if (ah->ah_sc->ani_state.ani_mode != ATH5K_ANI_MODE_AUTO)
return;
- /* if one of the errors triggered, we can get a superfluous second
- * interrupt, even though we have already reset the register. the
- * function detects that so we can return early */
+ /* If one of the errors triggered, we can get a superfluous second
+ * interrupt, even though we have already reset the register. The
+ * function detects that so we can return early. */
if (ath5k_ani_save_and_clear_phy_errors(ah, as) == 0)
return;
else
ah->ah_version = AR5K_AR5212;
- /*Fill the ath5k_hw struct with the needed functions*/
+ /* Fill the ath5k_hw struct with the needed functions */
ret = ath5k_hw_init_desc_functions(ah);
if (ret)
goto err_free;
- /* Bring device out of sleep and reset it's units */
+ /* Bring device out of sleep and reset its units */
ret = ath5k_hw_nic_wakeup(ah, 0, true);
if (ret)
goto err_free;
CHANNEL_5GHZ);
ah->ah_phy = AR5K_PHY(0);
- /* Try to identify radio chip based on it's srev */
+ /* Try to identify radio chip based on its srev */
switch (ah->ah_radio_5ghz_revision & 0xf0) {
case AR5K_SREV_RAD_5111:
ah->ah_radio = AR5K_RF5111;
goto err_free;
}
- /*If we passed the test malloc a ath5k_hw struct*/
+ /* If we passed the test, malloc an ath5k_hw struct */
sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
if (!sc->ah) {
ret = -ENOMEM;
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
- * descriptor. MAC's that don't have support will
- * return false w/o doing anything. MAC's that do
+ * descriptor. MACs that don't have support will
+ * return false w/o doing anything. MACs that do
* support it will return true w/o doing anything.
*/
ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
- * priority. Note that hw functions handle reseting
+ * priority. Note that hw functions handle resetting
* these queues at the needed time.
*/
ret = ath5k_beaconq_setup(ah);
/*
* NB: the order of these is important:
* o call the 802.11 layer before detaching ath5k_hw to
- * insure callbacks into the driver to delete global
+ * ensure callbacks into the driver to delete global
* key cache entries can be handled
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
- * when a tx queue gets deep; otherwise waiting for the
+ * when a tx queue gets deep; otherwise we wait for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
}
/*
- * Compute padding position. skb must contains an IEEE 802.11 frame
+ * Compute padding position. skb must contain an IEEE 802.11 frame
*/
static int ath5k_common_padpos(struct sk_buff *skb)
{
}
/*
- * This function expects a 802.11 frame and returns the number of
- * bytes added, or -1 if we don't have enought header room.
+ * This function expects an 802.11 frame and returns the number of
+ * bytes added, or -1 if we don't have enough header room.
*/
-
static int ath5k_add_padding(struct sk_buff *skb)
{
int padpos = ath5k_common_padpos(skb);
}
/*
- * This function expects a 802.11 frame and returns the number of
- * bytes removed
+ * The MAC header is padded to have 32-bit boundary if the
+ * packet payload is non-zero. The general calculation for
+ * padsize would take into account odd header lengths:
+ * padsize = 4 - (hdrlen & 3); however, since only
+ * even-length headers are used, padding can only be 0 or 2
+ * bytes and we can optimize this a bit. We must not try to
+ * remove padding from short control frames that do not have a
+ * payload.
+ *
+ * This function expects an 802.11 frame and returns the number of
+ * bytes removed.
*/
-
static int ath5k_remove_padding(struct sk_buff *skb)
{
int padpos = ath5k_common_padpos(skb);
{
struct ieee80211_rx_status *rxs;
- /* The MAC header is padded to have 32-bit boundary if the
- * packet payload is non-zero. The general calculation for
- * padsize would take into account odd header lengths:
- * padsize = (4 - hdrlen % 4) % 4; However, since only
- * even-length headers are used, padding can only be 0 or 2
- * bytes and we can optimize this a bit. In addition, we must
- * not try to remove padding from short control frames that do
- * not have payload. */
ath5k_remove_padding(skb);
rxs = IEEE80211_SKB_RXCB(skb);
* default antenna which is supposed to be an omni.
