Documentation/locking/atomic: Add documents for new atomic_t APIs
authorPeter Zijlstra <peterz@infradead.org>
Mon, 12 Jun 2017 12:50:27 +0000 (14:50 +0200)
committerIngo Molnar <mingo@kernel.org>
Thu, 10 Aug 2017 10:29:00 +0000 (12:29 +0200)
Since we've vastly expanded the atomic_t interface in recent years the
existing documentation is woefully out of date and people seem to get
confused a bit.

Start a new document to hopefully better explain the current state of
affairs.

The old atomic_ops.txt also covers bitmaps and a few more details so
this is not a full replacement and we'll therefore keep that document
around until such a time that we've managed to write more text to cover
its entire.

Also please, ReST people, go away.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Documentation/atomic_bitops.txt [new file with mode: 0644]
Documentation/atomic_t.txt [new file with mode: 0644]
Documentation/memory-barriers.txt

diff --git a/Documentation/atomic_bitops.txt b/Documentation/atomic_bitops.txt
new file mode 100644 (file)
index 0000000..5550bfd
--- /dev/null
@@ -0,0 +1,66 @@
+
+On atomic bitops.
+
+
+While our bitmap_{}() functions are non-atomic, we have a number of operations
+operating on single bits in a bitmap that are atomic.
+
+
+API
+---
+
+The single bit operations are:
+
+Non-RMW ops:
+
+  test_bit()
+
+RMW atomic operations without return value:
+
+  {set,clear,change}_bit()
+  clear_bit_unlock()
+
+RMW atomic operations with return value:
+
+  test_and_{set,clear,change}_bit()
+  test_and_set_bit_lock()
+
+Barriers:
+
+  smp_mb__{before,after}_atomic()
+
+
+All RMW atomic operations have a '__' prefixed variant which is non-atomic.
+
+
+SEMANTICS
+---------
+
+Non-atomic ops:
+
+In particular __clear_bit_unlock() suffers the same issue as atomic_set(),
+which is why the generic version maps to clear_bit_unlock(), see atomic_t.txt.
+
+
+RMW ops:
+
+The test_and_{}_bit() operations return the original value of the bit.
+
+
+ORDERING
+--------
+
+Like with atomic_t, the rule of thumb is:
+
+ - non-RMW operations are unordered;
+
+ - RMW operations that have no return value are unordered;
+
+ - RMW operations that have a return value are fully ordered.
+
+Except for test_and_set_bit_lock() which has ACQUIRE semantics and
+clear_bit_unlock() which has RELEASE semantics.
+
+Since a platform only has a single means of achieving atomic operations
+the same barriers as for atomic_t are used, see atomic_t.txt.
+
diff --git a/Documentation/atomic_t.txt b/Documentation/atomic_t.txt
new file mode 100644 (file)
index 0000000..eee1271
--- /dev/null
@@ -0,0 +1,200 @@
+
+On atomic types (atomic_t atomic64_t and atomic_long_t).
+
+The atomic type provides an interface to the architecture's means of atomic
+RMW operations between CPUs (atomic operations on MMIO are not supported and
+can lead to fatal traps on some platforms).
+
+API
+---
+
+The 'full' API consists of (atomic64_ and atomic_long_ prefixes omitted for
+brevity):
+
+Non-RMW ops:
+
+  atomic_read(), atomic_set()
+  atomic_read_acquire(), atomic_set_release()
+
+
+RMW atomic operations:
+
+Arithmetic:
+
+  atomic_{add,sub,inc,dec}()
+  atomic_{add,sub,inc,dec}_return{,_relaxed,_acquire,_release}()
+  atomic_fetch_{add,sub,inc,dec}{,_relaxed,_acquire,_release}()
+
+
+Bitwise:
+
+  atomic_{and,or,xor,andnot}()
+  atomic_fetch_{and,or,xor,andnot}{,_relaxed,_acquire,_release}()
+
+
+Swap:
+
+  atomic_xchg{,_relaxed,_acquire,_release}()
+  atomic_cmpxchg{,_relaxed,_acquire,_release}()
+  atomic_try_cmpxchg{,_relaxed,_acquire,_release}()
+
+
+Reference count (but please see refcount_t):
+
+  atomic_add_unless(), atomic_inc_not_zero()
+  atomic_sub_and_test(), atomic_dec_and_test()
+
+
+Misc:
+
+  atomic_inc_and_test(), atomic_add_negative()
+  atomic_dec_unless_positive(), atomic_inc_unless_negative()
+
+
+Barriers:
+
+  smp_mb__{before,after}_atomic()
+
+
+
+SEMANTICS
+---------
+
+Non-RMW ops:
+
+The non-RMW ops are (typically) regular LOADs and STOREs and are canonically
+implemented using READ_ONCE(), WRITE_ONCE(), smp_load_acquire() and
