{
if (bit)
write_nic_byte(dev, EPROM_CMD,
- (1<<EPROM_CS_SHIFT) | \
+ (1 << EPROM_CS_SHIFT) |
read_nic_byte(dev, EPROM_CMD));
else
- write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev, EPROM_CMD)\
- &~(1<<EPROM_CS_SHIFT));
+ write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev, EPROM_CMD)
+ & ~(1<<EPROM_CS_SHIFT));
udelay(EPROM_DELAY);
}
void eprom_ck_cycle(struct net_device *dev)
{
write_nic_byte(dev, EPROM_CMD,
- (1<<EPROM_CK_SHIFT) | read_nic_byte(dev,EPROM_CMD));
+ (1<<EPROM_CK_SHIFT) | read_nic_byte(dev, EPROM_CMD));
udelay(EPROM_DELAY);
write_nic_byte(dev, EPROM_CMD,
- read_nic_byte(dev, EPROM_CMD) &~ (1<<EPROM_CK_SHIFT));
+ read_nic_byte(dev, EPROM_CMD) & ~(1<<EPROM_CK_SHIFT));
udelay(EPROM_DELAY);
}
-void eprom_w(struct net_device *dev,short bit)
+void eprom_w(struct net_device *dev, short bit)
{
if (bit)
- write_nic_byte(dev, EPROM_CMD, (1<<EPROM_W_SHIFT) | \
- read_nic_byte(dev,EPROM_CMD));
+ write_nic_byte(dev, EPROM_CMD, (1<<EPROM_W_SHIFT) |
+ read_nic_byte(dev, EPROM_CMD));
else
- write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev,EPROM_CMD)\
- &~(1<<EPROM_W_SHIFT));
+ write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev, EPROM_CMD)
+ & ~(1<<EPROM_W_SHIFT));
udelay(EPROM_DELAY);
}
{
short bit;
- bit=(read_nic_byte(dev, EPROM_CMD) & (1<<EPROM_R_SHIFT) );
+ bit = (read_nic_byte(dev, EPROM_CMD) & (1<<EPROM_R_SHIFT));
udelay(EPROM_DELAY);
if (bit)
{
int i;
- for (i=0; i<len; i++){
+ for (i = 0; i < len; i++) {
eprom_w(dev, b[i]);
eprom_ck_cycle(dev);
}
}
-
u32 eprom_read(struct net_device *dev, u32 addr)
{
struct r8192_priv *priv = rtllib_priv(dev);
- short read_cmd[]={1,1,0};
+ short read_cmd[] = {1, 1, 0};
short addr_str[8];
int i;
int addr_len;
u32 ret;
- ret=0;
+ ret = 0;
write_nic_byte(dev, EPROM_CMD,
- (EPROM_CMD_PROGRAM<<EPROM_CMD_OPERATING_MODE_SHIFT));
+ (EPROM_CMD_PROGRAM << EPROM_CMD_OPERATING_MODE_SHIFT));
udelay(EPROM_DELAY);
- if (priv->epromtype==EEPROM_93C56){
- addr_str[7]=addr & 1;
- addr_str[6]=addr & (1<<1);
- addr_str[5]=addr & (1<<2);
- addr_str[4]=addr & (1<<3);
- addr_str[3]=addr & (1<<4);
- addr_str[2]=addr & (1<<5);
- addr_str[1]=addr & (1<<6);
- addr_str[0]=addr & (1<<7);
- addr_len=8;
- }else{
- addr_str[5]=addr & 1;
- addr_str[4]=addr & (1<<1);
- addr_str[3]=addr & (1<<2);
- addr_str[2]=addr & (1<<3);
- addr_str[1]=addr & (1<<4);
- addr_str[0]=addr & (1<<5);
- addr_len=6;
+ if (priv->epromtype == EEPROM_93C56) {
+ addr_str[7] = addr & 1;
+ addr_str[6] = addr & (1<<1);
+ addr_str[5] = addr & (1<<2);
+ addr_str[4] = addr & (1<<3);
+ addr_str[3] = addr & (1<<4);
+ addr_str[2] = addr & (1<<5);
+ addr_str[1] = addr & (1<<6);
+ addr_str[0] = addr & (1<<7);
+ addr_len = 8;
+ } else {
+ addr_str[5] = addr & 1;
+ addr_str[4] = addr & (1<<1);
+ addr_str[3] = addr & (1<<2);
+ addr_str[2] = addr & (1<<3);
+ addr_str[1] = addr & (1<<4);
+ addr_str[0] = addr & (1<<5);
+ addr_len = 6;
}
eprom_cs(dev, 1);
eprom_ck_cycle(dev);
eprom_w(dev, 0);
- for (i = 0; i < 16; i++){
+ for (i = 0; i < 16; i++) {
eprom_ck_cycle(dev);
ret |= (eprom_r(dev)<<(15-i));
}
#define EPROM_DELAY 10
-u32 eprom_read(struct net_device *dev,u32 addr);
+u32 eprom_read(struct net_device *dev, u32 addr);
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
-#include <asm/string.h>
-#include <asm/errno.h>
+#include <linux/string.h>
+#include <linux/errno.h>
#include "rtllib.h"
}
-struct rtllib_crypto_ops * rtllib_get_crypto_ops(const char *name)
