struct s626_private {
void __iomem *mmio;
- uint8_t ai_cmd_running; /* ai_cmd is running */
- uint8_t ai_continous; /* continous acquisition */
- int ai_sample_count; /* number of samples to acquire */
- unsigned int ai_sample_timer;
- /* time between samples in units of the timer */
- int ai_convert_count; /* conversion counter */
- unsigned int ai_convert_timer;
- /* time between conversion in units of the timer */
- uint16_t CounterIntEnabs;
- /* Counter interrupt enable mask for MISC2 register. */
- uint8_t AdcItems; /* Number of items in ADC poll list. */
- struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
- struct bufferDMA ANABuf;
- /* DMA buffer used to receive ADC data and hold DAC data. */
- uint32_t *pDacWBuf;
- /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
- uint16_t Dacpol; /* Image of DAC polarity register. */
- uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
- /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
- uint32_t I2CAdrs;
- /* I2C device address for onboard EEPROM (board rev dependent). */
- /* short I2Cards; */
+ uint8_t ai_cmd_running; /* ai_cmd is running */
+ uint8_t ai_continous; /* continuous acquisition */
+ int ai_sample_count; /* number of samples to acquire */
+ unsigned int ai_sample_timer; /* time between samples in
+ * units of the timer */
+ int ai_convert_count; /* conversion counter */
+ unsigned int ai_convert_timer; /* time between conversion in
+ * units of the timer */
+ uint16_t CounterIntEnabs; /* counter interrupt enable mask
+ * for MISC2 register */
+ uint8_t AdcItems; /* number of items in ADC poll list */
+ struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1)
+ * program */
+ struct bufferDMA ANABuf; /* DMA buffer used to receive ADC data
+ * and hold DAC data */
+ uint32_t *pDacWBuf; /* pointer to logical adrs of DMA buffer
+ * used to hold DAC data */
+ uint16_t Dacpol; /* image of DAC polarity register */
+ uint8_t TrimSetpoint[12]; /* images of TrimDAC setpoints */
+ uint32_t I2CAdrs; /* I2C device address for onboard EEPROM
+ * (board rev dependent) */
unsigned int ao_readback[S626_DAC_CHANNELS];
};
-/* COUNTER OBJECT ------------------------------------------------ */
+/* COUNTER OBJECT ------------------------------------------------ */
struct enc_private {
- /* Pointers to functions that differ for A and B counters: */
- uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */
- uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */
- uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */
- uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */
- void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */
- void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
- void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
- void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
- void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
- void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */
-
- uint16_t MyCRA; /* Address of CRA register. */
- uint16_t MyCRB; /* Address of CRB register. */
- uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
- /* register. */
- uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
+ /* Pointers to functions that differ for A and B counters: */
+ /* Return clock enable. */
+ uint16_t(*GetEnable)(struct comedi_device *dev, struct enc_private *);
+ /* Return interrupt source. */
+ uint16_t(*GetIntSrc)(struct comedi_device *dev, struct enc_private *);
+ /* Return preload trigger source. */
+ uint16_t(*GetLoadTrig)(struct comedi_device *dev, struct enc_private *);
+ /* Return standardized operating mode. */
+ uint16_t(*GetMode)(struct comedi_device *dev, struct enc_private *);
+ /* Generate soft index strobe. */
+ void (*PulseIndex)(struct comedi_device *dev, struct enc_private *);
+ /* Program clock enable. */
+ void (*SetEnable)(struct comedi_device *dev, struct enc_private *,
+ uint16_t enab);
+ /* Program interrupt source. */
+ void (*SetIntSrc)(struct comedi_device *dev, struct enc_private *,
+ uint16_t IntSource);
+ /* Program preload trigger source. */
+ void (*SetLoadTrig)(struct comedi_device *dev, struct enc_private *,
+ uint16_t Trig);
+ /* Program standardized operating mode. */
+ void (*SetMode)(struct comedi_device *dev, struct enc_private *,
+ uint16_t Setup, uint16_t DisableIntSrc);
+ /* Reset event capture flags. */
+ void (*ResetCapFlags)(struct comedi_device *dev, struct enc_private *);
+
+ uint16_t MyCRA; /* address of CRA register */
+ uint16_t MyCRB; /* address of CRB register */
+ uint16_t MyLatchLsw; /* address of Latch least-significant-word
+ * register */
+ uint16_t MyEventBits[4]; /* bit translations for IntSrc -->RDMISC2 */
};
#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
-/* Counter overflow/index event flag masks for RDMISC2. */
-#define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
-#define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
-#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
+/* Counter overflow/index event flag masks for RDMISC2. */
+#define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
+#define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
+#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), \
+ OVERMASK(C) | INDXMASK(C) }
-/* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
-/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
+/*
+ * Translation table to map IntSrc into equivalent RDMISC2 event flag bits.
+ * static const uint16_t EventBits[][4] =
+ * { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
+ */
/*
* Enable/disable a function or test status bit(s) that are accessed
#define BUGFIX_STREG(REGADRS) (REGADRS - 4)
-/* Write a time slot control record to TSL2. */
+/* Write a time slot control record to TSL2. */
#define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
-/* Code macros used for constructing I2C command bytes. */
+/* Code macros used for constructing I2C command bytes. */
#define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
#define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
#define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
}
};
-/* Execute a DEBI transfer. This must be called from within a */
-/* critical section. */
+/*
+ * Execute a DEBI transfer. This must be called from within a critical section.
+ */
static void DEBItransfer(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
;
}
-/* Initialize the DEBI interface for all transfers. */
-
+/*
+ * Read a value from a gate array register.
+ */
static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
{
struct s626_private *devpriv = dev->private;
return readl(devpriv->mmio + P_DEBIAD);
}
-/* Write a value to a gate array register. */
+/*
+ * Write a value to a gate array register.
+ */
static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
{
struct s626_private *devpriv = dev->private;
DEBItransfer(dev);
}
-/* Replace the specified bits in a gate array register. Imports: mask
+/*
+ * Replace the specified bits in a gate array register. Imports: mask
* specifies bits that are to be preserved, wdata is new value to be
* or'd with the masked original.
*/
return ctrl & I2C_ERR;
}
-/* Read uint8_t from EEPROM. */
+/* Read uint8_t from EEPROM. */
static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
{
struct s626_private *devpriv = dev->private;
- /* Send EEPROM target address. */
- if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
- /* Byte2 = I2C command: write to I2C EEPROM device. */
- | I2C_B1(I2C_ATTRSTOP, addr)
- /* Byte1 = EEPROM internal target address. */
- | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
- /* Abort function and declare error if handshake failed. */
+ /*
+ * Send EEPROM target address:
+ * Byte2 = I2C command: write to I2C EEPROM device.
+ * Byte1 = EEPROM internal target address.
+ * Byte0 = Not sent.
+ */
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) |
+ I2C_B1(I2C_ATTRSTOP, addr) |
+ I2C_B0(I2C_ATTRNOP, 0)))
+ /* Abort function and declare error if handshake failed. */
return 0;
- }
- /* Execute EEPROM read. */
- if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
-
- /* Byte2 = I2C */
- /* command: read */
- /* from I2C EEPROM */
- /* device. */
- |I2C_B1(I2C_ATTRSTOP, 0)
- /* Byte1 receives */
- /* uint8_t from */
- /* EEPROM. */
- |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
-
- /* Abort function and declare error if handshake failed. */
+ /*
+ * Execute EEPROM read:
+ * Byte2 = I2C command: read from I2C EEPROM device.
+ * Byte1 receives uint8_t from EEPROM.
+ * Byte0 = Not sent.
+ */
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) |
+ I2C_B1(I2C_ATTRSTOP, 0) |
+ I2C_B0(I2C_ATTRNOP, 0)))
+ /* Abort function and declare error if handshake failed. */
return 0;
- }
return (readl(devpriv->mmio + P_I2CCTRL) >> 16) & 0xff;
}
/* *********** DAC FUNCTIONS *********** */
-/* Slot 0 base settings. */
+/* Slot 0 base settings. */
#define VECT0 (XSD2 | RSD3 | SIB_A2)
-/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
+/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
-/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
+/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
-/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
-static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
+/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
+static uint8_t trimadrs[] = {
+ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
+};
-/* Private helper function: Transmit serial data to DAC via Audio
+/*
+ * Private helper function: Transmit serial data to DAC via Audio
* channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
* Dacpol contains valid target image.