*
* Note2: On sectored scenarios it's possible to have
- * multiple antennas (1omni -the default- and 14 sectors)
- * so if we choose to actually support this mode we need
- * to allow user to set how many antennas we have and tweak
- * the code below to send beacons on all of them.
+ * multiple antennas (1 omni -- the default -- and 14
+ * sectors), so if we choose to actually support this
+ * mode, we need to allow the user to set how many antennas
+ * we have and tweak the code below to send beacons
+ * on all of them.
*/
if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
antenna = sc->bsent & 4 ? 2 : 1;
}
/*
* Check if the previous beacon has gone out. If
- * not don't don't try to post another, skip this
+ * not, don't don't try to post another: skip this
* period and wait for the next. Missed beacons
* indicate a problem and should not occur. If we
* miss too many consecutive beacons reset the device.
ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
/*
- * the hardware expects the header padded to 4 byte boundaries
- * if this is not the case we add the padding after the header
+ * The hardware expects the header padded to 4 byte boundaries.
+ * If this is not the case, we add the padding after the header.
*/
padsize = ath5k_add_padding(skb);
if (padsize < 0) {
/* Set multicast bits */
ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
- /* Set the cached hw filter flags, this will alter actually
+ /* Set the cached hw filter flags, this will later actually
* be set in HW */
sc->filter_flags = rfilt;
*
* This function increases/decreases the tx trigger level for the tx fifo
* buffer (aka FIFO threshold) that is used to indicate when PCU flushes
- * the buffer and transmits it's data. Lowering this results sending small
+ * the buffer and transmits its data. Lowering this results sending small
* frames more quickly but can lead to tx underruns, raising it a lot can
* result other problems (i think bmiss is related). Right now we start with
* the lowest possible (64Bytes) and if we get tx underrun we increase it using
- * the increase flag. Returns -EIO if we have have reached maximum/minimum.
+ * the increase flag. Returns -EIO if we have reached maximum/minimum.
*
* XXX: Link this with tx DMA size ?
* XXX: Use it to save interrupts ?
* (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
* steps that match with the power values we read from eeprom. On
* older eeprom versions (< 3.2) these steps are equaly spaced at
- * 10% of the pcdac curve -until the curve reaches it's maximum-
+ * 10% of the pcdac curve -until the curve reaches its maximum-
* (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
* these 11 steps are spaced in a different way. This function returns
* the pcdac steps based on eeprom version and curve min/max so that we
*/
/* For RF2413 power calibration data doesn't start on a fixed location and
- * if a mode is not supported, it's section is missing -not zeroed-.
+ * if a mode is not supported, its section is missing -not zeroed-.
* So we need to calculate the starting offset for each section by using
* these two functions */
\**********************/
/*
- * This code is used to optimize rf gain on different environments
+ * This code is used to optimize RF gain on different environments
* (temperature mostly) based on feedback from a power detector.
*
* It's only used on RF5111 and RF5112, later RF chips seem to have
}
/* Perform gain_F adjustment by choosing the right set
- * of parameters from rf gain optimization ladder */
+ * of parameters from RF gain optimization ladder */
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
{
const struct ath5k_gain_opt *go;
return ret;
}
-/* Main callback for thermal rf gain calibration engine
+/* Main callback for thermal RF gain calibration engine
* Check for a new gain reading and schedule an adjustment
* if needed.