+struct rtllib_crypto_ops *rtllib_get_crypto_ops(const char *name)
{
unsigned long flags;
struct list_head *ptr;
/* maximum number of bytes added by encryption; encrypt buf is
* allocated with extra_prefix_len bytes, copy of in_buf, and
* extra_postfix_len; encrypt need not use all this space, but
- * the result must start at the beginning of the struct buffer and correct
- * length must be returned */
+ * the result must start at the beginning of the struct buffer and
+ * correct length must be returned */
int extra_prefix_len, extra_postfix_len;
struct module *owner;
int rtllib_register_crypto_ops(struct rtllib_crypto_ops *ops);
int rtllib_unregister_crypto_ops(struct rtllib_crypto_ops *ops);
-struct rtllib_crypto_ops * rtllib_get_crypto_ops(const char *name);
+struct rtllib_crypto_ops *rtllib_get_crypto_ops(const char *name);
void rtllib_crypt_deinit_entries(struct rtllib_device *, int);
void rtllib_crypt_deinit_handler(unsigned long);
void rtllib_crypt_delayed_deinit(struct rtllib_device *ieee,
- struct rtllib_crypt_data **crypt);
+ struct rtllib_crypt_data **crypt);
#endif
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
-#include <asm/string.h>
+#include <linux/string.h>
#include <linux/wireless.h>
#include "rtllib.h"
void rtllib_ccmp_aes_encrypt(struct crypto_tfm *tfm,
const u8 pt[16], u8 ct[16])
{
- crypto_cipher_encrypt_one((void*)tfm, ct, pt);
+ crypto_cipher_encrypt_one((void *)tfm, ct, pt);
}
-static void * rtllib_ccmp_init(int key_idx)
+static void *rtllib_ccmp_init(int key_idx)
{
struct rtllib_ccmp_data *priv;
memset(priv, 0, sizeof(*priv));
priv->key_idx = key_idx;
- priv->tfm = (void*)crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
+ priv->tfm = (void *)crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(priv->tfm)) {
printk(KERN_DEBUG "rtllib_crypt_ccmp: could not allocate "
"crypto API aes\n");
fail:
if (priv) {
if (priv->tfm)
- crypto_free_cipher((void*)priv->tfm);
+ crypto_free_cipher((void *)priv->tfm);
kfree(priv);
}
{
struct rtllib_ccmp_data *_priv = priv;
if (_priv && _priv->tfm)
- crypto_free_cipher((void*)_priv->tfm);
+ crypto_free_cipher((void *)_priv->tfm);
kfree(priv);
}
/*
qc_included = ((WLAN_FC_GET_TYPE(fc) == RTLLIB_FTYPE_DATA) &&
(WLAN_FC_GET_STYPE(fc) & 0x08));
- */
+ */
qc_included = ((WLAN_FC_GET_TYPE(fc) == RTLLIB_FTYPE_DATA) &&
(WLAN_FC_GET_STYPE(fc) & 0x80));
aad_len = 22;
int data_len, i;
u8 *pos;
struct rtllib_hdr_4addr *hdr;
- struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
+ struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
+ MAX_DEV_ADDR_SIZE);
if (skb_headroom(skb) < CCMP_HDR_LEN ||
skb_tailroom(skb) < CCMP_MIC_LEN ||
skb->len < hdr_len)
mic = skb_put(skb, CCMP_MIC_LEN);
- ccmp_init_blocks(key->tfm, hdr, key->tx_pn, data_len, b0, b, s0);
+ ccmp_init_blocks(key->tfm, hdr, key->tx_pn, data_len,
+ b0, b, s0);
blocks = (data_len + AES_BLOCK_LEN - 1) / AES_BLOCK_LEN;
last = data_len % AES_BLOCK_LEN;
struct rtllib_ccmp_data *key = priv;
u8 keyidx, *pos;
struct rtllib_hdr_4addr *hdr;
- struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
+ struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
+ MAX_DEV_ADDR_SIZE);
u8 pn[6];
if (skb->len < hdr_len + CCMP_HDR_LEN + CCMP_MIC_LEN) {
return -4;
}
if (!tcb_desc->bHwSec) {
- size_t data_len = skb->len - hdr_len - CCMP_HDR_LEN - CCMP_MIC_LEN;
+ size_t data_len = skb->len - hdr_len - CCMP_HDR_LEN -
+ CCMP_MIC_LEN;
u8 *mic = skb->data + skb->len - CCMP_MIC_LEN;
u8 *b0 = key->rx_b0;
u8 *b = key->rx_b;
data->rx_pn[4] = seq[1];
