phy/wlc_phy_n.o \
phy/wlc_phytbl_lcn.o \
phy/wlc_phytbl_n.o \
+ phy/wlc_phy_qmath.o \
../util/bcmutils.o \
../util/bcmwifi.o \
../util/bcmotp.o \
../util/bcmsrom.o \
../util/hnddma.o \
../util/nicpci.o \
- ../util/qmath.o \
../util/nvram/nvram_ro.o
MODULEPFX := brcmsmac
#include <linux/bitops.h>
#include <linux/delay.h>
#include <wlc_cfg.h>
-#include <qmath.h>
#include <linux/pci.h>
#include <aiutils.h>
#include <wlc_pmu.h>
#include <bcmdevs.h>
#include <sbhnddma.h>
-#include <wlc_phy_radio.h>
-#include <wlc_phy_int.h>
-#include <wlc_phy_lcn.h>
-#include <wlc_phytbl_lcn.h>
+#include "wlc_phy_radio.h"
+#include "wlc_phy_int.h"
+#include "wlc_phy_qmath.h"
+#include "wlc_phy_lcn.h"
+#include "wlc_phytbl_lcn.h"
#define PLL_2064_NDIV 90
#define PLL_2064_LOW_END_VCO 3000
--- /dev/null
+/*
+ * Copyright (c) 2010 Broadcom Corporation
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <linux/types.h>
+
+#include "wlc_phy_qmath.h"
+
+/*
+Description: This function saturate input 32 bit number into a 16 bit number.
+If input number is greater than 0x7fff then output is saturated to 0x7fff.
+else if input number is less than 0xffff8000 then output is saturated to 0xffff8000
+else output is same as input.
+*/
+s16 qm_sat32(s32 op)
+{
+ s16 result;
+ if (op > (s32) 0x7fff) {
+ result = 0x7fff;
+ } else if (op < (s32) 0xffff8000) {
+ result = (s16) (0x8000);
+ } else {
+ result = (s16) op;
+ }
+ return result;
+}
+
+/*
+Description: This function multiply two input 16 bit numbers and return the 32 bit result.
+This multiplication is similar to compiler multiplication. This operation is defined if
+16 bit multiplication on the processor platform is cheaper than 32 bit multiplication (as
+the most of qmath functions can be replaced with processor intrinsic instructions).
+*/
+s32 qm_mul321616(s16 op1, s16 op2)
+{
+ return (s32) (op1) * (s32) (op2);
+}
+
+/*
+Description: This function make 16 bit multiplication and return the result in 16 bits.
+To fit the result into 16 bits the 32 bit multiplication result is right
+shifted by 16 bits.
+*/
+s16 qm_mul16(s16 op1, s16 op2)
+{
+ s32 result;
+ result = ((s32) (op1) * (s32) (op2));
+ return (s16) (result >> 16);
+}
+
+/*
+Description: This function multiply two 16 bit numbers and return the result in 32 bits.
+This function remove the extra sign bit created by the multiplication by leftshifting the
+32 bit multiplication result by 1 bit before returning the result. So the output is
+twice that of compiler multiplication. (i.e. qm_muls321616(2,3)=12).
+When both input 16 bit numbers are 0x8000, then the result is saturated to 0x7fffffff.
+*/
+s32 qm_muls321616(s16 op1, s16 op2)
+{
+ s32 result;
+ if (op1 == (s16) (0x8000) && op2 == (s16) (0x8000)) {
+ result = 0x7fffffff;
+ } else {
+ result = ((s32) (op1) * (s32) (op2));
+ result = result << 1;
+ }
+ return result;
+}
+
+/*
+Description: This function make 16 bit unsigned multiplication. To fit the output into
+16 bits the 32 bit multiplication result is right shifted by 16 bits.
+*/
+u16 qm_mulu16(u16 op1, u16 op2)
+{
+ return (u16) (((u32) op1 * (u32) op2) >> 16);
+}
+
+/*
+Description: This function make 16 bit multiplication and return the result in 16 bits.
