#ifndef _ASM_X86_FPU_API_H
#define _ASM_X86_FPU_API_H
-#include <linux/sched.h>
#include <linux/hardirq.h>
-struct pt_regs;
-struct user_i387_struct;
-
-extern int fpstate_alloc_init(struct fpu *fpu);
-extern void fpstate_init(struct fpu *fpu);
-extern void fpu__clear(struct task_struct *tsk);
-
-extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
-extern void fpu__restore(void);
-extern void fpu__init_check_bugs(void);
-extern void fpu__resume_cpu(void);
-
-extern bool irq_fpu_usable(void);
-
/*
* Careful: __kernel_fpu_begin/end() must be called with preempt disabled
* and they don't touch the preempt state on their own.
extern void __kernel_fpu_end(void);
extern void kernel_fpu_begin(void);
extern void kernel_fpu_end(void);
+extern bool irq_fpu_usable(void);
/*
* Some instructions like VIA's padlock instructions generate a spurious
stts();
}
-/*
- * The question "does this thread have fpu access?"
- * is slightly racy, since preemption could come in
- * and revoke it immediately after the test.
- *
- * However, even in that very unlikely scenario,
- * we can just assume we have FPU access - typically
- * to save the FP state - we'll just take a #NM
- * fault and get the FPU access back.
- */
-static inline int user_has_fpu(void)
-{
- return current->thread.fpu.fpregs_active;
-}
-
#endif /* _ASM_X86_FPU_API_H */
#include <linux/regset.h>
#include <linux/compat.h>
+#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/user.h>
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
+extern int fpstate_alloc_init(struct fpu *fpu);
+extern void fpstate_init(struct fpu *fpu);
+extern void fpu__clear(struct task_struct *tsk);
+
+extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
+extern void fpu__restore(void);
+extern void fpu__init_check_bugs(void);
+extern void fpu__resume_cpu(void);
+
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
this_cpu_write(fpu_fpregs_owner_ctx, fpu);
}
+/*
+ * The question "does this thread have fpu access?"
+ * is slightly racy, since preemption could come in
+ * and revoke it immediately after the test.
+ *
+ * However, even in that very unlikely scenario,
+ * we can just assume we have FPU access - typically
+ * to save the FP state - we'll just take a #NM
+ * fault and get the FPU access back.
+ */
+static inline int user_has_fpu(void)
+{
+ return current->thread.fpu.fpregs_active;
+}
+
/*
* Encapsulate the CR0.TS handling together with the
* software flag.
#include <asm/processor.h>
#include <asm/percpu.h>
#include <asm/desc.h>
+
#include <linux/random.h>
+#include <linux/sched.h>
/*
* 24 byte read-only segment initializer for stack canary. Linker
#include <asm/bugs.h>
#include <asm/processor.h>
#include <asm/processor-flags.h>
-#include <asm/fpu/api.h>
+#include <asm/fpu/internal.h>
#include <asm/msr.h>
#include <asm/paravirt.h>
#include <asm/alternative.h>
#include <asm/vmx.h>
#include <asm/virtext.h>
#include <asm/mce.h>
-#include <asm/fpu/api.h>
+#include <asm/fpu/internal.h>
#include <asm/xcr.h>
#include <asm/perf_event.h>
#include <asm/debugreg.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/user.h>
-#include <asm/fpu/api.h>
+#include <asm/fpu/internal.h>
#include "fpu_system.h"
#include "fpu_emu.h"
#include <asm/page.h>
#include <asm/mce.h>
#include <asm/suspend.h>
+#include <asm/fpu/internal.h>
#include <asm/debugreg.h>
#include <asm/cpu.h>
#include <asm/setup.h>
#include <asm/lguest.h>
#include <asm/uaccess.h>
-#include <asm/fpu/api.h>
+#include <asm/fpu/internal.h>
#include <asm/tlbflush.h>
#include "../lg.h"