data->rx_pn[5] = seq[0];
}
- crypto_cipher_setkey((void*)data->tfm, data->key, CCMP_TK_LEN);
+ crypto_cipher_setkey((void *)data->tfm, data->key, CCMP_TK_LEN);
} else if (len == 0)
data->key_set = 0;
else
}
-static char * rtllib_ccmp_print_stats(char *p, void *priv)
+static char *rtllib_ccmp_print_stats(char *p, void *priv)
{
struct rtllib_ccmp_data *ccmp = priv;
p += sprintf(p, "key[%d] alg=CCMP key_set=%d "
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
-#include <asm/string.h>
-#include "rtllib.h"
-
-
+#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
-
#include <linux/crc32.h>
+#include "rtllib.h"
+
struct rtllib_tkip_data {
#define TKIP_KEY_LEN 32
u8 key[TKIP_KEY_LEN];
u32 rx_iv32;
u16 rx_iv16;
- bool initialized;
+ bool initialized;
u16 rx_ttak[5];
int rx_phase1_done;
u32 rx_iv32_new;
u8 rx_hdr[16], tx_hdr[16];
};
-static void * rtllib_tkip_init(int key_idx)
+static void *rtllib_tkip_init(int key_idx)
{
struct rtllib_tkip_data *priv;
}
-static const u16 Sbox[256] =
-{
+static const u16 Sbox[256] = {
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
int len;
u8 *pos;
struct rtllib_hdr_4addr *hdr;
- struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
+ struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
+ MAX_DEV_ADDR_SIZE);
struct blkcipher_desc desc = {.tfm = tkey->tx_tfm_arc4};
int ret = 0;
u8 rc4key[16], *icv;
tkey->tx_iv32);
tkey->tx_phase1_done = 1;
}
- tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16);
+ tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak,
+ tkey->tx_iv16);
} else
tkey->tx_phase1_done = 1;
crypto_blkcipher_setkey(tkey->tx_tfm_arc4, rc4key, 16);
- ret= crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
+ ret = crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
}
tkey->tx_iv16++;
u32 iv32;
u16 iv16;
struct rtllib_hdr_4addr *hdr;
- struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
+ struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
+ MAX_DEV_ADDR_SIZE);
struct blkcipher_desc desc = {.tfm = tkey->rx_tfm_arc4};
u8 rc4key[16];
u8 icv[4];
iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
pos += 8;
- if (!tcb_desc->bHwSec || (skb->cb[0] == 1))
- {
+ if (!tcb_desc->bHwSec || (skb->cb[0] == 1)) {
if ((iv32 < tkey->rx_iv32 ||
- (iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16))&&tkey->initialized) {
+ (iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16)) &&
+ tkey->initialized) {
if (net_ratelimit()) {
- printk(KERN_DEBUG "TKIP: replay detected: STA=" MAC_FMT
- " previous TSC %08x%04x received TSC "
- "%08x%04x\n", MAC_ARG(hdr->addr2),
- tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
+ printk(KERN_DEBUG "TKIP: replay detected: STA="
+ MAC_FMT
+ " previous TSC %08x%04x received TSC "
+ "%08x%04x\n", MAC_ARG(hdr->addr2),
+ tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
}
tkey->dot11RSNAStatsTKIPReplays++;
return -4;
}
- tkey->initialized = true;
+ tkey->initialized = true;
if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
- tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32);
+ tkip_mixing_phase1(tkey->rx_ttak, tkey->key,
+ hdr->addr2, iv32);
tkey->rx_phase1_done = 1;
}
tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4)) {
if (net_ratelimit()) {
printk(KERN_DEBUG ": TKIP: failed to decrypt "
- "received packet from " MAC_FMT "\n",
+ "received packet from " MAC_FMT "\n",
MAC_ARG(hdr->addr2));
}
return -7;
if (memcmp(icv, pos + plen, 4) != 0) {
if (iv32 != tkey->rx_iv32) {
