}
enum {
- NUM_FAKE_CPLS = 1,
+ NUM_FAKE_CPLS = 2,
FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
+ FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
};
static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
return 0;
}
+static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
+{
+ struct c4iw_ep *ep;
+
+ ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
+ c4iw_put_ep(&ep->parent_ep->com);
+ release_ep_resources(ep);
+ return 0;
+}
+
/*
* Fake up a special CPL opcode and call sched() so process_work() will call
* _put_ep_safe() in a safe context to free the ep resources. This is needed
* because ARP error handlers are called in an ATOMIC context, and
* _c4iw_free_ep() needs to block.
*/
-static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb)
+static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
+ int cpl)
{
struct cpl_act_establish *rpl = cplhdr(skb);
/* Set our special ARP_FAILURE opcode */
- rpl->ot.opcode = FAKE_CPL_PUT_EP_SAFE;
+ rpl->ot.opcode = cpl;
/*
* Save ep in the skb->cb area, after where sched() will save the dev
ep->hwtid);
__state_set(&ep->com, DEAD);
- queue_arp_failure_cpl(ep, skb);
+ queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
}
/*
}
remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
- queue_arp_failure_cpl(ep, skb);
+ queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
}
/*
[CPL_FW4_ACK] = fw4_ack,
[CPL_FW6_MSG] = deferred_fw6_msg,
[CPL_RX_PKT] = rx_pkt,
- [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe
+ [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
+ [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
};
static void process_timeout(struct c4iw_ep *ep)