+To fit the multiplication result into 16 bits the multiplication result is right shifted by
+15 bits. Right shifting 15 bits instead of 16 bits is done to remove the extra sign bit formed
+due to the multiplication.
+When both the 16bit inputs are 0x8000 then the output is saturated to 0x7fffffff.
+*/
+s16 qm_muls16(s16 op1, s16 op2)
+{
+ s32 result;
+ if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000) {
+ result = 0x7fffffff;
+ } else {
+ result = ((s32) (op1) * (s32) (op2));
+ }
+ return (s16) (result >> 15);
+}
+
+/*
+Description: This function add two 32 bit numbers and return the 32bit result.
+If the result overflow 32 bits, the output will be saturated to 32bits.
+*/
+s32 qm_add32(s32 op1, s32 op2)
+{
+ s32 result;
+ result = op1 + op2;
+ if (op1 < 0 && op2 < 0 && result > 0) {
+ result = 0x80000000;
+ } else if (op1 > 0 && op2 > 0 && result < 0) {
+ result = 0x7fffffff;
+ }
+ return result;
+}
+
+/*
+Description: This function add two 16 bit numbers and return the 16bit result.
+If the result overflow 16 bits, the output will be saturated to 16bits.
+*/
+s16 qm_add16(s16 op1, s16 op2)
+{
+ s16 result;
+ s32 temp = (s32) op1 + (s32) op2;
+ if (temp > (s32) 0x7fff) {
+ result = (s16) 0x7fff;
+ } else if (temp < (s32) 0xffff8000) {
+ result = (s16) 0xffff8000;
+ } else {
+ result = (s16) temp;
+ }
+ return result;
+}
+
+/*
+Description: This function make 16 bit subtraction and return the 16bit result.
+If the result overflow 16 bits, the output will be saturated to 16bits.
+*/
+s16 qm_sub16(s16 op1, s16 op2)
+{
+ s16 result;
+ s32 temp = (s32) op1 - (s32) op2;
+ if (temp > (s32) 0x7fff) {
+ result = (s16) 0x7fff;
+ } else if (temp < (s32) 0xffff8000) {
+ result = (s16) 0xffff8000;
+ } else {
+ result = (s16) temp;
+ }
+ return result;
+}
+
+/*
+Description: This function make 32 bit subtraction and return the 32bit result.
+If the result overflow 32 bits, the output will be saturated to 32bits.
+*/
+s32 qm_sub32(s32 op1, s32 op2)
+{
+ s32 result;
+ result = op1 - op2;
+ if (op1 >= 0 && op2 < 0 && result < 0) {
+ result = 0x7fffffff;
+ } else if (op1 < 0 && op2 > 0 && result > 0) {
+ result = 0x80000000;
+ }
+ return result;
+}
+
+/*
+Description: This function multiply input 16 bit numbers and accumulate the result
+into the input 32 bit number and return the 32 bit accumulated result.
+If the accumulation result in overflow, then the output will be saturated.
+*/
+s32 qm_mac321616(s32 acc, s16 op1, s16 op2)
+{
+ s32 result;
+ result = qm_add32(acc, qm_mul321616(op1, op2));
+ return result;
+}
+
+/*
+Description: This function make a 32 bit saturated left shift when the specified shift
+is +ve. This function will make a 32 bit right shift when the specified shift is -ve.
+This function return the result after shifting operation.
+*/
+s32 qm_shl32(s32 op, int shift)
+{
+ int i;
+ s32 result;
+ result = op;
+ if (shift > 31)
+ shift = 31;
+ else if (shift < -31)
+ shift = -31;
+ if (shift >= 0) {
+ for (i = 0; i < shift; i++) {
+ result = qm_add32(result, result);
+ }
+ } else {
+ result = result >> (-shift);
+ }
+ return result;
+}
+
+/*
+Description: This function make a 32 bit right shift when shift is +ve.