- /* Previously cached Phase1 result was already lost, so
- * it needs to be recalculated for the next packet. */
+ /* Previously cached Phase1 result was already
+ * lost, so it needs to be recalculated for the
+ * next packet. */
tkey->rx_phase1_done = 0;
}
if (net_ratelimit()) {
}
-static int michael_mic(struct crypto_hash *tfm_michael, u8 * key, u8 * hdr,
- u8 * data, size_t data_len, u8 * mic)
+static int michael_mic(struct crypto_hash *tfm_michael, u8 *key, u8 *hdr,
+ u8 *data, size_t data_len, u8 *mic)
{
- struct hash_desc desc;
- struct scatterlist sg[2];
-
- if (tfm_michael == NULL) {
- printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
- return -1;
- }
- sg_init_table(sg, 2);
- sg_set_buf(&sg[0], hdr, 16);
- sg_set_buf(&sg[1], data, data_len);
-
- if (crypto_hash_setkey(tfm_michael, key, 8))
- return -1;
-
- desc.tfm = tfm_michael;
- desc.flags = 0;
- return crypto_hash_digest(&desc, sg, data_len + 16, mic);
+ struct hash_desc desc;
+ struct scatterlist sg[2];
+
+ if (tfm_michael == NULL) {
+ printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
+ return -1;
+ }
+ sg_init_table(sg, 2);
+ sg_set_buf(&sg[0], hdr, 16);
+ sg_set_buf(&sg[1], data, data_len);
+
+ if (crypto_hash_setkey(tfm_michael, key, 8))
+ return -1;
+
+ desc.tfm = tfm_michael;
+ desc.flags = 0;
+ return crypto_hash_digest(&desc, sg, data_len + 16, mic);
}
static void michael_mic_hdr(struct sk_buff *skb, u8 *hdr)
michael_mic_hdr(skb, tkey->tx_hdr);
- if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl))) {
+ if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl)))
tkey->tx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07;
- }
pos = skb_put(skb, 8);
if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr,
- skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
+ skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
return -1;
return 0;
}
static int rtllib_michael_mic_verify(struct sk_buff *skb, int keyidx,
- int hdr_len, void *priv, struct rtllib_device* ieee)
+ int hdr_len, void *priv,
+ struct rtllib_device *ieee)
{
struct rtllib_tkip_data *tkey = priv;
u8 mic[8];
return -1;
michael_mic_hdr(skb, tkey->rx_hdr);
- if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl))) {
+ if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl)))
tkey->rx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07;
- }
if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr,
- skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
+ skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
return -1;
- if ((memcmp(mic, skb->data + skb->len - 8, 8) != 0)||(ieee->force_mic_error)) {
+ if ((memcmp(mic, skb->data + skb->len - 8, 8) != 0) ||
+ (ieee->force_mic_error)) {
struct rtllib_hdr_4addr *hdr;
hdr = (struct rtllib_hdr_4addr *) skb->data;
printk(KERN_DEBUG "%s: Michael MIC verification failed for "
"MSDU from " MAC_FMT " keyidx=%d\n",
skb->dev ? skb->dev->name : "N/A", MAC_ARG(hdr->addr2),
keyidx);
- printk("%d, force_mic_error = %d\n", (memcmp(mic, skb->data + skb->len - 8, 8) != 0),\
- ieee->force_mic_error);
+ printk(KERN_DEBUG "%d, force_mic_error = %d\n",
+ (memcmp(mic, skb->data + skb->len - 8, 8) != 0),\
+ ieee->force_mic_error);
if (skb->dev) {
- printk("skb->dev != NULL\n");
+ printk(KERN_INFO "skb->dev != NULL\n");
rtllib_michael_mic_failure(skb->dev, hdr, keyidx);
- }
+ }
tkey->dot11RSNAStatsTKIPLocalMICFailures++;
- ieee->force_mic_error = false;
+ ieee->force_mic_error = false;
return -1;
