crypto: mediatek - make hardware operation flow more efficient
authorRyder Lee <ryder.lee@mediatek.com>
Thu, 9 Mar 2017 02:11:19 +0000 (10:11 +0800)
committerHerbert Xu <herbert@gondor.apana.org.au>
Thu, 16 Mar 2017 09:58:57 +0000 (17:58 +0800)
This patch refines data structures, which are used to control engine's
data path, to make it more efficient. Hence current change are:

- gathers the broken pieces of structures 'mtk_aes_ct''mtk_aes_tfm'
into struct mtk_aes_info hence avoiding additional DMA-mapping.

- adds 'keymode' in struct mtk_aes_base_ctx. When .setkey() callback is
called, we store keybit setting in keymode. Doing so, there is no need
to check keylen second time in mtk_aes_info_init() / mtk_aes_gcm_info_init().

Besides, this patch also removes unused macro definitions and adds helper
inline function to write security information(key, IV,...) to info->state.

Signed-off-by: Ryder Lee <ryder.lee@mediatek.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
drivers/crypto/mediatek/mtk-aes.c
drivers/crypto/mediatek/mtk-sha.c

index 8f3efa581294e75038e25e7a11df9ab09393471c..9e845e866dec73a81f546f7956b88d3814f776ed 100644 (file)
 #define AES_BUF_ORDER          2
 #define AES_BUF_SIZE           ((PAGE_SIZE << AES_BUF_ORDER) \
                                & ~(AES_BLOCK_SIZE - 1))
+#define AES_MAX_STATE_BUF_SIZE SIZE_IN_WORDS(AES_KEYSIZE_256 + \
+                               AES_BLOCK_SIZE * 2)
+#define AES_MAX_CT_SIZE                6
 
-/* AES command token size */
-#define AES_CT_SIZE_ECB                2
-#define AES_CT_SIZE_CBC                3
-#define AES_CT_SIZE_CTR                3
-#define AES_CT_SIZE_GCM_OUT    5
-#define AES_CT_SIZE_GCM_IN     6
 #define AES_CT_CTRL_HDR                cpu_to_le32(0x00220000)
 
 /* AES-CBC/ECB/CTR command token */
@@ -50,6 +47,8 @@
 #define AES_TFM_128BITS                cpu_to_le32(0xb << 16)
 #define AES_TFM_192BITS                cpu_to_le32(0xd << 16)
 #define AES_TFM_256BITS                cpu_to_le32(0xf << 16)
+#define AES_TFM_GHASH_DIGEST   cpu_to_le32(0x2 << 21)
+#define AES_TFM_GHASH          cpu_to_le32(0x4 << 23)
 /* AES transform information word 1 fields */
 #define AES_TFM_ECB            cpu_to_le32(0x0 << 0)
 #define AES_TFM_CBC            cpu_to_le32(0x1 << 0)
 #define AES_TFM_FULL_IV                cpu_to_le32(0xf << 5)   /* using IV 0-3 */
 #define AES_TFM_IV_CTR_MODE    cpu_to_le32(0x1 << 10)
 #define AES_TFM_ENC_HASH       cpu_to_le32(0x1 << 17)
-#define AES_TFM_GHASH_DIG      cpu_to_le32(0x2 << 21)
-#define AES_TFM_GHASH          cpu_to_le32(0x4 << 23)
 
 /* AES flags */
+#define AES_FLAGS_CIPHER_MSK   GENMASK(2, 0)
 #define AES_FLAGS_ECB          BIT(0)
 #define AES_FLAGS_CBC          BIT(1)
 #define AES_FLAGS_CTR          BIT(2)
 #define AES_AUTH_TAG_ERR       cpu_to_le32(BIT(26))
 
