This patch introduces a very limited functionality for atomic write support.
In order to support atomic write, this patch adds two ioctls:
o F2FS_IOC_START_ATOMIC_WRITE
o F2FS_IOC_COMMIT_ATOMIC_WRITE
The database engine should be aware of the following sequence.
1. open
-> ioctl(F2FS_IOC_START_ATOMIC_WRITE);
2. writes
: all the written data will be treated as atomic pages.
3. commit
-> ioctl(F2FS_IOC_COMMIT_ATOMIC_WRITE);
: this flushes all the data blocks to the disk, which will be shown all or
nothing by f2fs recovery procedure.
4. repeat to #2.
The IO pattens should be:
,- START_ATOMIC_WRITE ,- COMMIT_ATOMIC_WRITE
CP | D D D D D D | FSYNC | D D D D | FSYNC ...
`- COMMIT_ATOMIC_WRITE
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
trace_f2fs_write_end(inode, pos, len, copied);
- set_page_dirty(page);
+ if (f2fs_is_atomic_file(inode))
+ register_inmem_page(inode, page);
+ else
+ set_page_dirty(page);
if (pos + copied > i_size_read(inode)) {
i_size_write(inode, pos + copied);
/*
* ioctl commands
*/
-#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
-#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
+#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
+#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
+
+#define F2FS_IOCTL_MAGIC 0xf5
+#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
+#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
/*
unsigned long long xattr_ver; /* cp version of xattr modification */
struct extent_info ext; /* in-memory extent cache entry */
struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
+
+ struct list_head inmem_pages; /* inmemory pages managed by f2fs */
+ struct mutex inmem_lock; /* lock for inmemory pages */
};
static inline void get_extent_info(struct extent_info *ext,
FI_INLINE_DATA, /* used for inline data*/
FI_APPEND_WRITE, /* inode has appended data */
FI_UPDATE_WRITE, /* inode has in-place-update data */
- FI_NEED_IPU, /* used fo ipu for fdatasync */
+ FI_NEED_IPU, /* used for ipu per file */
+ FI_ATOMIC_FILE, /* indicate atomic file */
};
static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
}
+static inline bool f2fs_is_atomic_file(struct inode *inode)
+{
+ return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
+}
+
static inline void *inline_data_addr(struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
/*
* segment.c
*/
+void register_inmem_page(struct inode *, struct page *);
+void commit_inmem_pages(struct inode *, bool);
void f2fs_balance_fs(struct f2fs_sb_info *);
void f2fs_balance_fs_bg(struct f2fs_sb_info *);
int f2fs_issue_flush(struct f2fs_sb_info *);
return ret;
}
+static int f2fs_ioc_start_atomic_write(struct file *filp)
+{
+ struct inode *inode = file_inode(filp);
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+
+ if (!inode_owner_or_capable(inode))
+ return -EACCES;
+
+ f2fs_balance_fs(sbi);
+
+ set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
+
+ return f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL);
+}
+
+static int f2fs_ioc_commit_atomic_write(struct file *filp)
+{
+ struct inode *inode = file_inode(filp);
+ int ret;
+
+ if (!inode_owner_or_capable(inode))
+ return -EACCES;
+
+ ret = mnt_want_write_file(filp);
+ if (ret)
+ return ret;
+
+ if (f2fs_is_atomic_file(inode))
+ commit_inmem_pages(inode, false);
+
+ ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
+ mnt_drop_write_file(filp);
+ return ret;
+}
+
static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
return f2fs_ioc_getflags(filp, arg);
case F2FS_IOC_SETFLAGS:
return f2fs_ioc_setflags(filp, arg);