*/
/* START THE SERIAL CLOCK RUNNING ------------- */
- /* Assert DAC polarity control and enable gating of DAC serial clock
+ /*
+ * Assert DAC polarity control and enable gating of DAC serial clock
* and audio bit stream signals. At this point in time we must be
* assured of being in time slot 0. If we are not in slot 0, the
* serial clock and audio stream signals will be disabled; this is
/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
/* Copy DAC setpoint value to DAC's output DMA buffer. */
-
/* writel(val, devpriv->mmio + (uint32_t)devpriv->pDacWBuf); */
*devpriv->pDacWBuf = val;
*/
s626_mc_enable(dev, MC1_A2OUT, P_MC1);
- /* While the DMA transfer is executing ... */
+ /* While the DMA transfer is executing ... */
/*
* Reset Audio2 output FIFO's underflow flag (along with any
*/
writel(ISR_AFOU, devpriv->mmio + P_ISR);
- /* Wait for the DMA transfer to finish so that there will be data
+ /*
+ * Wait for the DMA transfer to finish so that there will be data
* available in the FIFO when time slot 1 tries to transfer a DWORD
* from the FIFO to the output buffer register. We test for DMA
* Done by polling the DMAC enable flag; this flag is automatically
/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
- /* FIFO data is now available, so we enable execution of time slots
+ /*
+ * FIFO data is now available, so we enable execution of time slots
* 1 and higher by clearing the EOS flag in slot 0. Note that SD3
* will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
* detection.
*/
writel(XSD2 | RSD3 | SIB_A2, devpriv->mmio + VECTPORT(0));
- /* Wait for slot 1 to execute to ensure that the Packet will be
+ /*
+ * Wait for slot 1 to execute to ensure that the Packet will be
* transmitted. This is detected by polling the Audio2 output FIFO
* underflow flag, which will be set when slot 1 execution has
* finished transferring the DAC's data DWORD from the output FIFO
while (!(readl(devpriv->mmio + P_SSR) & SSR_AF2_OUT))
;
- /* Set up to trap execution at slot 0 when the TSL sequencer cycles
+ /*
+ * Set up to trap execution at slot 0 when the TSL sequencer cycles
* back to slot 0 after executing the EOS in slot 5. Also,
* simultaneously shift out and in the 0x00 that is ALWAYS the value
* stored in the last byte to be shifted out of the FIFO's DWORD
/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
- /* Wait for the TSL to finish executing all time slots before
+ /*
+ * Wait for the TSL to finish executing all time slots before
* exiting this function. We must do this so that the next DAC
* write doesn't start, thereby enabling clock/chip select signals:
*
* the TSL has not yet finished executing slot 5 ...
*/
if (readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000) {
- /* The trap was set on time and we are still executing somewhere
+ /*
+ * The trap was set on time and we are still executing somewhere
* in slots 2-5, so we now wait for slot 0 to execute and trap
* TSL execution. This is detected when FB_BUFFER2 MSB changes
* from 0xFF to 0x00, which slot 0 causes to happen by shifting
while (readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000)
;
}
- /* Either (1) we were too late setting the slot 0 trap; the TSL
+ /*
+ * Either (1) we were too late setting the slot 0 trap; the TSL
* sequencer restarted slot 0 before we could set the EOS trap flag,
* or (2) we were not late and execution is now trapped at slot 0.
* In either case, we must now change slot 0 so that it will store
*/
writel(RSD3 | SIB_A2 | EOS, devpriv->mmio + VECTPORT(0));
- /* Wait for slot 0 to execute, at which time the TSL is setup for
+ /*
+ * Wait for slot 0 to execute, at which time the TSL is setup for
* the next DAC write. This is detected when FB_BUFFER2 MSB changes
* from 0x00 to 0xFF.
*/
;
}
-/* Private helper function: Write setpoint to an application DAC channel. */
+/*
+ * Private helper function: Write setpoint to an application DAC channel.
+ */
static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
{
struct s626_private *devpriv = dev->private;
- register uint16_t signmask;
- register uint32_t WSImage;
+ uint16_t signmask;
+ uint32_t WSImage;
+ uint32_t val;
- /* Adjust DAC data polarity and set up Polarity Control Register */
- /* image. */
+ /*
+ * Adjust DAC data polarity and set up Polarity Control Register image.
+ */
signmask = 1 << chan;
if (dacdata < 0) {
dacdata = -dacdata;
devpriv->Dacpol |= signmask;
- } else
+ } else {
devpriv->Dacpol &= ~signmask;
+ }
- /* Limit DAC setpoint value to valid range. */
- if ((uint16_t) dacdata > 0x1FFF)
+ /* Limit DAC setpoint value to valid range. */
+ if ((uint16_t)dacdata > 0x1FFF)
dacdata = 0x1FFF;
- /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
+ /*
+ * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
* and V3 transmit the setpoint to the target DAC. V4 and V5 send
* data to a non-existent TrimDac channel just to keep the clock
* running after sending data to the target DAC. This is necessary
/* Slot 5: running after writing target DAC's low data byte */
writel(XSD2 | XFIFO_2 | WS3 | EOS, devpriv->mmio + VECTPORT(5));
- /* Construct and transmit target DAC's serial packet:
- * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
+ /*
+ * Construct and transmit target DAC's serial packet:
+ * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
* and D<12:0> is the DAC setpoint. Append a WORD value (that writes
* to a non-existent TrimDac channel) that serves to keep the clock
* running after the packet has been sent to the target DAC.
*/
- SendDAC(dev, 0x0F000000
- /* Continue clock after target DAC data (write to non-existent trimdac). */
- | 0x00004000
- /* Address the two main dual-DAC devices (TSL's chip select enables
- * target device). */
- | ((uint32_t) (chan & 1) << 15)
- /* Address the DAC channel within the device. */
- | (uint32_t) dacdata); /* Include DAC setpoint data. */
-
+ val = 0x0F000000; /* Continue clock after target DAC data
+ * (write to non-existent trimdac). */
+ val |= 0x00004000; /* Address the two main dual-DAC devices
+ * (TSL's chip select enables target device). */
+ val |= ((uint32_t)(chan & 1) << 15); /* Address the DAC channel
+ * within the device. */
+ val |= (uint32_t)dacdata; /* Include DAC setpoint data. */
+ SendDAC(dev, val);
}
static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
struct s626_private *devpriv = dev->private;
uint32_t chan;
- /* Save the new setpoint in case the application needs to read it back later. */
- devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
+ /*
+ * Save the new setpoint in case the application needs to read it back
+ * later.
+ */
+ devpriv->TrimSetpoint[LogicalChan] = (uint8_t)DacData;
- /* Map logical channel number to physical channel number. */
- chan = (uint32_t) trimchan[LogicalChan];
+ /* Map logical channel number to physical channel number. */
+ chan = trimchan[LogicalChan];
- /* Set up TSL2 records for TrimDac write operation. All slots shift
+ /*
+ * Set up TSL2 records for TrimDac write operation. All slots shift
* 0xFF in from pulled-up SD3 so that the end of the slot sequence
* can be detected.
*/
/* Slot 5: Send NOP low uint8_t to DAC0 */
writel(XSD2 | XFIFO_2 | WS1 | EOS, devpriv->mmio + VECTPORT(5));
- /* Construct and transmit target DAC's serial packet:
- * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
+ /*
+ * Construct and transmit target DAC's serial packet:
+ * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
* DAC channel's address, and D<7:0> is the DAC setpoint. Append a
* WORD value (that writes a channel 0 NOP command to a non-existent
* main DAC channel) that serves to keep the clock running after the
* packet has been sent to the target DAC.