}
}
-static char * rtllib_tkip_print_stats(char *p, void *priv)
+static char *rtllib_tkip_print_stats(char *p, void *priv)
{
struct rtllib_tkip_data *tkip = priv;
p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
.print_stats = rtllib_tkip_print_stats,
.extra_prefix_len = 4 + 4, /* IV + ExtIV */
.extra_postfix_len = 8 + 4, /* MIC + ICV */
- .owner = THIS_MODULE,
+ .owner = THIS_MODULE,
};
void rtllib_tkip_null(void)
{
- return;
+ return;
}
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/skbuff.h>
-#include <asm/string.h>
+#include <linux/string.h>
#include "rtllib.h"
#include <linux/crypto.h>
u8 key[WEP_KEY_LEN + 1];
u8 key_len;
u8 key_idx;
- struct crypto_blkcipher *tx_tfm;
- struct crypto_blkcipher *rx_tfm;
+ struct crypto_blkcipher *tx_tfm;
+ struct crypto_blkcipher *rx_tfm;
};
-static void * prism2_wep_init(int keyidx)
+static void *prism2_wep_init(int keyidx)
{
struct prism2_wep_data *priv;
priv->key_idx = keyidx;
priv->tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
- if (IS_ERR(priv->tx_tfm)) {
- printk(KERN_DEBUG "rtllib_crypt_wep: could not allocate "
- "crypto API arc4\n");
- priv->tx_tfm = NULL;
- goto fail;
- }
- priv->rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
- if (IS_ERR(priv->rx_tfm)) {
- printk(KERN_DEBUG "rtllib_crypt_wep: could not allocate "
- "crypto API arc4\n");
- priv->rx_tfm = NULL;
- goto fail;
- }
+ if (IS_ERR(priv->tx_tfm)) {
+ printk(KERN_DEBUG "rtllib_crypt_wep: could not allocate "
+ "crypto API arc4\n");
+ priv->tx_tfm = NULL;
+ goto fail;
+ }
+ priv->rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
+ if (IS_ERR(priv->rx_tfm)) {
+ printk(KERN_DEBUG "rtllib_crypt_wep: could not allocate "
+ "crypto API arc4\n");
+ priv->rx_tfm = NULL;
+ goto fail;
+ }
/* start WEP IV from a random value */
get_random_bytes(&priv->iv, 4);
fail:
if (priv) {
- if (priv->tx_tfm)
- crypto_free_blkcipher(priv->tx_tfm);
- if (priv->rx_tfm)
- crypto_free_blkcipher(priv->rx_tfm);
- kfree(priv);
- }
+ if (priv->tx_tfm)
+ crypto_free_blkcipher(priv->tx_tfm);
+ if (priv->rx_tfm)
+ crypto_free_blkcipher(priv->rx_tfm);
+ kfree(priv);
+ }
return NULL;
}
struct prism2_wep_data *_priv = priv;
if (_priv) {
- if (_priv->tx_tfm)
- crypto_free_blkcipher(_priv->tx_tfm);
- if (_priv->rx_tfm)
- crypto_free_blkcipher(_priv->rx_tfm);
- }
+ if (_priv->tx_tfm)
+ crypto_free_blkcipher(_priv->tx_tfm);
+ if (_priv->rx_tfm)
+ crypto_free_blkcipher(_priv->rx_tfm);
+ }
kfree(priv);
}
u32 klen, len;
u8 key[WEP_KEY_LEN + 3];
u8 *pos;
- struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
+ struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
+ MAX_DEV_ADDR_SIZE);
struct blkcipher_desc desc = {.tfm = wep->tx_tfm};
u32 crc;
u8 *icv;
struct scatterlist sg;
if (skb_headroom(skb) < 4 || skb_tailroom(skb) < 4 ||
skb->len < hdr_len){
- printk("Error!!!headroom=%d tailroom=%d skblen=%d hdr_len=%d\n",skb_headroom(skb),skb_tailroom(skb),skb->len,hdr_len);
+ printk(KERN_ERR "Error!!! headroom=%d tailroom=%d skblen=%d"
+ " hdr_len=%d\n", skb_headroom(skb), skb_tailroom(skb),
+ skb->len, hdr_len);
return -1;
}
len = skb->len - hdr_len;
}
-/* Perform WEP decryption on given struct buffer. Buffer includes whole WEP part of
- * the frame: IV (4 bytes), encrypted payload (including SNAP header),
+/* Perform WEP decryption on given struct buffer. Buffer includes whole WEP
+ * part of the frame: IV (4 bytes), encrypted payload (including SNAP header),
* ICV (4 bytes). len includes both IV and ICV.