*
return ah->ah_gain.g_state;
}
-/* Write initial rf gain table to set the RF sensitivity
+/* Write initial RF gain table to set the RF sensitivity
* this one works on all RF chips and has nothing to do
* with gain_F calibration */
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
/*
- * Setup RF registers by writing rf buffer on hw
+ * Setup RF registers by writing RF buffer on hw
*/
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
unsigned int mode)
return -EINVAL;
}
- /* If it's the first time we set rf buffer, allocate
+ /* If it's the first time we set RF buffer, allocate
* ah->ah_rf_banks based on ah->ah_rf_banks_size
* we set above */
if (ah->ah_rf_banks == NULL) {
/* Limit max power if we have a CTL available */
ath5k_get_max_ctl_power(ah, channel);
- /* FIXME: Tx power limit for this regdomain
- * XXX: Mac80211/CRDA will do that anyway ? */
-
/* FIXME: Antenna reduction stuff */
/* FIXME: Limit power on turbo modes */
#define AR5K_PHY_TURBO 0x9804 /* Register Address */
#define AR5K_PHY_TURBO_MODE 0x00000001 /* Enable turbo mode */
#define AR5K_PHY_TURBO_SHORT 0x00000002 /* Set short symbols to turbo mode */
-#define AR5K_PHY_TURBO_MIMO 0x00000004 /* Set turbo for mimo mimo */
+#define AR5K_PHY_TURBO_MIMO 0x00000004 /* Set turbo for mimo */
/*
* PHY agility command register
AR5K_QUEUE_DCU_SEQNUM(0));
}
- /* TSF accelerates on AR5211 durring reset
+ /* TSF accelerates on AR5211 during reset
* As a workaround save it here and restore
* it later so that it's back in time after
* reset. This way it'll get re-synced on the
return ret;
/* Spur info is available only from EEPROM versions
- * bigger than 5.3 but but the EEPOM routines will use
+ * greater than 5.3, but the EEPROM routines will use
* static values for older versions */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
ath5k_hw_set_spur_mitigation_filter(ah,
/* Set RSSI/BRSSI thresholds
*
* Note: If we decide to set this value
- * dynamicaly, have in mind that when AR5K_RSSI_THR
- * register is read it might return 0x40 if we haven't
- * wrote anything to it plus BMISS RSSI threshold is zeroed.
+ * dynamically, keep in mind that when AR5K_RSSI_THR
+ * register is read, it might return 0x40 if we haven't
+ * written anything to it. Also, BMISS RSSI threshold is zeroed.
* So doing a save/restore procedure here isn't the right
- * choice. Instead store it on ath5k_hw */
+ * choice. Instead, store it in ath5k_hw */
ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
AR5K_TUNE_BMISS_THRES <<
AR5K_RSSI_THR_BMISS_S),
/*
* Perform ADC test to see if baseband is ready
- * Set tx hold and check adc test register
+ * Set TX hold and check ADC test register
*/
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
*
* This method is used to calibrate some static offsets
* used together with on-the fly I/Q calibration (the
- * one performed via ath5k_hw_phy_calibrate), that doesn't
+ * one performed via ath5k_hw_phy_calibrate), which doesn't
* interrupt rx path.
*
* While rx path is re-routed to the power detector we also
- * start a noise floor calibration, to measure the
+ * start a noise floor calibration to measure the
* card's noise floor (the noise we measure when we are not
- * transmiting or receiving anything).
+ * transmitting or receiving anything).
*
- * If we are in a noisy environment AGC calibration may time
+ * If we are in a noisy environment, AGC calibration may time
* out and/or noise floor calibration might timeout.
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
*
* We don't write on those registers directly but
* we send a data packet on the chip, using a special register,
- * that holds all the settings we need. After we 've sent the
+ * that holds all the settings we need. After we've sent the
* data packet, we write on another special register to notify hw
* to apply the settings. This is done so that control registers
- * can be dynamicaly programmed during operation and the settings
+ * can be dynamically programmed during operation and the settings
* are applied faster on the hw.
*
* We call each data packet an "RF Bank" and all the data we write