*/
- /* Address the DAC channel within the trimdac device. */
- SendDAC(dev, ((uint32_t) chan << 8)
- | (uint32_t) DacData); /* Include DAC setpoint data. */
+ /*
+ * Address the DAC channel within the trimdac device.
+ * Include DAC setpoint data.
+ */
+ SendDAC(dev, (chan << 8) | DacData);
}
static void LoadTrimDACs(struct comedi_device *dev)
{
- register uint8_t i;
+ uint8_t i;
- /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
+ /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
for (i = 0; i < ARRAY_SIZE(trimchan); i++)
WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
}
/* ****** COUNTER FUNCTIONS ******* */
-/* All counter functions address a specific counter by means of the
+
+/*
+ * All counter functions address a specific counter by means of the
* "Counter" argument, which is a logical counter number. The Counter
* argument may have any of the following legal values: 0=0A, 1=1A,
* 2=2A, 3=0B, 4=1B, 5=2B.
*/
-/* Read a counter's output latch. */
+/*
+ * Read a counter's output latch.
+ */
static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
{
- register uint32_t value;
+ uint32_t value;
- /* Latch counts and fetch LSW of latched counts value. */
- value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
+ /* Latch counts and fetch LSW of latched counts value. */
+ value = DEBIread(dev, k->MyLatchLsw);
- /* Fetch MSW of latched counts and combine with LSW. */
- value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
+ /* Fetch MSW of latched counts and combine with LSW. */
+ value |= ((uint32_t)DEBIread(dev, k->MyLatchLsw + 2) << 16);
- /* Return latched counts. */
+ /* Return latched counts. */
return value;
}
-/* Return/set a counter pair's latch trigger source. 0: On read
+/*
+ * Return/set a counter pair's latch trigger source. 0: On read
* access, 1: A index latches A, 2: B index latches B, 3: A overflow
* latches B.
*/
static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
uint16_t value)
{
- DEBIreplace(dev, k->MyCRB,
- ~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC),
+ DEBIreplace(dev, k->MyCRB, ~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC),
value << CRBBIT_LATCHSRC);
}
-/* Write value into counter preload register. */
+/*
+ * Write value into counter preload register.
+ */
static void Preload(struct comedi_device *dev, struct enc_private *k,
uint32_t value)
{
- DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);
- DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
- (uint16_t) (value >> 16));
+ DEBIwrite(dev, k->MyLatchLsw, value);
+ DEBIwrite(dev, k->MyLatchLsw + 2, value >> 16);
}
static unsigned int s626_ai_reg_to_uint(int data)
return tempdata;
}
-/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
-/* return 0; */
-/* } */
-
static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
{
unsigned int group = chan / 16;
if (!dev->attached)
return IRQ_NONE;
- /* lock to avoid race with comedi_poll */
+ /* lock to avoid race with comedi_poll */
spin_lock_irqsave(&dev->spinlock, flags);
/* save interrupt enable register state */
writel(irqtype, devpriv->mmio + P_ISR);
switch (irqtype) {
- case IRQ_RPS1: /* end_of_scan occurs */
+ case IRQ_RPS1: /* end_of_scan occurs */
if (handle_eos_interrupt(dev))
irqstatus = 0;
break;
- case IRQ_GPIO3: /* check dio and conter interrupt */
+ case IRQ_GPIO3: /* check dio and counter interrupt */
/* s626_dio_clear_irq(dev); */
check_dio_interrupts(dev);
check_counter_interrupts(dev);
}
/*
- * this functions build the RPS program for hardware driven acquistion
+ * This function builds the RPS program for hardware driven acquisition.
*/
static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
{
struct s626_private *devpriv = dev->private;
- register uint32_t *pRPS;
+ uint32_t *pRPS;
uint32_t JmpAdrs;
uint16_t i;
uint16_t n;
uint32_t LocalPPL;
- struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
+ struct comedi_cmd *cmd = &dev->subdevices->async->cmd;
/* Stop RPS program in case it is currently running */
s626_mc_disable(dev, MC1_ERPS1, P_MC1);
- /* Set starting logical address to write RPS commands. */
- pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
+ /* Set starting logical address to write RPS commands. */
+ pRPS = (uint32_t *)devpriv->RPSBuf.LogicalBase;
/* Initialize RPS instruction pointer */
writel((uint32_t)devpriv->RPSBuf.PhysicalBase,
devpriv->mmio + P_RPSADDR1);
- /* Construct RPS program in RPSBuf DMA buffer */
-
+ /* Construct RPS program in RPSBuf DMA buffer */
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
- /* Wait for Start trigger. */
+ /* Wait for Start trigger. */
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
- /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
+ /*
+ * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
* because the first RPS DEBI Write following a non-RPS DEBI write
* seems to always fail. If we don't do this dummy write, the ADC
* gain might not be set to the value required for the first slot in
* the poll list; the ADC gain would instead remain unchanged from
* the previously programmed value.
*/
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
/* Write DEBI Write command and address to shadow RAM. */
-
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
- /* Write DEBI immediate data to shadow RAM: */
-
- *pRPS++ = GSEL_BIPOLAR5V;
- /* arbitrary immediate data value. */
-
+ /* Write DEBI immediate data to shadow RAM: */
+ *pRPS++ = GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
- /* Reset "shadow RAM uploaded" flag. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
+ /* Reset "shadow RAM uploaded" flag. */
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
- /* Digitize all slots in the poll list. This is implemented as a
+ /*
+ * Digitize all slots in the poll list. This is implemented as a
* for loop to limit the slot count to 16 in case the application
* forgot to set the EOPL flag in the final slot.
*/
- for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
- /* Convert application's poll list item to private board class
+ for (devpriv->AdcItems = 0; devpriv->AdcItems < 16;
+ devpriv->AdcItems++) {
+ /*
+ * Convert application's poll list item to private board class
* format. Each app poll list item is an uint8_t with form
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
- LocalPPL =
- (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
- GSEL_BIPOLAR10V);
-
- /* Switch ADC analog gain. */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
- /* and address to */
- /* shadow RAM. */
+ LocalPPL = (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
+ GSEL_BIPOLAR10V);
+
+ /* Switch ADC analog gain. */
+ /* Write DEBI command and address to shadow RAM. */
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
- /* immediate data to */
- /* shadow RAM. */
+ /* Write DEBI immediate data to shadow RAM. */
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
*pRPS++ = LocalPPL;
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
- /* flag. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
- /* finish. */
-
- /* Select ADC analog input channel. */
+ /* Reset "shadow RAM uploaded" flag. */
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
+ /* Invoke shadow RAM upload. */
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI;
+ /* Wait for shadow upload to finish. */
+ *pRPS++ = RPS_PAUSE | RPS_DEBI;
+ /* Select ADC analog input channel. */
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
- /* Write DEBI command and address to shadow RAM. */
+ /* Write DEBI command and address to shadow RAM. */
*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
- /* Write DEBI immediate data to shadow RAM. */
+ /* Write DEBI immediate data to shadow RAM. */
*pRPS++ = LocalPPL;
+ /* Reset "shadow RAM uploaded" flag. */
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
- /* Reset "shadow RAM uploaded" flag. */
-
+ /* Invoke shadow RAM upload. */
*pRPS++ = RPS_UPLOAD | RPS_DEBI;
- /* Invoke shadow RAM upload. */
-
+ /* Wait for shadow upload to finish. */
*pRPS++ = RPS_PAUSE | RPS_DEBI;
- /* Wait for shadow upload to finish. */
- /* Delay at least 10 microseconds for analog input settling.
+ /*
+ * Delay at least 10 microseconds for analog input settling.
* Instead of padding with NOPs, we use RPS_JUMP instructions
* here; this allows us to produce a longer delay than is
* possible with NOPs because each RPS_JUMP flushes the RPS'
* instruction prefetch pipeline.
