Currently we can hit a scenario where we'll tm_reclaim() twice. This
results in a TM bad thing exception because the second reclaim occurs
when not in suspend mode.
The scenario in which this can happen is the following. We attempt to
deliver a signal to userspace. To do this we need obtain the stack
pointer to write the signal context. To get this stack pointer we
must tm_reclaim() in case we need to use the checkpointed stack
pointer (see get_tm_stackpointer()). Normally we'd then return
directly to userspace to deliver the signal without going through
__switch_to().
Unfortunatley, if at this point we get an error (such as a bad
userspace stack pointer), we need to exit the process. The exit will
result in a __switch_to(). __switch_to() will attempt to save the
process state which results in another tm_reclaim(). This
tm_reclaim() now causes a TM Bad Thing exception as this state has
already been saved and the processor is no longer in TM suspend mode.
Whee!
This patch checks the state of the MSR to ensure we are TM suspended
before we attempt the tm_reclaim(). If we've already saved the state
away, we should no longer be in TM suspend mode. This has the
additional advantage of checking for a potential TM Bad Thing
exception.
Found using syscall fuzzer.
Fixes:
fb09692e71f1 ("powerpc: Add reclaim and recheckpoint functions for context switching transactional memory processes")
Cc: stable@vger.kernel.org # v3.9+
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
}
+ /*
+ * Use the current MSR TM suspended bit to track if we have
+ * checkpointed state outstanding.
+ * On signal delivery, we'd normally reclaim the checkpointed
+ * state to obtain stack pointer (see:get_tm_stackpointer()).
+ * This will then directly return to userspace without going
+ * through __switch_to(). However, if the stack frame is bad,
+ * we need to exit this thread which calls __switch_to() which
+ * will again attempt to reclaim the already saved tm state.
+ * Hence we need to check that we've not already reclaimed
+ * this state.
+ * We do this using the current MSR, rather tracking it in
+ * some specific thread_struct bit, as it has the additional
+ * benifit of checking for a potential TM bad thing exception.
+ */
+ if (!MSR_TM_SUSPENDED(mfmsr()))
+ return;
+
tm_reclaim(thr, thr->regs->msr, cause);
/* Having done the reclaim, we now have the checkpointed