 /**
- * Command token(CT) is a set of hardware instructions that
- * are used to control engine's processing flow of AES.
- *
- * Transform information(TFM) is used to define AES state and
- * contains all keys and initial vectors.
- *
- * The engine requires CT and TFM to do:
- * - Commands decoding and control of the engine's data path.
- * - Coordinating hardware data fetch and store operations.
- * - Result token construction and output.
+ * mtk_aes_info - hardware information of AES
+ * @cmd:       command token, hardware instruction
+ * @tfm:       transform state of cipher algorithm.
+ * @state:     contains keys and initial vectors.
  *
- * Memory map of GCM's TFM:
+ * Memory layout of GCM buffer:
  * /-----------\
  * |  AES KEY  | 128/196/256 bits
  * |-----------|
  * |-----------|
  * |    IVs    | 4 * 4 bytes
  * \-----------/
+ *
+ * The engine requires all these info to do:
+ * - Commands decoding and control of the engine's data path.
+ * - Coordinating hardware data fetch and store operations.
+ * - Result token construction and output.
  */
-struct mtk_aes_ct {
-       __le32 cmd[AES_CT_SIZE_GCM_IN];
-};
-
-struct mtk_aes_tfm {
-       __le32 ctrl[2];
-       __le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE * 2)];
+struct mtk_aes_info {
+       __le32 cmd[AES_MAX_CT_SIZE];
+       __le32 tfm[2];
+       __le32 state[AES_MAX_STATE_BUF_SIZE];
 };
 
 struct mtk_aes_reqctx {
@@ -109,11 +103,12 @@ struct mtk_aes_reqctx {
 struct mtk_aes_base_ctx {
        struct mtk_cryp *cryp;
        u32 keylen;
+       __le32 keymode;
+
        mtk_aes_fn start;
 
-       struct mtk_aes_ct ct;
+       struct mtk_aes_info info;
        dma_addr_t ct_dma;
-       struct mtk_aes_tfm tfm;
        dma_addr_t tfm_dma;
 
        __le32 ct_hdr;
@@ -250,6 +245,22 @@ static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
        sg->length += dma->remainder;
 }
 
+static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size)
+{
+       int i;
+
+       for (i = 0; i < SIZE_IN_WORDS(size); i++)
+               dst[i] = cpu_to_le32(src[i]);
+}
+
+static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size)
+{
+       int i;
+
+       for (i = 0; i < SIZE_IN_WORDS(size); i++)
+               dst[i] = cpu_to_be32(src[i]);
+}
+
 static inline int mtk_aes_complete(struct mtk_cryp *cryp,
                                   struct mtk_aes_rec *aes,
                                   int err)
@@ -331,9 +342,7 @@ static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
 {
        struct mtk_aes_base_ctx *ctx = aes->ctx;
 
-       dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
-                        DMA_TO_DEVICE);
-       dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
+       dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
                         DMA_TO_DEVICE);
 
        if (aes->src.sg == aes->dst.sg) {
@@ -364,16 +373,14 @@ static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
 static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
 {
        struct mtk_aes_base_ctx *ctx = aes->ctx;
+       struct mtk_aes_info *info = &ctx->info;
 
-       ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct),
+       ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
                                     DMA_TO_DEVICE);
        if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
                goto exit;
 
-       ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm),
-                                     DMA_TO_DEVICE);
-       if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma)))
-               goto tfm_map_err;
+       ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
 
        if (aes->src.sg == aes->dst.sg) {
                aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
@@ -400,11 +407,7 @@ static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
        return mtk_aes_xmit(cryp, aes);
 
 sg_map_err:
-       dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
-                        DMA_TO_DEVICE);
-tfm_map_err:
-       dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
-                        DMA_TO_DEVICE);
+       dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
 exit:
        return mtk_aes_complete(cryp, aes, -EINVAL);
 }
@@ -415,50 +418,43 @@ static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
 {
        struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
        struct mtk_aes_base_ctx *ctx = aes->ctx;
+       struct mtk_aes_info *info = &ctx->info;
+       u32 cnt = 0;
 
        ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
-       ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len);
-       ctx->ct.cmd[1] = AES_CMD1;
+       info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
+       info->cmd[cnt++] = AES_CMD1;
 