*/
JmpAdrs =
- (uint32_t) devpriv->RPSBuf.PhysicalBase +
- (uint32_t) ((unsigned long)pRPS -
- (unsigned long)devpriv->RPSBuf.LogicalBase);
+ (uint32_t)devpriv->RPSBuf.PhysicalBase +
+ (uint32_t)((unsigned long)pRPS -
+ (unsigned long)devpriv->RPSBuf.LogicalBase);
for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
- JmpAdrs += 8; /* Repeat to implement time delay: */
- *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
+ JmpAdrs += 8; /* Repeat to implement time delay: */
+ *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
*pRPS++ = JmpAdrs;
}
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
- /* Wait for Start trigger. */
+ /* Wait for Start trigger. */
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
- /* Start ADC by pulsing GPIO1. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
+ /* Start ADC by pulsing GPIO1. */
+ /* Begin ADC Start pulse. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2);
*pRPS++ = GPIO_BASE | GPIO1_LO;
*pRPS++ = RPS_NOP;
- /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
+ /* End ADC Start pulse. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2);
*pRPS++ = GPIO_BASE | GPIO1_HI;
-
- /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
+ /*
+ * Wait for ADC to complete (GPIO2 is asserted high when ADC not
* busy) and for data from previous conversion to shift into FB
* BUFFER 1 register.
*/
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
- /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
+ /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
- *pRPS++ =
- (uint32_t) devpriv->ANABuf.PhysicalBase +
- (devpriv->AdcItems << 2);
+ *pRPS++ = (uint32_t)devpriv->ANABuf.PhysicalBase +
+ (devpriv->AdcItems << 2);
- /* If this slot's EndOfPollList flag is set, all channels have */
- /* now been processed. */
+ /*
+ * If this slot's EndOfPollList flag is set, all channels have
+ * now been processed.
+ */
if (*ppl++ & EOPL) {
- devpriv->AdcItems++; /* Adjust poll list item count. */
- break; /* Exit poll list processing loop. */
+ devpriv->AdcItems++; /* Adjust poll list item count. */
+ break; /* Exit poll list processing loop. */
}
}
- /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
+ /*
+ * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
* ADC to stabilize for 2 microseconds before starting the final
* (dummy) conversion. This delay is necessary to allow sufficient
* time between last conversion finished and the start of the dummy
for (n = 0; n < (2 * RPSCLK_PER_US); n++)
*pRPS++ = RPS_NOP;
- /* Start a dummy conversion to cause the data from the last
+ /*
+ * Start a dummy conversion to cause the data from the last
* conversion of interest to be shifted in.
*/
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
*pRPS++ = GPIO_BASE | GPIO1_LO;
*pRPS++ = RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
*pRPS++ = GPIO_BASE | GPIO1_HI;
- /* Wait for the data from the last conversion of interest to arrive
+ /*
+ * Wait for the data from the last conversion of interest to arrive
* in FB BUFFER 1 register.
*/
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
- /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
- *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
- *pRPS++ =
- (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
+ /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
+ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+ *pRPS++ = (uint32_t)devpriv->ANABuf.PhysicalBase +
+ (devpriv->AdcItems << 2);
- /* Indicate ADC scan loop is finished. */
- /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
+ /* Indicate ADC scan loop is finished. */
+ /* Signal ReadADC() that scan is done. */
+ /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC; */
/* invoke interrupt */
- if (devpriv->ai_cmd_running == 1) {
+ if (devpriv->ai_cmd_running == 1)
*pRPS++ = RPS_IRQ;
- }
- /* Restart RPS program at its beginning. */
- *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
- *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
- /* End of RPS program build */
+ /* Restart RPS program at its beginning. */
+ *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
+ *pRPS++ = (uint32_t)devpriv->RPSBuf.PhysicalBase;
+
+ /* End of RPS program build */
}
#ifdef unused_code
unsigned int *data)
{
struct s626_private *devpriv = dev->private;
- register uint8_t i;
- register int32_t *readaddr;
+ uint8_t i;
+ int32_t *readaddr;
/* Trigger ADC scan loop start */
s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
int tmp;
int n;
- /* Convert application's ADC specification into form
+ /*
+ * Convert application's ADC specification into form
* appropriate for register programming.
*/
if (range == 0)
else
AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
- /* Switch ADC analog gain. */
- DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
+ /* Switch ADC analog gain. */
+ DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
- /* Select ADC analog input channel. */
- DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
+ /* Select ADC analog input channel. */
+ DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
for (n = 0; n < insn->n; n++) {
-
- /* Delay 10 microseconds for analog input settling. */
+ /* Delay 10 microseconds for analog input settling. */
udelay(10);
/* Start ADC by pulsing GPIO1 low */
/* Negate ADC Start command */
writel(GpioImage | GPIO1_HI, devpriv->mmio + P_GPIO);
- /* Wait for ADC to complete (GPIO2 is asserted high when */
- /* ADC not busy) and for data from previous conversion to */
- /* shift into FB BUFFER 1 register. */
+ /*
+ * Wait for ADC to complete (GPIO2 is asserted high when
+ * ADC not busy) and for data from previous conversion to
+ * shift into FB BUFFER 1 register.
+ */
/* Wait for ADC done */
while (!(readl(devpriv->mmio + P_PSR) & PSR_GPIO2))
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
- /* Allow the ADC to stabilize for 4 microseconds before
+ /*
+ * Allow the ADC to stabilize for 4 microseconds before
* starting the next (final) conversion. This delay is
* necessary to allow sufficient time between last
* conversion finished and the start of the next
udelay(4);
}
- /* Start a dummy conversion to cause the data from the
- * previous conversion to be shifted in. */
+ /*
+ * Start a dummy conversion to cause the data from the
+ * previous conversion to be shifted in.
+ */
GpioImage = readl(devpriv->mmio + P_GPIO);
/* Assert ADC Start command */
writel(GpioImage & ~GPIO1_HI, devpriv->mmio + P_GPIO);
/* Negate ADC Start command */
writel(GpioImage | GPIO1_HI, devpriv->mmio + P_GPIO);
- /* Wait for the data to arrive in FB BUFFER 1 register. */
+ /* Wait for the data to arrive in FB BUFFER 1 register. */
/* Wait for ADC done */
while (!(readl(devpriv->mmio + P_PSR) & PSR_GPIO2))
;
- /* Fetch ADC data from audio interface's input shift register. */
+ /* Fetch ADC data from audio interface's input shift register. */
/* Fetch ADC data */
if (n != 0) {
static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
{
-
int n;
for (n = 0; n < cmd->chanlist_len; n++) {
- if (CR_RANGE((cmd->chanlist)[n]) == 0)
- ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
+ if (CR_RANGE(cmd->chanlist[n]) == 0)
+ ppl[n] = CR_CHAN(cmd->chanlist[n]) | RANGE_5V;
else
- ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
+ ppl[n] = CR_CHAN(cmd->chanlist[n]) | RANGE_10V;
}
if (n != 0)
ppl[n - 1] |= EOPL;
return 1;
}
-/* This function doesn't require a particular form, this is just what
+/*
+ * This function doesn't require a particular form, this is just what
* happens to be used in some of the drivers. It should convert ns
* nanoseconds to a counter value suitable for programming the device.
* Also, it should adjust ns so that it cooresponds to the actual time
- * that the device will use. */
+ * that the device will use.
