if (IS_ERR(handle))
return PTR_ERR(handle);
- lock_super(sb);
+ mutex_lock(&sbi->s_resize_lock);
if (input->group != sbi->s_groups_count) {
err = -EBUSY;
goto exit_journal;
brelse(bh);
exit_journal:
- unlock_super(sb);
+ mutex_unlock(&sbi->s_resize_lock);
if ((err2 = ext3_journal_stop(handle)) && !err)
err = err2;
* important part is that the new block and inode counts are in the backup
* superblocks, and the location of the new group metadata in the GDT backups.
*
- * We do not need lock_super() for this, because these blocks are not
- * otherwise touched by the filesystem code when it is mounted. We don't
- * need to worry about last changing from sbi->s_groups_count, because the
- * worst that can happen is that we do not copy the full number of backups
- * at this time. The resize which changed s_groups_count will backup again.
+ * We do not need take the s_resize_lock for this, because these
+ * blocks are not otherwise touched by the filesystem code when it is
+ * mounted. We don't need to worry about last changing from
+ * sbi->s_groups_count, because the worst that can happen is that we
+ * do not copy the full number of backups at this time. The resize
+ * which changed s_groups_count will backup again.
*/
static void update_backups(struct super_block *sb,
int blk_off, char *data, int size)
goto exit_put;
}
- lock_super(sb);
+ mutex_lock(&sbi->s_resize_lock);
if (input->group != sbi->s_groups_count) {
ext3_warning(sb, __func__,
"multiple resizers run on filesystem!");
/*
* OK, now we've set up the new group. Time to make it active.
*
- * Current kernels don't lock all allocations via lock_super(),
+ * We do not lock all allocations via s_resize_lock
* so we have to be safe wrt. concurrent accesses the group
* data. So we need to be careful to set all of the relevant
* group descriptor data etc. *before* we enable the group.
*
* The precise rules we use are:
*
- * * Writers of s_groups_count *must* hold lock_super
+ * * Writers of s_groups_count *must* hold s_resize_lock
* AND
* * Writers must perform a smp_wmb() after updating all dependent
* data and before modifying the groups count
*
- * * Readers must hold lock_super() over the access
+ * * Readers must hold s_resize_lock over the access
* OR
* * Readers must perform an smp_rmb() after reading the groups count
* and before reading any dependent data.
ext3_journal_dirty_metadata(handle, sbi->s_sbh);
exit_journal:
- unlock_super(sb);
+ mutex_unlock(&sbi->s_resize_lock);
if ((err2 = ext3_journal_stop(handle)) && !err)
err = err2;
if (!err) {
/* We don't need to worry about locking wrt other resizers just
* yet: we're going to revalidate es->s_blocks_count after
- * taking lock_super() below. */
+ * taking the s_resize_lock below. */
o_blocks_count = le32_to_cpu(es->s_blocks_count);
o_groups_count = EXT3_SB(sb)->s_groups_count;
goto exit_put;
}
- lock_super(sb);
+ mutex_lock(&EXT3_SB(sb)->s_resize_lock);
if (o_blocks_count != le32_to_cpu(es->s_blocks_count)) {
ext3_warning(sb, __func__,
"multiple resizers run on filesystem!");
- unlock_super(sb);
+ mutex_unlock(&EXT3_SB(sb)->s_resize_lock);
ext3_journal_stop(handle);
err = -EBUSY;
goto exit_put;
EXT3_SB(sb)->s_sbh))) {
ext3_warning(sb, __func__,
"error %d on journal write access", err);
- unlock_super(sb);
+ mutex_unlock(&EXT3_SB(sb)->s_resize_lock);
ext3_journal_stop(handle);
goto exit_put;
}
es->s_blocks_count = cpu_to_le32(o_blocks_count + add);
ext3_journal_dirty_metadata(handle, EXT3_SB(sb)->s_sbh);
- unlock_super(sb);
+ mutex_unlock(&EXT3_SB(sb)->s_resize_lock);
ext3_debug("freeing blocks %lu through "E3FSBLK"\n", o_blocks_count,
o_blocks_count + add);
ext3_free_blocks_sb(handle, sb, o_blocks_count, add, &freed_blocks);