+       info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
        if (aes->flags & AES_FLAGS_ENCRYPT)
-               ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT;
+               info->tfm[0] |= AES_TFM_BASIC_OUT;
        else
-               ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN;
+               info->tfm[0] |= AES_TFM_BASIC_IN;
 
-       if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
-               ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
-       else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
-               ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
-       else
-               ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
-
-       if (aes->flags & AES_FLAGS_CBC) {
-               const u32 *iv = (const u32 *)req->info;
-               u32 *iv_state = ctx->tfm.state + ctx->keylen;
-               int i;
-
-               ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
-                                   SIZE_IN_WORDS(AES_BLOCK_SIZE));
-               ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV;
-
-               for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
-                       iv_state[i] = cpu_to_le32(iv[i]);
-
-               ctx->ct.cmd[2] = AES_CMD2;
-               ctx->ct_size = AES_CT_SIZE_CBC;
-       } else if (aes->flags & AES_FLAGS_ECB) {
-               ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen);
-               ctx->tfm.ctrl[1] = AES_TFM_ECB;
-
-               ctx->ct_size = AES_CT_SIZE_ECB;
-       } else if (aes->flags & AES_FLAGS_CTR) {
-               ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
-                                   SIZE_IN_WORDS(AES_BLOCK_SIZE));
-               ctx->tfm.ctrl[1] = AES_TFM_CTR_LOAD | AES_TFM_FULL_IV;
-
-               ctx->ct.cmd[2] = AES_CMD2;
-               ctx->ct_size = AES_CT_SIZE_CTR;
+       switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
+       case AES_FLAGS_CBC:
+               info->tfm[1] = AES_TFM_CBC;
+               break;
+       case AES_FLAGS_ECB:
+               info->tfm[1] = AES_TFM_ECB;
+               goto ecb;
+       case AES_FLAGS_CTR:
+               info->tfm[1] = AES_TFM_CTR_LOAD;
+               goto ctr;
+
+       default:
+               /* Should not happen... */
+               return;
        }
+
+       mtk_aes_write_state_le(info->state + ctx->keylen, req->info,
+                              AES_BLOCK_SIZE);
+ctr:
+       info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE));
+       info->tfm[1] |= AES_TFM_FULL_IV;
+       info->cmd[cnt++] = AES_CMD2;
+ecb:
+       ctx->ct_size = cnt;
 }
 
 static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
@@ -572,8 +568,7 @@ static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
        struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
        struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
        struct scatterlist *src, *dst;
-       int i;
-       u32 start, end, ctr, blocks, *iv_state;
+       u32 start, end, ctr, blocks;
        size_t datalen;
        bool fragmented = false;
 
@@ -602,9 +597,8 @@ static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
               scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
 
        /* Write IVs into transform state buffer. */
-       iv_state = ctx->tfm.state + ctx->keylen;
-       for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
-               iv_state[i] = cpu_to_le32(cctx->iv[i]);
+       mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv,
+                              AES_BLOCK_SIZE);
 
        if (unlikely(fragmented)) {
        /*
@@ -639,21 +633,25 @@ static int mtk_aes_setkey(struct crypto_ablkcipher *tfm,
                          const u8 *key, u32 keylen)
 {
        struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
-       const u32 *aes_key = (const u32 *)key;
-       u32 *key_state = ctx->tfm.state;
-       int i;
 
-       if (keylen != AES_KEYSIZE_128 &&
-           keylen != AES_KEYSIZE_192 &&
-           keylen != AES_KEYSIZE_256) {
+       switch (keylen) {
+       case AES_KEYSIZE_128:
+               ctx->keymode = AES_TFM_128BITS;
+               break;
+       case AES_KEYSIZE_192:
+               ctx->keymode = AES_TFM_192BITS;
+               break;
+       case AES_KEYSIZE_256:
+               ctx->keymode = AES_TFM_256BITS;
+               break;
+
+       default:
                crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
                return -EINVAL;
        }
 
        ctx->keylen = SIZE_IN_WORDS(keylen);
-
-       for (i = 0; i < ctx->keylen; i++)
-               key_state[i] = cpu_to_le32(aes_key[i]);
+       mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen);
 