+ */
static int s626_ns_to_timer(int *nanosec, int round_mode)
{
int divider, base;
static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
int tick)
{
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
- /* index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB);
+ uint16_t Setup =
+ (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
+ (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
+ (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
+ (CLKENAB_INDEX << BF_CLKENAB);
uint16_t valueSrclatch = LATCHSRC_A_INDXA;
- /* uint16_t enab=CLKENAB_ALWAYS; */
+ /* uint16_t enab = CLKENAB_ALWAYS; */
k->SetMode(dev, k, Setup, FALSE);
- /* Set the preload register */
+ /* Set the preload register */
Preload(dev, k, tick);
- /* Software index pulse forces the preload register to load */
- /* into the counter */
+ /*
+ * Software index pulse forces the preload register to load
+ * into the counter
+ */
k->SetLoadTrig(dev, k, 0);
k->PulseIndex(dev, k);
k->SetIntSrc(dev, k, INTSRC_OVER);
SetLatchSource(dev, k, valueSrclatch);
- /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
+ /* k->SetEnable(dev, k, (uint16_t)(enab != 0)); */
}
-/* TO COMPLETE */
+/* TO COMPLETE */
static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct s626_private *devpriv = dev->private;
/* clear any pending interrupt */
s626_dio_clear_irq(dev);
- /* s626_enc_clear_irq(dev); */
+ /* s626_enc_clear_irq(dev); */
/* reset ai_cmd_running flag */
devpriv->ai_cmd_running = 0;
- /* test if cmd is valid */
+ /* test if cmd is valid */
if (cmd == NULL)
return -EINVAL;
case TRIG_FOLLOW:
break;
case TRIG_TIMER:
- /* set a conter to generate adc trigger at scan_begin_arg interval */
+ /*
+ * set a counter to generate adc trigger at scan_begin_arg
+ * interval
+ */
k = &encpriv[5];
tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
k->SetEnable(dev, k, CLKENAB_ALWAYS);
break;
case TRIG_EXT:
- /* set the digital line and interrupt for scan trigger */
+ /* set the digital line and interrupt for scan trigger */
if (cmd->start_src != TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
break;
case TRIG_NOW:
break;
case TRIG_TIMER:
- /* set a conter to generate adc trigger at convert_arg interval */
+ /*
+ * set a counter to generate adc trigger at convert_arg
+ * interval
+ */
k = &encpriv[4];
tick = s626_ns_to_timer((int *)&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
k->SetEnable(dev, k, CLKENAB_INDEX);
break;
case TRIG_EXT:
- /* set the digital line and interrupt for convert trigger */
- if (cmd->scan_begin_src != TRIG_EXT
- && cmd->start_src == TRIG_EXT)
+ /* set the digital line and interrupt for convert trigger */
+ if (cmd->scan_begin_src != TRIG_EXT &&
+ cmd->start_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->convert_arg);
break;
}
switch (cmd->stop_src) {
case TRIG_COUNT:
- /* data arrives as one packet */
+ /* data arrives as one packet */
devpriv->ai_sample_count = cmd->stop_arg;
devpriv->ai_continous = 0;
break;
case TRIG_NONE:
- /* continous acquisition */
+ /* continuous acquisition */
devpriv->ai_continous = 1;
devpriv->ai_sample_count = 1;
break;
/* Start executing the RPS program */
s626_mc_enable(dev, MC1_ERPS1, P_MC1);
-
s->async->inttrig = NULL;
break;
case TRIG_EXT:
/* configure DIO channel for acquisition trigger */
s626_dio_set_irq(dev, cmd->start_arg);
-
s->async->inttrig = NULL;
break;
case TRIG_INT:
/* Step 1 : check if triggers are trivially valid */
err |= cfc_check_trigger_src(&cmd->start_src,
- TRIG_NOW | TRIG_INT | TRIG_EXT);
+ TRIG_NOW | TRIG_INT | TRIG_EXT);
err |= cfc_check_trigger_src(&cmd->scan_begin_src,
- TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
+ TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
err |= cfc_check_trigger_src(&cmd->convert_src,
- TRIG_TIMER | TRIG_EXT | TRIG_NOW);
+ TRIG_TIMER | TRIG_EXT | TRIG_NOW);
err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->start_src == TRIG_EXT)
err |= cfc_check_trigger_arg_max(&cmd->start_arg, 39);
-
if (cmd->scan_begin_src == TRIG_EXT)
err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
-
if (cmd->convert_src == TRIG_EXT)
err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 39);
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
-/* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
+ /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
}
if (cmd->convert_src == TRIG_TIMER) {
err |= cfc_check_trigger_arg_min(&cmd->convert_arg, MAX_SPEED);
} else {
/* external trigger */
/* see above */
-/* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
+ /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
}
err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);
if (tmp != cmd->convert_arg)
err++;
if (cmd->scan_begin_src == TRIG_TIMER &&
- cmd->scan_begin_arg <
- cmd->convert_arg * cmd->scan_end_arg) {
- cmd->scan_begin_arg =
- cmd->convert_arg * cmd->scan_end_arg;
+ cmd->scan_begin_arg < cmd->convert_arg *
+ cmd->scan_end_arg) {
+ cmd->scan_begin_arg = cmd->convert_arg *
+ cmd->scan_end_arg;
err++;
}
}
return i;
}
-/* *************** DIGITAL I/O FUNCTIONS ***************
+/* *************** DIGITAL I/O FUNCTIONS *************** */
+
+/*
* All DIO functions address a group of DIO channels by means of
* "group" argument. group may be 0, 1 or 2, which correspond to DIO
* ports A, B and C, respectively.
{
uint16_t group;
- /* Prepare to treat writes to WRCapSel as capture disables. */
+ /* Prepare to treat writes to WRCapSel as capture disables. */
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
- /* For each group of sixteen channels ... */
+ /* For each group of sixteen channels ... */
for (group = 0; group < S626_DIO_BANKS; group++) {
/* Disable all interrupts */
DEBIwrite(dev, LP_WRINTSEL(group), 0);
return insn->n;
}
-/* Now this function initializes the value of the counter (data[0])
- and set the subdevice. To complete with trigger and interrupt
- configuration */
-/* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
+/*
+ * Now this function initializes the value of the counter (data[0])
+ * and set the subdevice. To complete with trigger and interrupt
+ * configuration.
+ *
+ * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
* what is being configured, but this function appears to be using data[0]
- * as a variable. */
+ * as a variable.
+ */
static int s626_enc_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
- /* index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB);
- /* uint16_t DisableIntSrc=TRUE; */
- /* uint32_t Preloadvalue; //Counter initial value */
+ uint16_t Setup =
+ (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
+ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
+ (CLKENAB_INDEX << BF_CLKENAB);
+ /* uint16_t DisableIntSrc = TRUE; */
+ /* uint32_t Preloadvalue; //Counter initial value */
uint16_t valueSrclatch = LATCHSRC_AB_READ;
uint16_t enab = CLKENAB_ALWAYS;
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
- /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
+ /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
k->SetMode(dev, k, Setup, TRUE);
Preload(dev, k, data[0]);
k->PulseIndex(dev, k);
SetLatchSource(dev, k, valueSrclatch);
- k->SetEnable(dev, k, (uint16_t) (enab != 0));
+ k->SetEnable(dev, k, (enab != 0));
return insn->n;
}
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
-
int n;
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
-
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
- /* Set the preload register */
+ /* Set the preload register */
Preload(dev, k, data[0]);
- /* Software index pulse forces the preload register to load */
- /* into the counter */
+ /*
+ * Software index pulse forces the preload register to load
+ * into the counter
+ */
k->SetLoadTrig(dev, k, 0);
k->PulseIndex(dev, k);
k->SetLoadTrig(dev, k, 2);
static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
{
- DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
- /* MISC2 register. */
- DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
- DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
+ DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* Enab writes to MISC2. */
+ DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
+ DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
}
static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
if (pdma == NULL)
return;
- /* find the matching allocation from the board struct */
+ /* find the matching allocation from the board struct */
vbptr = pdma->LogicalBase;
vpptr = pdma->PhysicalBase;
if (vbptr) {
/* ****** PRIVATE COUNTER FUNCTIONS ****** */
-/* Reset a counter's index and overflow event capture flags. */
-
+/*
+ * Reset a counter's index and overflow event capture flags.
+ */
static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
{
DEBIreplace(dev, k->MyCRB, ~CRBMSK_INTCTRL,
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
}
-/* Return counter setup in a format (COUNTER_SETUP) that is consistent */
-/* for both A and B counters. */
-
+/*
+ * Return counter setup in a format (COUNTER_SETUP) that is consistent
+ * for both A and B counters.
