return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}
-static long __init_memblock memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
- phys_addr_t base2, phys_addr_t size2)
-{
- if (base2 == base1 + size1)
- return 1;
- else if (base1 == base2 + size2)
- return -1;
-
- return 0;
-}
-
-static long __init_memblock memblock_regions_adjacent(struct memblock_type *type,
- unsigned long r1, unsigned long r2)
-{
- phys_addr_t base1 = type->regions[r1].base;
- phys_addr_t size1 = type->regions[r1].size;
- phys_addr_t base2 = type->regions[r2].base;
- phys_addr_t size2 = type->regions[r2].size;
-
- return memblock_addrs_adjacent(base1, size1, base2, size2);
-}
-
long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
{
unsigned long i;
type->regions[i].size = type->regions[i + 1].size;
}
type->cnt--;
-}
-/* Assumption: base addr of region 1 < base addr of region 2 */
-static void __init_memblock memblock_coalesce_regions(struct memblock_type *type,
- unsigned long r1, unsigned long r2)
-{
- type->regions[r1].size += type->regions[r2].size;
- memblock_remove_region(type, r2);
+ /* Special case for empty arrays */
+ if (type->cnt == 0) {
+ type->cnt = 1;
+ type->regions[0].base = 0;
+ type->regions[0].size = 0;
+ }
}
/* Defined below but needed now */
return 0;
/* Add the new reserved region now. Should not fail ! */
- BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0);
+ BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
/* If the array wasn't our static init one, then free it. We only do
* that before SLAB is available as later on, we don't know whether
return 1;
}
-static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
+static long __init_memblock memblock_add_region(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
{
- unsigned long coalesced = 0;
- long adjacent, i;
-
- if ((type->cnt == 1) && (type->regions[0].size == 0)) {
- type->regions[0].base = base;
- type->regions[0].size = size;
- return 0;
- }
+ phys_addr_t end = base + size;
+ int i, slot = -1;
- /* First try and coalesce this MEMBLOCK with another. */
+ /* First try and coalesce this MEMBLOCK with others */
for (i = 0; i < type->cnt; i++) {
- phys_addr_t rgnbase = type->regions[i].base;
- phys_addr_t rgnsize = type->regions[i].size;
+ struct memblock_region *rgn = &type->regions[i];
+ phys_addr_t rend = rgn->base + rgn->size;
+
+ /* Exit if there's no possible hits */
+ if (rgn->base > end || rgn->size == 0)
+ break;
- if ((rgnbase == base) && (rgnsize == size))
- /* Already have this region, so we're done */
+ /* Check if we are fully enclosed within an existing
+ * block
+ */
+ if (rgn->base <= base && rend >= end)
return 0;
- adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
- /* Check if arch allows coalescing */
- if (adjacent != 0 && type == &memblock.memory &&
- !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize))
- break;
- if (adjacent > 0) {
- type->regions[i].base -= size;
- type->regions[i].size += size;
- coalesced++;
- break;
- } else if (adjacent < 0) {
- type->regions[i].size += size;
- coalesced++;
- break;
+ /* Check if we overlap or are adjacent with the bottom
+ * of a block.
+ */
+ if (base < rgn->base && end >= rgn->base) {
+ /* If we can't coalesce, create a new block */
+ if (!memblock_memory_can_coalesce(base, size,
+ rgn->base,
+ rgn->size)) {
+ /* Overlap & can't coalesce are mutually
+ * exclusive, if you do that, be prepared
+ * for trouble
+ */
+ WARN_ON(end != rgn->base);
+ goto new_block;
+ }
+ /* We extend the bottom of the block down to our
+ * base
+ */
+ rgn->base = base;
+ rgn->size = rend - base;
+
+ /* Return if we have nothing else to allocate
+ * (fully coalesced)
+ */
+ if (rend >= end)
+ return 0;
+
+ /* We continue processing from the end of the
+ * coalesced block.
+ */
+ base = rend;
+ size = end - base;
+ }
+
+ /* Now check if we overlap or are adjacent with the
+ * top of a block
+ */
+ if (base <= rend && end >= rend) {
+ /* If we can't coalesce, create a new block */
+ if (!memblock_memory_can_coalesce(rgn->base,
+ rgn->size,
+ base, size)) {
+ /* Overlap & can't coalesce are mutually
+ * exclusive, if you do that, be prepared
+ * for trouble
+ */
+ WARN_ON(rend != base);
+ goto new_block;
+ }
+ /* We adjust our base down to enclose the
+ * original block and destroy it. It will be
+ * part of our new allocation. Since we've
+ * freed an entry, we know we won't fail
+ * to allocate one later, so we won't risk
+ * losing the original block allocation.
