* observed, or adjust the sending rate if it estimates there is a
* traffic policer, in order to keep the drop rate reasonable.
*
+ * Here is a state transition diagram for BBR:
+ *
+ * |
+ * V
+ * +---> STARTUP ----+
+ * | | |
+ * | V |
+ * | DRAIN ----+
+ * | | |
+ * | V |
+ * +---> PROBE_BW ----+
+ * | ^ | |
+ * | | | |
+ * | +----+ |
+ * | |
+ * +---- PROBE_RTT <--+
+ *
+ * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
+ * When it estimates the pipe is full, it enters DRAIN to drain the queue.
+ * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
+ * A long-lived BBR flow spends the vast majority of its time remaining
+ * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
+ * in a fair manner, with a small, bounded queue. *If* a flow has been
+ * continuously sending for the entire min_rtt window, and hasn't seen an RTT
+ * sample that matches or decreases its min_rtt estimate for 10 seconds, then
+ * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
+ * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
+ * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
+ * otherwise we enter STARTUP to try to fill the pipe.
+ *
* BBR is described in detail in:
* "BBR: Congestion-Based Congestion Control",
* Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
BBR_DRAIN, /* drain any queue created during startup */
BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
- BBR_PROBE_RTT, /* cut cwnd to min to probe min_rtt */
+ BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
};
/* BBR congestion control block */