+ */
static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
{
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup;
+ uint16_t cra;
+ uint16_t crb;
+ uint16_t setup;
- /* Fetch CRA and CRB register images. */
+ /* Fetch CRA and CRB register images. */
cra = DEBIread(dev, k->MyCRA);
crb = DEBIread(dev, k->MyCRB);
- /* Populate the standardized counter setup bit fields. Note: */
- /* IndexSrc is restricted to ENC_X or IndxPol. */
- setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
- |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
- |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
- |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
- |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
- |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
-
- /* Adjust mode-dependent parameters. */
- if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
- setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
- |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
- |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
-
- else /* If Counter mode (ClkSrcA<1> == 0): */
- setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
- |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
- |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
- (MULT_X1 << STDBIT_CLKMULT) :
- ((cra >> (CRABIT_CLKMULT_A -
- STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
-
- /* Return adjusted counter setup. */
+ /*
+ * Populate the standardized counter setup bit fields.
+ * Note: IndexSrc is restricted to ENC_X or IndxPol.
+ */
+ setup = (cra & STDMSK_LOADSRC) | /* LoadSrc = LoadSrcA. */
+ ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) &
+ STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcA. */
+ ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) &
+ STDMSK_INTSRC) | /* IntSrc = IntSrcA. */
+ ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) &
+ STDMSK_INDXSRC) | /* IndxSrc = IndxSrcA<1>. */
+ ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) &
+ STDMSK_INDXPOL) | /* IndxPol = IndxPolA. */
+ ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) &
+ STDMSK_CLKENAB); /* ClkEnab = ClkEnabA. */
+
+ /* Adjust mode-dependent parameters. */
+ if (cra & (2 << CRABIT_CLKSRC_A)) {
+ /* Timer mode (ClkSrcA<1> == 1): */
+ /* Indicate Timer mode. */
+ setup |= CLKSRC_TIMER << STDBIT_CLKSRC;
+ /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
+ setup |= (cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) &
+ STDMSK_CLKPOL;
+ /* ClkMult must be 1x in Timer mode. */
+ setup |= MULT_X1 << STDBIT_CLKMULT;
+ } else {
+ /* Counter mode (ClkSrcA<1> == 0): */
+ /* Indicate Counter mode. */
+ setup |= CLKSRC_COUNTER << STDBIT_CLKSRC;
+ /* Pass through ClkPol. */
+ setup |= (cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) &
+ STDMSK_CLKPOL;
+ /* Force ClkMult to 1x if not legal, else pass through. */
+ if ((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A))
+ setup |= MULT_X1 << STDBIT_CLKMULT;
+ else
+ setup |= (cra >> (CRABIT_CLKMULT_A - STDBIT_CLKMULT)) &
+ STDMSK_CLKMULT;
+ }
+
+ /* Return adjusted counter setup. */
return setup;
}
static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
{
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup;
+ uint16_t cra;
+ uint16_t crb;
+ uint16_t setup;
- /* Fetch CRA and CRB register images. */
+ /* Fetch CRA and CRB register images. */
cra = DEBIread(dev, k->MyCRA);
crb = DEBIread(dev, k->MyCRB);
- /* Populate the standardized counter setup bit fields. Note: */
- /* IndexSrc is restricted to ENC_X or IndxPol. */
- setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
- |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
- |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
- |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
- |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
- |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
-
- /* Adjust mode-dependent parameters. */
- if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
- setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
- |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
- |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
-
- else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
- setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
- |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
- |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
-
- else /* If Counter mode (ClkSrcB<1> == 0): */
- setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
- |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
- |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
-
- /* Return adjusted counter setup. */
+ /*
+ * Populate the standardized counter setup bit fields.
+ * Note: IndexSrc is restricted to ENC_X or IndxPol.
+ */
+ setup = ((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) &
+ STDMSK_INTSRC) | /* IntSrc = IntSrcB. */
+ ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) &
+ STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcB. */
+ ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) &
+ STDMSK_LOADSRC) | /* LoadSrc = LoadSrcB. */
+ ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) &
+ STDMSK_INDXPOL) | /* IndxPol = IndxPolB. */
+ ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) &
+ STDMSK_CLKENAB) | /* ClkEnab = ClkEnabB. */
+ ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) &
+ STDMSK_INDXSRC); /* IndxSrc = IndxSrcB<1>. */
+
+ /* Adjust mode-dependent parameters. */
+ if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) {
+ /* Extender mode (ClkMultB == MULT_X0): */
+ /* Indicate Extender mode. */
+ setup |= CLKSRC_EXTENDER << STDBIT_CLKSRC;
+ /* Indicate multiplier is 1x. */
+ setup |= MULT_X1 << STDBIT_CLKMULT;
+ /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
+ setup |= (cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) &
+ STDMSK_CLKPOL;
+ } else if (cra & (2 << CRABIT_CLKSRC_B)) {
+ /* Timer mode (ClkSrcB<1> == 1): */
+ /* Indicate Timer mode. */
+ setup |= CLKSRC_TIMER << STDBIT_CLKSRC;
+ /* Indicate multiplier is 1x. */
+ setup |= MULT_X1 << STDBIT_CLKMULT;
+ /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
+ setup |= (cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) &
+ STDMSK_CLKPOL;
+ } else {
+ /* If Counter mode (ClkSrcB<1> == 0): */
+ /* Indicate Timer mode. */
+ setup |= CLKSRC_COUNTER << STDBIT_CLKSRC;
+ /* Clock multiplier is passed through. */
+ setup |= (crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) &
+ STDMSK_CLKMULT;
+ /* Clock polarity is passed through. */
+ setup |= (crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) &
+ STDMSK_CLKPOL;
+ }
+
+ /* Return adjusted counter setup. */
return setup;
}
* parameters are programmable (all other parms are ignored): ClkMult,
* ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
*/
-
static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
uint16_t Setup, uint16_t DisableIntSrc)
{
struct s626_private *devpriv = dev->private;
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup = Setup; /* Cache the Standard Setup. */
+ uint16_t cra;
+ uint16_t crb;
+ uint16_t setup = Setup; /* Cache the Standard Setup. */
- /* Initialize CRA and CRB images. */
- cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
- |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
+ /* Initialize CRA and CRB images. */
+ /* Preload trigger is passed through. */
+ cra = setup & CRAMSK_LOADSRC_A;
+ /* IndexSrc is restricted to ENC_X or IndxPol. */
+ cra |= ((setup & STDMSK_INDXSRC) >>
+ (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)));
- crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
- | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
+ /* Reset any pending CounterA event captures. */
+ crb = CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A;
+ /* Clock enable is passed through. */
+ crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB);
- /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
+ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
if (!DisableIntSrc)
cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRABIT_INTSRC_A));
- /* Populate all mode-dependent attributes of CRA & CRB images. */
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
- case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
- /* (Extender valid only for B counters). */
-
- case CLKSRC_TIMER: /* Timer Mode: */
- cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
- |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
- |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
- |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
+ case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode
+ * (Extender valid only for B counters). */
+ /* Fall through to case CLKSRC_TIMER: */
+ case CLKSRC_TIMER: /* Timer Mode: */
+ /* ClkSrcA<1> selects system clock */
+ cra |= 2 << CRABIT_CLKSRC_A;
+ /* Count direction (ClkSrcA<0>) obtained from ClkPol. */
+ cra |= (setup & STDMSK_CLKPOL) >>
+ (STDBIT_CLKPOL - CRABIT_CLKSRC_A);
+ /* ClkPolA behaves as always-on clock enable. */
+ cra |= 1 << CRABIT_CLKPOL_A;
+ /* ClkMult must be 1x. */
+ cra |= MULT_X1 << CRABIT_CLKMULT_A;
+ break;
+ default: /* Counter Mode: */
+ /* Select ENC_C and ENC_D as clock/direction inputs. */
+ cra |= CLKSRC_COUNTER;
+ /* Clock polarity is passed through. */
+ cra |= (setup & STDMSK_CLKPOL) <<
+ (CRABIT_CLKPOL_A - STDBIT_CLKPOL);
+ /* Force multiplier to x1 if not legal, else pass through. */
+ if ((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT))
+ cra |= MULT_X1 << CRABIT_CLKMULT_A;
+ else
+ cra |= (setup & STDMSK_CLKMULT) <<
+ (CRABIT_CLKMULT_A - STDBIT_CLKMULT);
break;
-
- default: /* Counter Mode: */
- cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
- | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
- |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
- (MULT_X1 << CRABIT_CLKMULT_A) :
- ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
- STDBIT_CLKMULT))));
}
- /* Force positive index polarity if IndxSrc is software-driven only, */
- /* otherwise pass it through. */
+ /*
+ * Force positive index polarity if IndxSrc is software-driven only,
+ * otherwise pass it through.