        return 0;
 }
@@ -825,45 +823,35 @@ static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
        struct aead_request *req = aead_request_cast(aes->areq);
        struct mtk_aes_base_ctx *ctx = aes->ctx;
        struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
-       const u32 *iv = (const u32 *)req->iv;
-       u32 *iv_state = ctx->tfm.state + ctx->keylen +
-                       SIZE_IN_WORDS(AES_BLOCK_SIZE);
+       struct mtk_aes_info *info = &ctx->info;
        u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
-       int i;
+       u32 cnt = 0;
 
        ctx->ct_hdr = AES_CT_CTRL_HDR | len;
 
-       ctx->ct.cmd[0] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
-       ctx->ct.cmd[1] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
-       ctx->ct.cmd[2] = AES_GCM_CMD2;
-       ctx->ct.cmd[3] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
+       info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
+       info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
+       info->cmd[cnt++] = AES_GCM_CMD2;
+       info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
 
        if (aes->flags & AES_FLAGS_ENCRYPT) {
-               ctx->ct.cmd[4] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
-               ctx->ct_size = AES_CT_SIZE_GCM_OUT;
-               ctx->tfm.ctrl[0] = AES_TFM_GCM_OUT;
+               info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
+               info->tfm[0] = AES_TFM_GCM_OUT;
        } else {
-               ctx->ct.cmd[4] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
-               ctx->ct.cmd[5] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
-               ctx->ct_size = AES_CT_SIZE_GCM_IN;
-               ctx->tfm.ctrl[0] = AES_TFM_GCM_IN;
+               info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
+               info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
+               info->tfm[0] = AES_TFM_GCM_IN;
        }
+       ctx->ct_size = cnt;
 
-       if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
-               ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
-       else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
-               ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
-       else
-               ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
-
-       ctx->tfm.ctrl[0] |= AES_TFM_GHASH_DIG | AES_TFM_GHASH |
-                           AES_TFM_SIZE(ctx->keylen + SIZE_IN_WORDS(
-                           AES_BLOCK_SIZE + ivsize));
-       ctx->tfm.ctrl[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE |
-                          AES_TFM_3IV | AES_TFM_ENC_HASH;
+       info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
+                       ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
+                       ctx->keymode;
+       info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
+                      AES_TFM_ENC_HASH;
 
-       for (i = 0; i < SIZE_IN_WORDS(ivsize); i++)
-               iv_state[i] = cpu_to_le32(iv[i]);
+       mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS(
+                              AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize);
 }
 
 static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
@@ -979,24 +967,26 @@ static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
                struct scatterlist sg[1];
                struct skcipher_request req;
        } *data;
-       const u32 *aes_key;
-       u32 *key_state, *hash_state;
-       int err, i;
+       int err;
 
-       if (keylen != AES_KEYSIZE_256 &&
-           keylen != AES_KEYSIZE_192 &&
-           keylen != AES_KEYSIZE_128) {
+       switch (keylen) {
+       case AES_KEYSIZE_128:
+               ctx->keymode = AES_TFM_128BITS;
+               break;
+       case AES_KEYSIZE_192:
+               ctx->keymode = AES_TFM_192BITS;
+               break;
+       case AES_KEYSIZE_256:
+               ctx->keymode = AES_TFM_256BITS;
+               break;
+
+       default:
                crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
                return -EINVAL;
        }
 
-       key_state = ctx->tfm.state;
-       aes_key = (u32 *)key;
        ctx->keylen = SIZE_IN_WORDS(keylen);
 
-       for (i = 0; i < ctx->keylen; i++)
-               ctx->tfm.state[i] = cpu_to_le32(aes_key[i]);
-
        /* Same as crypto_gcm_setkey() from crypto/gcm.c */
        crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
        crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
@@ -1031,10 +1021,11 @@ static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
        if (err)
                goto out;
 