*
* Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
u32 klen, plen;
u8 key[WEP_KEY_LEN + 3];
u8 keyidx, *pos;
- struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
+ struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
+ MAX_DEV_ADDR_SIZE);
struct blkcipher_desc desc = {.tfm = wep->rx_tfm};
u32 crc;
u8 icv[4];
}
-static char * prism2_wep_print_stats(char *p, void *priv)
+static char *prism2_wep_print_stats(char *p, void *priv)
{
struct prism2_wep_data *wep = priv;
p += sprintf(p, "key[%d] alg=WEP len=%d\n",
void rtllib_wep_null(void)
{
- return;
+ return;
}
#define BYTE_ORDER __MACHINE_LITTLE_ENDIAN
#if BYTE_ORDER == __MACHINE_LITTLE_ENDIAN
-#define EF1Byte(_val) ((u8)(_val))
-#define EF2Byte(_val) ((u16)(_val))
-#define EF4Byte(_val) ((u32)(_val))
+#define EF1Byte(_val) ((u8)(_val))
+#define EF2Byte(_val) ((u16)(_val))
+#define EF4Byte(_val) ((u32)(_val))
#else
-#define EF1Byte(_val) ((u8)(_val))
-#define EF2Byte(_val) (((((u16)(_val))&0x00ff)<<8)|((((u16)(_val))&0xff00)>>8))
-#define EF4Byte(_val) (((((u32)(_val))&0x000000ff)<<24)|\
- ((((u32)(_val))&0x0000ff00)<<8)|\
- ((((u32)(_val))&0x00ff0000)>>8)|\
- ((((u32)(_val))&0xff000000)>>24))
+#define EF1Byte(_val) ((u8)(_val))
+#define EF2Byte(_val) \
+ (((((u16)(_val))&0x00ff)<<8)|((((u16)(_val))&0xff00)>>8))
+#define EF4Byte(_val) \
+ (((((u32)(_val))&0x000000ff)<<24)|\
+ ((((u32)(_val))&0x0000ff00)<<8)|\
+ ((((u32)(_val))&0x00ff0000)>>8)|\
+ ((((u32)(_val))&0xff000000)>>24))
#endif
#define ReadEF1Byte(_ptr) EF1Byte(*((u8 *)(_ptr)))
#define ReadEF2Byte(_ptr) EF2Byte(*((u16 *)(_ptr)))
#define ReadEF4Byte(_ptr) EF4Byte(*((u32 *)(_ptr)))
-#define WriteEF1Byte(_ptr, _val) (*((u8 *)(_ptr)))=EF1Byte(_val)
-#define WriteEF2Byte(_ptr, _val) (*((u16 *)(_ptr)))=EF2Byte(_val)
-#define WriteEF4Byte(_ptr, _val) (*((u32 *)(_ptr)))=EF4Byte(_val)
+#define WriteEF1Byte(_ptr, _val) (*((u8 *)(_ptr))) = EF1Byte(_val)
+#define WriteEF2Byte(_ptr, _val) (*((u16 *)(_ptr))) = EF2Byte(_val)
+#define WriteEF4Byte(_ptr, _val) (*((u32 *)(_ptr))) = EF4Byte(_val)
#if BYTE_ORDER == __MACHINE_LITTLE_ENDIAN
#define H2N1BYTE(_val) ((u8)(_val))
#define H2N2BYTE(_val) (((((u16)(_val))&0x00ff)<<8)|\
#endif
#define BIT_LEN_MASK_32(__BitLen) (0xFFFFFFFF >> (32 - (__BitLen)))
-#define BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) (BIT_LEN_MASK_32(__BitLen) << (__BitOffset))
+#define BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) \
+ (BIT_LEN_MASK_32(__BitLen) << (__BitOffset))
#define LE_P4BYTE_TO_HOST_4BYTE(__pStart) (EF4Byte(*((u32 *)(__pStart))))
#define LE_BITS_TO_4BYTE(__pStart, __BitOffset, __BitLen) \