+ */
if (~setup & STDMSK_INDXSRC)
- cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
- STDBIT_INDXPOL));
+ cra |= (setup & STDMSK_INDXPOL) <<
+ (CRABIT_INDXPOL_A - STDBIT_INDXPOL);
- /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
- /* enable mask to indicate the counter interrupt is disabled. */
+ /*
+ * If IntSrc has been forced to Disabled, update the MISC2 interrupt
+ * enable mask to indicate the counter interrupt is disabled.
+ */
if (DisableIntSrc)
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
- /* While retaining CounterB and LatchSrc configurations, program the */
- /* new counter operating mode. */
+ /*
+ * While retaining CounterB and LatchSrc configurations, program the
+ * new counter operating mode.
+ */
DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
DEBIreplace(dev, k->MyCRB, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A), crb);
}
uint16_t Setup, uint16_t DisableIntSrc)
{
struct s626_private *devpriv = dev->private;
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup = Setup; /* Cache the Standard Setup. */
+ uint16_t cra;
+ uint16_t crb;
+ uint16_t setup = Setup; /* Cache the Standard Setup. */
- /* Initialize CRA and CRB images. */
- cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
+ /* Initialize CRA and CRB images. */
+ /* IndexSrc field is restricted to ENC_X or IndxPol. */
+ cra = (setup & STDMSK_INDXSRC) <<
+ (CRABIT_INDXSRC_B + 1 - STDBIT_INDXSRC);
- crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
- | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
- |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
+ /* Reset event captures and disable interrupts. */
+ crb = CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B;
+ /* Clock enable is passed through. */
+ crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB);
+ /* Preload trigger source is passed through. */
+ crb |= (setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B);
- /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
+ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
if (!DisableIntSrc)
- crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
- CRBBIT_INTSRC_B));
+ crb |= (setup & STDMSK_INTSRC) >>
+ (STDBIT_INTSRC - CRBBIT_INTSRC_B);
- /* Populate all mode-dependent attributes of CRA & CRB images. */
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
- case CLKSRC_TIMER: /* Timer Mode: */
- cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
- |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
- crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
- |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
+ case CLKSRC_TIMER: /* Timer Mode: */
+ /* ClkSrcB<1> selects system clock */
+ cra |= 2 << CRABIT_CLKSRC_B;
+ /* with direction (ClkSrcB<0>) obtained from ClkPol. */
+ cra |= (setup & STDMSK_CLKPOL) <<
+ (CRABIT_CLKSRC_B - STDBIT_CLKPOL);
+ /* ClkPolB behaves as always-on clock enable. */
+ crb |= 1 << CRBBIT_CLKPOL_B;
+ /* ClkMultB must be 1x. */
+ crb |= MULT_X1 << CRBBIT_CLKMULT_B;
break;
-
- case CLKSRC_EXTENDER: /* Extender Mode: */
- cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
- |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
- crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
- |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
+ case CLKSRC_EXTENDER: /* Extender Mode: */
+ /* ClkSrcB source is OverflowA (same as "timer") */
+ cra |= 2 << CRABIT_CLKSRC_B;
+ /* with direction obtained from ClkPol. */
+ cra |= (setup & STDMSK_CLKPOL) <<
+ (CRABIT_CLKSRC_B - STDBIT_CLKPOL);
+ /* ClkPolB controls IndexB -- always set to active. */
+ crb |= 1 << CRBBIT_CLKPOL_B;
+ /* ClkMultB selects OverflowA as the clock source. */
+ crb |= MULT_X0 << CRBBIT_CLKMULT_B;
+ break;
+ default: /* Counter Mode: */
+ /* Select ENC_C and ENC_D as clock/direction inputs. */
+ cra |= CLKSRC_COUNTER << CRABIT_CLKSRC_B;
+ /* ClkPol is passed through. */
+ crb |= (setup & STDMSK_CLKPOL) >>
+ (STDBIT_CLKPOL - CRBBIT_CLKPOL_B);
+ /* Force ClkMult to x1 if not legal, otherwise pass through. */
+ if ((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT))
+ crb |= MULT_X1 << CRBBIT_CLKMULT_B;
+ else
+ crb |= (setup & STDMSK_CLKMULT) <<
+ (CRBBIT_CLKMULT_B - STDBIT_CLKMULT);
break;
-
- default: /* Counter Mode: */
- cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
- crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
- |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
- (MULT_X1 << CRBBIT_CLKMULT_B) :
- ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
- STDBIT_CLKMULT))));
}
- /* Force positive index polarity if IndxSrc is software-driven only, */
- /* otherwise pass it through. */
+ /*
+ * Force positive index polarity if IndxSrc is software-driven only,
+ * otherwise pass it through.
+ */
if (~setup & STDMSK_INDXSRC)
- crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
- CRBBIT_INDXPOL_B));
+ crb |= (setup & STDMSK_INDXPOL) >>
+ (STDBIT_INDXPOL - CRBBIT_INDXPOL_B);
- /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
- /* enable mask to indicate the counter interrupt is disabled. */
+ /*
+ * If IntSrc has been forced to Disabled, update the MISC2 interrupt
+ * enable mask to indicate the counter interrupt is disabled.
+ */
if (DisableIntSrc)
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
- /* While retaining CounterA and LatchSrc configurations, program the */
- /* new counter operating mode. */
+ /*
+ * While retaining CounterA and LatchSrc configurations, program the
+ * new counter operating mode.
+ */
DEBIreplace(dev, k->MyCRA, ~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B), cra);
DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
}
-/* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
-
+/*
+ * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
+ */
static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
uint16_t enab)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
}
-/*
- * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
- * {
- * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
- * }
- */
+#ifdef unused
+static uint16_t GetLatchSource(struct comedi_device *dev,
+ struct enc_private *k)
+{
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_LATCHSRC) & 3;
+}
+#endif
/*
* Return/set the event that will trigger transfer of the preload
* register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
* 2=OverflowA (B counters only), 3=disabled.
*/
-
static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
uint16_t Trig)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
}
-/* Return/set counter interrupt source and clear any captured
+/*
+ * Return/set counter interrupt source and clear any captured
* index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
* 2=IndexOnly, 3=IndexAndOverflow.
*/
-
static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
uint16_t IntSource)
{
struct s626_private *devpriv = dev->private;
- /* Reset any pending counter overflow or index captures. */
+ /* Reset any pending counter overflow or index captures. */
DEBIreplace(dev, k->MyCRB, ~CRBMSK_INTCTRL,
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
- /* Program counter interrupt source. */
+ /* Program counter interrupt source. */
DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
IntSource << CRABIT_INTSRC_A);
- /* Update MISC2 interrupt enable mask. */
+ /* Update MISC2 interrupt enable mask. */
devpriv->CounterIntEnabs =
(devpriv->CounterIntEnabs & ~k->
MyEventBits[3]) | k->MyEventBits[IntSource];
struct s626_private *devpriv = dev->private;
uint16_t crb;
- /* Cache writeable CRB register image. */
+ /* Cache writeable CRB register image. */
crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
- /* Reset any pending counter overflow or index captures. */
+ /* Reset any pending counter overflow or index captures. */
DEBIwrite(dev, k->MyCRB,
- (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
+ (uint16_t)(crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
- /* Program counter interrupt source. */
+ /* Program counter interrupt source. */
DEBIwrite(dev, k->MyCRB,
- (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
- CRBBIT_INTSRC_B)));
+ (uint16_t)((crb & ~CRBMSK_INTSRC_B) |
+ (IntSource << CRBBIT_INTSRC_B)));
- /* Update MISC2 interrupt enable mask. */
+ /* Update MISC2 interrupt enable mask. */
devpriv->CounterIntEnabs =
- (devpriv->CounterIntEnabs & ~k->
- MyEventBits[3]) | k->MyEventBits[IntSource];
+ (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) |
+ k->MyEventBits[IntSource];
}
static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
}
-/* Return/set the clock multiplier. */
-
-/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
-/* } */
-
-/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
-/* } */
-
-/* Return/set the clock polarity. */
-
-/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
-/* } */
-
-/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
-/* } */
-
-/* Return/set the clock source. */
+#ifdef unused
+/*
+ * Return/set the clock multiplier.