-       hash_state = key_state + ctx->keylen;
-
-       for (i = 0; i < 4; i++)
-               hash_state[i] = cpu_to_be32(data->hash[i]);
+       /* Write key into state buffer */
+       mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen);
+       /* Write key(H) into state buffer */
+       mtk_aes_write_state_be(ctx->info.state + ctx->keylen, data->hash,
+                              AES_BLOCK_SIZE);
 out:
        kzfree(data);
        return err;
index dd3582b6a1a51da6cc0ac98f2538657690c23f84..2226f12d1c7afa531a84af8d16a2338196c68010 100644 (file)
@@ -23,6 +23,7 @@
 #define SHA_OP_FINAL           2
 
 #define SHA_DATA_LEN_MSK       cpu_to_le32(GENMASK(16, 0))
+#define SHA_MAX_DIGEST_BUF_SIZE        32
 
 /* SHA command token */
 #define SHA_CT_SIZE            5
@@ -33,7 +34,6 @@
 
 /* SHA transform information */
 #define SHA_TFM_HASH           cpu_to_le32(0x2 << 0)
-#define SHA_TFM_INNER_DIG      cpu_to_le32(0x1 << 21)
 #define SHA_TFM_SIZE(x)                cpu_to_le32((x) << 8)
 #define SHA_TFM_START          cpu_to_le32(0x1 << 4)
 #define SHA_TFM_CONTINUE       cpu_to_le32(0x1 << 5)
 #define SHA_FLAGS_PAD          BIT(10)
 
 /**
- * mtk_sha_ct is a set of hardware instructions(command token)
- * that are used to control engine's processing flow of SHA,
- * and it contains the first two words of transform state.
+ * mtk_sha_info - hardware information of AES
+ * @cmd:       command token, hardware instruction
+ * @tfm:       transform state of cipher algorithm.
+ * @state:     contains keys and initial vectors.
+ *
  */
-struct mtk_sha_ct {
+struct mtk_sha_info {
        __le32 ctrl[2];
        __le32 cmd[3];
-};
-
-/**
- * mtk_sha_tfm is used to define SHA transform state
- * and store result digest that produced by engine.
- */
-struct mtk_sha_tfm {
-       __le32 ctrl[2];
-       __le32 digest[SIZE_IN_WORDS(SHA512_DIGEST_SIZE)];
-};
-
-/**
- * mtk_sha_info consists of command token and transform state
- * of SHA, its role is similar to mtk_aes_info.
- */
-struct mtk_sha_info {
-       struct mtk_sha_ct ct;
-       struct mtk_sha_tfm tfm;
+       __le32 tfm[2];
+       __le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
 };
 
 struct mtk_sha_reqctx {
@@ -93,7 +79,6 @@ struct mtk_sha_reqctx {
        unsigned long op;
 
        u64 digcnt;
-       bool start;
        size_t bufcnt;
        dma_addr_t dma_addr;
 
@@ -265,7 +250,9 @@ static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
        bits[1] = cpu_to_be64(size << 3);
        bits[0] = cpu_to_be64(size >> 61);
 
-       if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
+       switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
+       case SHA_FLAGS_SHA384:
+       case SHA_FLAGS_SHA512:
                index = ctx->bufcnt & 0x7f;
                padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
                *(ctx->buffer + ctx->bufcnt) = 0x80;
@@ -273,7 +260,9 @@ static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
                memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
                ctx->bufcnt += padlen + 16;
                ctx->flags |= SHA_FLAGS_PAD;
-       } else {
+               break;
+
+       default:
                index = ctx->bufcnt & 0x3f;
                padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
                *(ctx->buffer + ctx->bufcnt) = 0x80;
@@ -281,36 +270,35 @@ static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
                memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
                ctx->bufcnt += padlen + 8;
                ctx->flags |= SHA_FLAGS_PAD;
+               break;
        }
 }
 
 /* Initialize basic transform information of SHA */
 static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
 {
-       struct mtk_sha_ct *ct = &ctx->info.ct;
-       struct mtk_sha_tfm *tfm = &ctx->info.tfm;
+       struct mtk_sha_info *info = &ctx->info;
 
        ctx->ct_hdr = SHA_CT_CTRL_HDR;
        ctx->ct_size = SHA_CT_SIZE;
 
