\
__asm__ __volatile__( \
LOCK " decl (%%eax) \n" \
- " js "#fail_fn" \n" \
+ " js 2f \n" \
+ "1: \n" \
+ \
+ LOCK_SECTION_START("") \
+ "2: call "#fail_fn" \n" \
+ " jmp 1b \n" \
+ LOCK_SECTION_END \
\
:"=a" (dummy) \
: "a" (count) \
\
__asm__ __volatile__( \
LOCK " incl (%%eax) \n" \
- " jle "#fail_fn" \n" \
+ " jle 2f \n" \
+ "1: \n" \
+ \
+ LOCK_SECTION_START("") \
+ "2: call "#fail_fn" \n" \
+ " jmp 1b \n" \
+ LOCK_SECTION_END \
\
:"=a" (dummy) \
: "a" (count) \
/*
* The locking fastpath is the 1->0 transition from
* 'unlocked' into 'locked' state.
- *
- * NOTE: if asm/mutex.h is included, then some architectures
- * rely on mutex_lock() having _no other code_ here but this
- * fastpath. That allows the assembly fastpath to do
- * tail-merging optimizations. (If you want to put testcode
- * here, do it under #ifndef CONFIG_MUTEX_DEBUG.)
*/
__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
}
/*
* The unlocking fastpath is the 0->1 transition from 'locked'
* into 'unlocked' state:
- *
- * NOTE: no other code must be here - see mutex_lock() .
*/
__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
}
*/
int fastcall __sched mutex_lock_interruptible(struct mutex *lock)
{
- /* NOTE: no other code must be here - see mutex_lock() */
return __mutex_fastpath_lock_retval
(&lock->count, __mutex_lock_interruptible_slowpath);
}