+smp_store_release() respectively.
+
+The one detail to this is that atomic_set{}() should be observable to the RMW
+ops. That is:
+
+  C atomic-set
+
+  {
+    atomic_set(v, 1);
+  }
+
+  P1(atomic_t *v)
+  {
+    atomic_add_unless(v, 1, 0);
+  }
+
+  P2(atomic_t *v)
+  {
+    atomic_set(v, 0);
+  }
+
+  exists
+  (v=2)
+
+In this case we would expect the atomic_set() from CPU1 to either happen
+before the atomic_add_unless(), in which case that latter one would no-op, or
+_after_ in which case we'd overwrite its result. In no case is "2" a valid
+outcome.
+
+This is typically true on 'normal' platforms, where a regular competing STORE
+will invalidate a LL/SC or fail a CMPXCHG.
+
+The obvious case where this is not so is when we need to implement atomic ops
+with a lock:
+
+  CPU0                                         CPU1
+
+  atomic_add_unless(v, 1, 0);
+    lock();
+    ret = READ_ONCE(v->counter); // == 1
+                                               atomic_set(v, 0);
+    if (ret != u)                                WRITE_ONCE(v->counter, 0);
+      WRITE_ONCE(v->counter, ret + 1);
+    unlock();
+
+the typical solution is to then implement atomic_set{}() with atomic_xchg().
+
+
+RMW ops:
+
+These come in various forms:
+
+ - plain operations without return value: atomic_{}()
+
+ - operations which return the modified value: atomic_{}_return()
+
+   these are limited to the arithmetic operations because those are
+   reversible. Bitops are irreversible and therefore the modified value
+   is of dubious utility.
+
+ - operations which return the original value: atomic_fetch_{}()
+
+ - swap operations: xchg(), cmpxchg() and try_cmpxchg()
+
+ - misc; the special purpose operations that are commonly used and would,
+   given the interface, normally be implemented using (try_)cmpxchg loops but
+   are time critical and can, (typically) on LL/SC architectures, be more
+   efficiently implemented.
+
+All these operations are SMP atomic; that is, the operations (for a single
+atomic variable) can be fully ordered and no intermediate state is lost or
+visible.
+
+
+ORDERING  (go read memory-barriers.txt first)
+--------
+
+The rule of thumb:
+
+ - non-RMW operations are unordered;
+
+ - RMW operations that have no return value are unordered;
+
+ - RMW operations that have a return value are fully ordered;
+
+ - RMW operations that are conditional are unordered on FAILURE,
+   otherwise the above rules apply.
+
+Except of course when an operation has an explicit ordering like:
+
+ {}_relaxed: unordered
+ {}_acquire: the R of the RMW (or atomic_read) is an ACQUIRE
+ {}_release: the W of the RMW (or atomic_set)  is a  RELEASE
+
+Where 'unordered' is against other memory locations. Address dependencies are
+not defeated.
+
+Fully ordered primitives are ordered against everything prior and everything
+subsequent. Therefore a fully ordered primitive is like having an smp_mb()
+before and an smp_mb() after the primitive.
+
+
+The barriers:
+
+  smp_mb__{before,after}_atomic()
+
+only apply to the RMW ops and can be used to augment/upgrade the ordering
+inherent to the used atomic op. These barriers provide a full smp_mb().
+
+These helper barriers exist because architectures have varying implicit
+ordering on their SMP atomic primitives. For example our TSO architectures
+provide full ordered atomics and these barriers are no-ops.
+
+Thus:
+
+  atomic_fetch_add();
+
+is equivalent to:
+
+  smp_mb__before_atomic();
+  atomic_fetch_add_relaxed();
+  smp_mb__after_atomic();
+
+However the atomic_fetch_add() might be implemented more efficiently.
+
+Further, while something like:
+
+  smp_mb__before_atomic();
+  atomic_dec(&X);
+
+is a 'typical' RELEASE pattern, the barrier is strictly stronger than
+a RELEASE. Similarly for something like:
+
+
index c4ddfcd5ee3265788f37061e6b739b99b707df16..9f34364922c8143f46b0eb7fc91445d4f0cf6976 100644 (file)
@@ -498,11 +498,11 @@ And a couple of implicit varieties:
      This means that ACQUIRE acts as a minimal "acquire" operation and
      RELEASE acts as a minimal "release" operation.
 