-       tfm->ctrl[0] = SHA_TFM_HASH | SHA_TFM_INNER_DIG |
-                      SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
+       info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
 
        switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
        case SHA_FLAGS_SHA1:
-               tfm->ctrl[0] |= SHA_TFM_SHA1;
+               info->tfm[0] |= SHA_TFM_SHA1;
                break;
        case SHA_FLAGS_SHA224:
-               tfm->ctrl[0] |= SHA_TFM_SHA224;
+               info->tfm[0] |= SHA_TFM_SHA224;
                break;
        case SHA_FLAGS_SHA256:
-               tfm->ctrl[0] |= SHA_TFM_SHA256;
+               info->tfm[0] |= SHA_TFM_SHA256;
                break;
        case SHA_FLAGS_SHA384:
-               tfm->ctrl[0] |= SHA_TFM_SHA384;
+               info->tfm[0] |= SHA_TFM_SHA384;
                break;
        case SHA_FLAGS_SHA512:
-               tfm->ctrl[0] |= SHA_TFM_SHA512;
+               info->tfm[0] |= SHA_TFM_SHA512;
                break;
 
        default:
@@ -318,13 +306,13 @@ static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
                return;
        }
 
-       tfm->ctrl[1] = SHA_TFM_HASH_STORE;
-       ct->ctrl[0] = tfm->ctrl[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
-       ct->ctrl[1] = tfm->ctrl[1];
+       info->tfm[1] = SHA_TFM_HASH_STORE;
+       info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
+       info->ctrl[1] = info->tfm[1];
 
-       ct->cmd[0] = SHA_CMD0;
-       ct->cmd[1] = SHA_CMD1;
-       ct->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
+       info->cmd[0] = SHA_CMD0;
+       info->cmd[1] = SHA_CMD1;
+       info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
 }
 
 /*
@@ -337,17 +325,15 @@ static int mtk_sha_info_update(struct mtk_cryp *cryp,
 {
        struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
        struct mtk_sha_info *info = &ctx->info;
-       struct mtk_sha_ct *ct = &info->ct;
-
-       if (ctx->start)
-               ctx->start = false;
-       else
-               ct->ctrl[0] &= ~SHA_TFM_START;
 
        ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
        ctx->ct_hdr |= cpu_to_le32(len1 + len2);
-       ct->cmd[0] &= ~SHA_DATA_LEN_MSK;
-       ct->cmd[0] |= cpu_to_le32(len1 + len2);
+       info->cmd[0] &= ~SHA_DATA_LEN_MSK;
+       info->cmd[0] |= cpu_to_le32(len1 + len2);
+
+       /* Setting SHA_TFM_START only for the first iteration */
+       if (ctx->digcnt)
+               info->ctrl[0] &= ~SHA_TFM_START;
 
        ctx->digcnt += len1;
 
@@ -357,7 +343,8 @@ static int mtk_sha_info_update(struct mtk_cryp *cryp,
                dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
                return -EINVAL;
        }
-       ctx->tfm_dma = ctx->ct_dma + sizeof(*ct);
+
+       ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
 
        return 0;
 }
@@ -422,7 +409,6 @@ static int mtk_sha_init(struct ahash_request *req)
        ctx->bufcnt = 0;
        ctx->digcnt = 0;
        ctx->buffer = tctx->buf;
-       ctx->start = true;
 
        if (tctx->flags & SHA_FLAGS_HMAC) {
                struct mtk_sha_hmac_ctx *bctx = tctx->base;
@@ -635,7 +621,7 @@ static int mtk_sha_final_req(struct mtk_cryp *cryp,
 static int mtk_sha_finish(struct ahash_request *req)
 {
        struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
-       u32 *digest = ctx->info.tfm.digest;
+       __le32 *digest = ctx->info.digest;
        u32 *result = (u32 *)req->result;
        int i;