struct xlog *log = mp->m_log;
int needed = 0;
- if (!xfs_fs_writable(mp))
+ if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
return 0;
if (!xlog_cil_empty(log))
xfs_sysfs_del(&mp->m_kobj);
}
-int
-xfs_fs_writable(xfs_mount_t *mp)
+/*
+ * Determine whether modifications can proceed. The caller specifies the minimum
+ * freeze level for which modifications should not be allowed. This allows
+ * certain operations to proceed while the freeze sequence is in progress, if
+ * necessary.
+ */
+bool
+xfs_fs_writable(
+ struct xfs_mount *mp,
+ int level)
{
- return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
- (mp->m_flags & XFS_MOUNT_RDONLY));
+ ASSERT(level > SB_UNFROZEN);
+ if ((mp->m_super->s_writers.frozen >= level) ||
+ XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
+ return false;
+
+ return true;
}
/*
*
* Sync the superblock counters to disk.
*
- * Note this code can be called during the process of freezing, so
- * we may need to use the transaction allocator which does not
- * block when the transaction subsystem is in its frozen state.
+ * Note this code can be called during the process of freezing, so we use the
+ * transaction allocator that does not block when the transaction subsystem is
+ * in its frozen state.
*/
int
xfs_log_sbcount(xfs_mount_t *mp)
xfs_trans_t *tp;
int error;
- if (!xfs_fs_writable(mp))
+ /* allow this to proceed during the freeze sequence... */
+ if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
return 0;
xfs_icsb_sync_counters(mp, 0);
extern struct xfs_buf *xfs_getsb(xfs_mount_t *, int);
extern int xfs_readsb(xfs_mount_t *, int);
extern void xfs_freesb(xfs_mount_t *);
-extern int xfs_fs_writable(xfs_mount_t *);
+extern bool xfs_fs_writable(struct xfs_mount *mp, int level);
extern int xfs_sb_validate_fsb_count(struct xfs_sb *, __uint64_t);
extern int xfs_dev_is_read_only(struct xfs_mount *, char *);