < endoff) {
+ *offset = lastoff;
+ found = true;
+ }
out:
pagevec_release(&pvec);
return found;