-A subset of the atomic operations described in core-api/atomic_ops.rst have
-ACQUIRE and RELEASE variants in addition to fully-ordered and relaxed (no
-barrier semantics) definitions.  For compound atomics performing both a load
-and a store, ACQUIRE semantics apply only to the load and RELEASE semantics
-apply only to the store portion of the operation.
+A subset of the atomic operations described in atomic_t.txt have ACQUIRE and
+RELEASE variants in addition to fully-ordered and relaxed (no barrier
+semantics) definitions.  For compound atomics performing both a load and a
+store, ACQUIRE semantics apply only to the load and RELEASE semantics apply
+only to the store portion of the operation.
 
 Memory barriers are only required where there's a possibility of interaction
 between two CPUs or between a CPU and a device.  If it can be guaranteed that
@@ -1876,8 +1876,7 @@ There are some more advanced barrier functions:
      This makes sure that the death mark on the object is perceived to be set
      *before* the reference counter is decremented.
 
-     See Documentation/core-api/atomic_ops.rst for more information.  See the
-     "Atomic operations" subsection for information on where to use these.
+     See Documentation/atomic_{t,bitops}.txt for more information.
 
 
  (*) lockless_dereference();
@@ -2503,88 +2502,7 @@ operations are noted specially as some of them imply full memory barriers and
 some don't, but they're very heavily relied on as a group throughout the
 kernel.
 
-Any atomic operation that modifies some state in memory and returns information
-about the state (old or new) implies an SMP-conditional general memory barrier
-(smp_mb()) on each side of the actual operation (with the exception of
-explicit lock operations, described later).  These include:
-
-       xchg();
-       atomic_xchg();                  atomic_long_xchg();
-       atomic_inc_return();            atomic_long_inc_return();
-       atomic_dec_return();            atomic_long_dec_return();
-       atomic_add_return();            atomic_long_add_return();
-       atomic_sub_return();            atomic_long_sub_return();
-       atomic_inc_and_test();          atomic_long_inc_and_test();
-       atomic_dec_and_test();          atomic_long_dec_and_test();
-       atomic_sub_and_test();          atomic_long_sub_and_test();
-       atomic_add_negative();          atomic_long_add_negative();
-       test_and_set_bit();
-       test_and_clear_bit();
-       test_and_change_bit();
-
-       /* when succeeds */
-       cmpxchg();
-       atomic_cmpxchg();               atomic_long_cmpxchg();
-       atomic_add_unless();            atomic_long_add_unless();
-
-These are used for such things as implementing ACQUIRE-class and RELEASE-class
-operations and adjusting reference counters towards object destruction, and as
-such the implicit memory barrier effects are necessary.
-
-
-The following operations are potential problems as they do _not_ imply memory
-barriers, but might be used for implementing such things as RELEASE-class
-operations:
-
-       atomic_set();
-       set_bit();
-       clear_bit();
-       change_bit();
-
-With these the appropriate explicit memory barrier should be used if necessary
-(smp_mb__before_atomic() for instance).
-
-
-The following also do _not_ imply memory barriers, and so may require explicit
-memory barriers under some circumstances (smp_mb__before_atomic() for
-instance):
-
-       atomic_add();
-       atomic_sub();
-       atomic_inc();
-       atomic_dec();
-
-If they're used for statistics generation, then they probably don't need memory
-barriers, unless there's a coupling between statistical data.
-
-If they're used for reference counting on an object to control its lifetime,
-they probably don't need memory barriers because either the reference count
-will be adjusted inside a locked section, or the caller will already hold
-sufficient references to make the lock, and thus a memory barrier unnecessary.
-
-If they're used for constructing a lock of some description, then they probably
-do need memory barriers as a lock primitive generally has to do things in a
-specific order.
-
-Basically, each usage case has to be carefully considered as to whether memory
-barriers are needed or not.
-
-The following operations are special locking primitives:
-
-       test_and_set_bit_lock();
-       clear_bit_unlock();
-       __clear_bit_unlock();
-
-These implement ACQUIRE-class and RELEASE-class operations.  These should be
-used in preference to other operations when implementing locking primitives,
-because their implementations can be optimised on many architectures.
-
-[!] Note that special memory barrier primitives are available for these
-situations because on some CPUs the atomic instructions used imply full memory
-barriers, and so barrier instructions are superfluous in conjunction with them,
-and in such cases the special barrier primitives will be no-ops.
-
-See Documentation/core-api/atomic_ops.rst for more information.
+See Documentation/atomic_t.txt for more information.
 
 
 ACCESSING DEVICES