+ case F2FS_IOC_START_ATOMIC_WRITE:
+ return f2fs_ioc_start_atomic_write(filp);
+ case F2FS_IOC_COMMIT_ATOMIC_WRITE:
+ return f2fs_ioc_commit_atomic_write(filp);
case FITRIM:
return f2fs_ioc_fitrim(filp, arg);
default:
if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
return false;
+ if (f2fs_is_atomic_file(inode))
+ return false;
+
nr_blocks = F2FS_I(inode)->i_xattr_nid ? 3 : 2;
if (inode->i_blocks > nr_blocks)
return false;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
+ /* some remained atomic pages should discarded */
+ if (f2fs_is_atomic_file(inode))
+ commit_inmem_pages(inode, true);
+
trace_f2fs_evict_inode(inode);
truncate_inode_pages_final(&inode->i_data);
static struct kmem_cache *discard_entry_slab;
static struct kmem_cache *sit_entry_set_slab;
+static struct kmem_cache *inmem_entry_slab;
/*
* __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
return result + __reverse_ffz(tmp);
}
+void register_inmem_page(struct inode *inode, struct page *page)
+{
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct inmem_pages *new;
+
+ new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
+
+ /* add atomic page indices to the list */
+ new->page = page;
+ INIT_LIST_HEAD(&new->list);
+
+ /* increase reference count with clean state */
+ mutex_lock(&fi->inmem_lock);
+ get_page(page);
+ list_add_tail(&new->list, &fi->inmem_pages);
+ mutex_unlock(&fi->inmem_lock);
+}
+
+void commit_inmem_pages(struct inode *inode, bool abort)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct inmem_pages *cur, *tmp;
+ bool submit_bio = false;
+ struct f2fs_io_info fio = {
+ .type = DATA,
+ .rw = WRITE_SYNC,
+ };
+
+ f2fs_balance_fs(sbi);
+ f2fs_lock_op(sbi);
+
+ mutex_lock(&fi->inmem_lock);
+ list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
+ lock_page(cur->page);
+ if (!abort && cur->page->mapping == inode->i_mapping) {
+ f2fs_wait_on_page_writeback(cur->page, DATA);
+ if (clear_page_dirty_for_io(cur->page))
+ inode_dec_dirty_pages(inode);
+ do_write_data_page(cur->page, &fio);
+ submit_bio = true;
+ }
+ f2fs_put_page(cur->page, 1);
+ list_del(&cur->list);
+ kmem_cache_free(inmem_entry_slab, cur);
+ }
+ if (submit_bio)
+ f2fs_submit_merged_bio(sbi, DATA, WRITE);
+ mutex_unlock(&fi->inmem_lock);
+
+ filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX);
+ f2fs_unlock_op(sbi);
+}
+
/*
* This function balances dirty node and dentry pages.
* In addition, it controls garbage collection.
sizeof(struct nat_entry_set));
if (!sit_entry_set_slab)
goto destory_discard_entry;
+
+ inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
+ sizeof(struct inmem_pages));
+ if (!inmem_entry_slab)
+ goto destroy_sit_entry_set;
return 0;
+destroy_sit_entry_set:
+ kmem_cache_destroy(sit_entry_set_slab);
destory_discard_entry:
kmem_cache_destroy(discard_entry_slab);
fail:
{
kmem_cache_destroy(sit_entry_set_slab);
kmem_cache_destroy(discard_entry_slab);
+ kmem_cache_destroy(inmem_entry_slab);
}
void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
};
+struct inmem_pages {
+ struct list_head list;
+ struct page *page;
+};
+
struct sit_info {
const struct segment_allocation *s_ops;
unsigned int policy = SM_I(sbi)->ipu_policy;
/* IPU can be done only for the user data */
- if (S_ISDIR(inode->i_mode))
+ if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
return false;
if (policy & (0x1 << F2FS_IPU_FORCE))
fi->i_advise = 0;
rwlock_init(&fi->ext.ext_lock);
init_rwsem(&fi->i_sem);
+ INIT_LIST_HEAD(&fi->inmem_pages);
+ mutex_init(&fi->inmem_lock);
set_inode_flag(fi, FI_NEW_INODE);