+ */
+static void SetClkMult(struct comedi_device *dev, struct enc_private *k,
+ uint16_t value)
+{
+ k->SetMode(dev, k, ((k->GetMode(dev, k) & ~STDMSK_CLKMULT) |
+ (value << STDBIT_CLKMULT)), FALSE);
+}
-/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
-/* } */
+static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k)
+{
+ return (k->GetMode(dev, k) >> STDBIT_CLKMULT) & 3;
+}
-/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
-/* } */
+/*
+ * Return/set the clock polarity.
+ */
+static void SetClkPol(struct comedi_device *dev, struct enc_private *k,
+ uint16_t value)
+{
+ k->SetMode(dev, k, ((k->GetMode(dev, k) & ~STDMSK_CLKPOL) |
+ (value << STDBIT_CLKPOL)), FALSE);
+}
-/* Return/set the index polarity. */
+static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k)
+{
+ return (k->GetMode(dev, k) >> STDBIT_CLKPOL) & 1;
+}
-/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
-/* } */
+/*
+ * Return/set the clock source.
+ */
+static void SetClkSrc(struct comedi_device *dev, struct enc_private *k,
+ uint16_t value)
+{
+ k->SetMode(dev, k, ((k->GetMode(dev, k) & ~STDMSK_CLKSRC) |
+ (value << STDBIT_CLKSRC)), FALSE);
+}
-/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
-/* } */
+static uint16_t GetClkSrc(struct comedi_device *dev, struct enc_private *k)
+{
+ return (k->GetMode(dev, k) >> STDBIT_CLKSRC) & 3;
+}
-/* Return/set the index source. */
+/*
+ * Return/set the index polarity.
+ */
+static void SetIndexPol(struct comedi_device *dev, struct enc_private *k,
+ uint16_t value)
+{
+ k->SetMode(dev, k, ((k->GetMode(dev, k) & ~STDMSK_INDXPOL) |
+ ((value != 0) << STDBIT_INDXPOL)), FALSE);
+}
-/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
-/* } */
+static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k)
+{
+ return (k->GetMode(dev, k) >> STDBIT_INDXPOL) & 1;
+}
-/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
-/* } */
+/*
+ * Return/set the index source.
+ */
+static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k,
+ uint16_t value)
+{
+ k->SetMode(dev, k, ((k->GetMode(dev, k) & ~STDMSK_INDXSRC) |
+ ((value != 0) << STDBIT_INDXSRC)), FALSE);
+}
-/* Generate an index pulse. */
+static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k)
+{
+ return (k->GetMode(dev, k) >> STDBIT_INDXSRC) & 1;
+}
+#endif
+/*
+ * Generate an index pulse.
+ */
static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
{
- register uint16_t cra;
+ uint16_t cra;
- cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
- DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
+ cra = DEBIread(dev, k->MyCRA);
+ /* Pulse index. */
+ DEBIwrite(dev, k->MyCRA, (cra ^ CRAMSK_INDXPOL_A));
DEBIwrite(dev, k->MyCRA, cra);
}
static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
{
- register uint16_t crb;
+ uint16_t crb;
- crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
- DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
+ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
+ /* Pulse index. */
+ DEBIwrite(dev, k->MyCRB, (crb ^ CRBMSK_INDXPOL_B));
DEBIwrite(dev, k->MyCRB, crb);
}
{
int chan;
struct enc_private *k;
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
- /* index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
-
- /* Disable all counter interrupts and clear any captured counter events. */
+ uint16_t Setup =
+ (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
+ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
+ (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
+ (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
+
+ /*
+ * Disable all counter interrupts and clear any captured counter events.
+ */
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
k = &encpriv[chan];
k->SetMode(dev, k, Setup, TRUE);
s626_mc_enable(dev, MC1_DEBI | MC1_AUDIO | MC1_I2C, P_MC1);
/*
- * Configure DEBI operating mode
+ * Configure DEBI operating mode
*
- * Local bus is 16 bits wide
- * Declare DEBI transfer timeout interval
- * Set up byte lane steering
- * Intel-compatible local bus (DEBI never times out)
+ * Local bus is 16 bits wide
+ * Declare DEBI transfer timeout interval
+ * Set up byte lane steering
+ * Intel-compatible local bus (DEBI never times out)
*/
- writel(DEBI_CFG_SLAVE16 |
- (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
- DEBI_SWAP | DEBI_CFG_INTEL,
- devpriv->mmio + P_DEBICFG);
+ writel(DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
+ DEBI_SWAP | DEBI_CFG_INTEL, devpriv->mmio + P_DEBICFG);
/* Disable MMU paging */
writel(DEBI_PAGE_DISABLE, devpriv->mmio + P_DEBIPAGE);
* because the SAA7146 ADC interface does not start up in
* a defined state after a PCI reset.
*/
-
{
- uint8_t PollList;
- uint16_t AdcData;
- uint16_t StartVal;
- uint16_t index;
- unsigned int data[16];
+ uint8_t PollList;
+ uint16_t AdcData;
+ uint16_t StartVal;
+ uint16_t index;
+ unsigned int data[16];
- /* Create a simple polling list for analog input channel 0 */
- PollList = EOPL;
- ResetADC(dev, &PollList);
+ /* Create a simple polling list for analog input channel 0 */
+ PollList = EOPL;
+ ResetADC(dev, &PollList);
- /* Get initial ADC value */
- s626_ai_rinsn(dev, dev->subdevices, NULL, data);
- StartVal = data[0];
-
- /*
- * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION.
- *
- * Invoke ADCs until the new ADC value differs from the initial
- * value or a timeout occurs. The timeout protects against the
- * possibility that the driver is restarting and the ADC data is a
- * fixed value resulting from the applied ADC analog input being
- * unusually quiet or at the rail.
- */
- for (index = 0; index < 500; index++) {
+ /* Get initial ADC value */
s626_ai_rinsn(dev, dev->subdevices, NULL, data);
- AdcData = data[0];
- if (AdcData != StartVal)
- break;
- }
+ StartVal = data[0];
+ /*
+ * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
+ * EXECUTION.
+ *
+ * Invoke ADCs until the new ADC value differs from the initial
+ * value or a timeout occurs. The timeout protects against the
+ * possibility that the driver is restarting and the ADC data is
+ * a fixed value resulting from the applied ADC analog input
+ * being unusually quiet or at the rail.
+ */
+ for (index = 0; index < 500; index++) {
+ s626_ai_rinsn(dev, dev->subdevices, NULL, data);
+ AdcData = data[0];
+ if (AdcData != StartVal)
+ break;
+ }
}
#endif /* SAA7146 BUG WORKAROUND */
s->io_bits = 0xffff;
s->private = (void *)2; /* DIO group 2 */
s->range_table = &range_digital;
- s->insn_config = s626_dio_insn_config;
+ s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = &dev->subdevices[5];
writel(IRQ_GPIO3 | IRQ_RPS1,
devpriv->mmio + P_ISR);
- /* Disable the watchdog timer and battery charger. */
+ /* Disable the watchdog timer and battery charger. */
WriteMISC2(dev, 0);
/* Close all interfaces on 7146 device */
*/
static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
{ PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
- PCI_SUBVENDOR_ID_S626, PCI_SUBDEVICE_ID_S626, 0, 0, 0 },
+ PCI_SUBVENDOR_ID_S626, PCI_SUBDEVICE_ID_S626, 0, 0, 0, },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, s626_pci_table);