*
* Each device has a kref, which is initialized to 1 when the device is
* registered. A kref_get is done for each device registered. When the
- * device is released, the coresponding kref_put is done in the release
+ * device is released, the corresponding kref_put is done in the release
* method. Every time one of the device's channels is allocated to a client,
- * a kref_get occurs. When the channel is freed, the coresponding kref_put
+ * a kref_get occurs. When the channel is freed, the corresponding kref_put
* happens. The device's release function does a completion, so
* unregister_device does a remove event, device_unregister, a kref_put
* for the first reference, then waits on the completion for all other
* Each channel has an open-coded implementation of Rusty Russell's "bigref,"
* with a kref and a per_cpu local_t. A dma_chan_get is called when a client
* signals that it wants to use a channel, and dma_chan_put is called when
- * a channel is removed or a client using it is unregesitered. A client can
+ * a channel is removed or a client using it is unregistered. A client can
* take extra references per outstanding transaction, as is the case with
* the NET DMA client. The release function does a kref_put on the device.
* -ChrisL, DanW
* @last_used: last cookie value handed out
*
* dma_async_is_complete() is used in dma_async_memcpy_complete()
- * the test logic is seperated for lightweight testing of multiple cookies
+ * the test logic is separated for lightweight testing of multiple cookies
*/
static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
dma_cookie_t last_complete, dma_cookie_t last_used)