+ */
+ size += (base - rgn->base);
+ base = rgn->base;
+ memblock_remove_region(type, i--);
}
}
- /* If we plugged a hole, we may want to also coalesce with the
- * next region
+ /* If the array is empty, special case, replace the fake
+ * filler region and return
*/
- if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) &&
- ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base,
- type->regions[i].size,
- type->regions[i+1].base,
- type->regions[i+1].size)))) {
- memblock_coalesce_regions(type, i, i+1);
- coalesced++;
+ if ((type->cnt == 1) && (type->regions[0].size == 0)) {
+ type->regions[0].base = base;
+ type->regions[0].size = size;
+ return 0;
}
- if (coalesced)
- return coalesced;
-
+ new_block:
/* If we are out of space, we fail. It's too late to resize the array
* but then this shouldn't have happened in the first place.
*/
} else {
type->regions[i+1].base = base;
type->regions[i+1].size = size;
+ slot = i + 1;
break;
}
}
-
if (base < type->regions[0].base) {
type->regions[0].base = base;
type->regions[0].size = size;
+ slot = 0;
}
type->cnt++;
* our allocation and return an error
*/
if (type->cnt == type->max && memblock_double_array(type)) {
- type->cnt--;
+ BUG_ON(slot < 0);
+ memblock_remove_region(type, slot);
return -1;
}
}
-static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
+static long __init_memblock __memblock_remove(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
{
- phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size;
int i;
- rgnbegin = rgnend = 0; /* supress gcc warnings */
-
- /* Find the region where (base, size) belongs to */
- for (i=0; i < type->cnt; i++) {
- rgnbegin = type->regions[i].base;
- rgnend = rgnbegin + type->regions[i].size;
+ /* Walk through the array for collisions */
+ for (i = 0; i < type->cnt; i++) {
+ struct memblock_region *rgn = &type->regions[i];
+ phys_addr_t rend = rgn->base + rgn->size;
- if ((rgnbegin <= base) && (end <= rgnend))
+ /* Nothing more to do, exit */
+ if (rgn->base > end || rgn->size == 0)
break;
- }
- /* Didn't find the region */
- if (i == type->cnt)
- return -1;
+ /* If we fully enclose the block, drop it */
+ if (base <= rgn->base && end >= rend) {
+ memblock_remove_region(type, i--);
+ continue;
+ }
- /* Check to see if we are removing entire region */
- if ((rgnbegin == base) && (rgnend == end)) {
- memblock_remove_region(type, i);
- return 0;
- }
+ /* If we are fully enclosed within a block
+ * then we need to split it and we are done
+ */
+ if (base > rgn->base && end < rend) {
+ rgn->size = base - rgn->base;
+ if (!memblock_add_region(type, end, rend - end))
+ return 0;
+ /* Failure to split is bad, we at least
+ * restore the block before erroring
+ */
+ rgn->size = rend - rgn->base;
+ WARN_ON(1);
+ return -1;
+ }
- /* Check to see if region is matching at the front */
- if (rgnbegin == base) {
- type->regions[i].base = end;
- type->regions[i].size -= size;
- return 0;
- }
+ /* Check if we need to trim the bottom of a block */
+ if (rgn->base < end && rend > end) {
+ rgn->size -= end - rgn->base;
+ rgn->base = end;
+ break;
+ }
- /* Check to see if the region is matching at the end */
- if (rgnend == end) {
- type->regions[i].size -= size;
- return 0;
- }
+ /* And check if we need to trim the top of a block */
+ if (base < rend)
+ rgn->size -= rend - base;
- /*
- * We need to split the entry - adjust the current one to the
- * beginging of the hole and add the region after hole.
- */
- type->regions[i].size = base - type->regions[i].base;
- return memblock_add_region(type, end, rgnend - end);
+ }
+ return 0;
}
long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
found = memblock_find_base(size, align, 0, max_addr);
if (found != MEMBLOCK_ERROR &&
- memblock_add_region(&memblock.reserved, found, size) >= 0)
+ !memblock_add_region(&memblock.reserved, found, size))
return found;
return 0;
if (this_nid == nid) {
phys_addr_t ret = memblock_find_region(start, this_end, size, align);
if (ret != MEMBLOCK_ERROR &&
- memblock_add_region(&memblock.reserved, ret, size) >= 0)
+ !memblock_add_region(&memblock.reserved, ret, size))
return ret;
}
start = this_end;