( \
- ( LE_P4BYTE_TO_HOST_4BYTE(__pStart) >> (__BitOffset) ) \
+ (LE_P4BYTE_TO_HOST_4BYTE(__pStart) >> (__BitOffset)) \
& \
BIT_LEN_MASK_32(__BitLen) \
)
( \
LE_P4BYTE_TO_HOST_4BYTE(__pStart) \
& \
- ( ~BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) ) \
+ (~BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen)) \
)
#define SET_BITS_TO_LE_4BYTE(__pStart, __BitOffset, __BitLen, __Value) \
EF4Byte( \
LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \
| \
- ( (((u32)__Value) & BIT_LEN_MASK_32(__BitLen)) << (__BitOffset) ) \
- );
+ ((((u32)__Value) & BIT_LEN_MASK_32(__BitLen)) << (__BitOffset)) \
+ );
#define BIT_LEN_MASK_16(__BitLen) \
#define LE_BITS_TO_2BYTE(__pStart, __BitOffset, __BitLen) \
( \
- ( LE_P2BYTE_TO_HOST_2BYTE(__pStart) >> (__BitOffset) ) \
+ (LE_P2BYTE_TO_HOST_2BYTE(__pStart) >> (__BitOffset)) \
& \
BIT_LEN_MASK_16(__BitLen) \
)
( \
LE_P2BYTE_TO_HOST_2BYTE(__pStart) \
& \
- ( ~BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen) ) \
+ (~BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen)) \
)
#define SET_BITS_TO_LE_2BYTE(__pStart, __BitOffset, __BitLen, __Value) \
*((u16 *)(__pStart)) = \
EF2Byte( \
LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \
- | \
- ( (((u16)__Value) & BIT_LEN_MASK_16(__BitLen)) << (__BitOffset) ) \
- );
+ | ((((u16)__Value) & BIT_LEN_MASK_16(__BitLen)) << \
+ (__BitOffset)) \
+ );
#define BIT_LEN_MASK_8(__BitLen) \
(0xFF >> (8 - (__BitLen)))
#define LE_BITS_TO_1BYTE(__pStart, __BitOffset, __BitLen) \
( \
- ( LE_P1BYTE_TO_HOST_1BYTE(__pStart) >> (__BitOffset) ) \
+ (LE_P1BYTE_TO_HOST_1BYTE(__pStart) >> (__BitOffset)) \
& \
BIT_LEN_MASK_8(__BitLen) \
)
( \
LE_P1BYTE_TO_HOST_1BYTE(__pStart) \
& \
- ( ~BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen) ) \
+ (~BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen)) \
)
-#define SET_BITS_TO_LE_1BYTE(__pStart, __BitOffset, __BitLen, __Value) \
- *((u8 *)(__pStart)) = \
- EF1Byte( \
+#define SET_BITS_TO_LE_1BYTE(__pStart, __BitOffset, __BitLen, __Value) \
+ *((u8 *)(__pStart)) = EF1Byte( \
LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \
- | \
- ( (((u8)__Value) & BIT_LEN_MASK_8(__BitLen)) << (__BitOffset) ) \
- );
+ | ((((u8)__Value) & BIT_LEN_MASK_8(__BitLen)) << \
+ (__BitOffset)) \
+ );
-#define N_BYTE_ALIGMENT(__Value, __Aligment) ((__Aligment == 1) ? (__Value) : (((__Value + __Aligment - 1) / __Aligment) * __Aligment))
+#define N_BYTE_ALIGMENT(__Value, __Aligment) \
+ ((__Aligment == 1) ? (__Value) : (((__Value + __Aligment - 1) / \
+ __Aligment) * __Aligment))
#endif