+This function make a 32 bit saturated left shift when shift is -ve. This function
+return the result of the shift operation.
+*/
+s32 qm_shr32(s32 op, int shift)
+{
+ return qm_shl32(op, -shift);
+}
+
+/*
+Description: This function make a 16 bit saturated left shift when the specified shift
+is +ve. This function will make a 16 bit right shift when the specified shift is -ve.
+This function return the result after shifting operation.
+*/
+s16 qm_shl16(s16 op, int shift)
+{
+ int i;
+ s16 result;
+ result = op;
+ if (shift > 15)
+ shift = 15;
+ else if (shift < -15)
+ shift = -15;
+ if (shift > 0) {
+ for (i = 0; i < shift; i++) {
+ result = qm_add16(result, result);
+ }
+ } else {
+ result = result >> (-shift);
+ }
+ return result;
+}
+
+/*
+Description: This function make a 16 bit right shift when shift is +ve.
+This function make a 16 bit saturated left shift when shift is -ve. This function
+return the result of the shift operation.
+*/
+s16 qm_shr16(s16 op, int shift)
+{
+ return qm_shl16(op, -shift);
+}
+
+/*
+Description: This function return the number of redundant sign bits in a 16 bit number.
+Example: qm_norm16(0x0080) = 7.
+*/
+s16 qm_norm16(s16 op)
+{
+ u16 u16extraSignBits;
+ if (op == 0) {
+ return 15;
+ } else {
+ u16extraSignBits = 0;
+ while ((op >> 15) == (op >> 14)) {
+ u16extraSignBits++;
+ op = op << 1;
+ }
+ }
+ return u16extraSignBits;
+}
+
+/*
+Description: This function return the number of redundant sign bits in a 32 bit number.
+Example: qm_norm32(0x00000080) = 23
+*/
+s16 qm_norm32(s32 op)
+{
+ u16 u16extraSignBits;
+ if (op == 0) {
+ return 31;
+ } else {
+ u16extraSignBits = 0;
+ while ((op >> 31) == (op >> 30)) {
+ u16extraSignBits++;
+ op = op << 1;
+ }
+ }
+ return u16extraSignBits;
+}
+
+/*
+Description: This function divide two 16 bit unsigned numbers.
+The numerator should be less than denominator. So the quotient is always less than 1.
+This function return the quotient in q.15 format.
+*/
+s16 qm_div_s(s16 num, s16 denom)
+{
+ s16 var_out;
+ s16 iteration;
+ s32 L_num;
+ s32 L_denom;
+ L_num = (num) << 15;
+ L_denom = (denom) << 15;
+ for (iteration = 0; iteration < 15; iteration++) {
+ L_num <<= 1;
+ if (L_num >= L_denom) {
+ L_num = qm_sub32(L_num, L_denom);
+ L_num = qm_add32(L_num, 1);
+ }
+ }
+ var_out = (s16) (L_num & 0x7fff);
+ return var_out;
+}
+
+/*
+Description: This function compute the absolute value of a 16 bit number.
+*/
+s16 qm_abs16(s16 op)
+{
+ if (op < 0) {
+ if (op == (s16) 0xffff8000) {
+ return 0x7fff;
+ } else {
+ return -op;
+ }
+ } else {
+ return op;
+ }
+}
+
+/*
+Description: This function divide two 16 bit numbers.
+The quotient is returned through return value.
+The qformat of the quotient is returned through the pointer (qQuotient) passed
+to this function. The qformat of quotient is adjusted appropriately such that
+the quotient occupies all 16 bits.
+*/
+s16 qm_div16(s16 num, s16 denom, s16 *qQuotient)
+{
+ s16 sign;
+ s16 nNum, nDenom;
+ sign = num ^ denom;
+ num = qm_abs16(num);
+ denom = qm_abs16(denom);
+ nNum = qm_norm16(num);
+ nDenom = qm_norm16(denom);
+ num = qm_shl16(num, nNum - 1);
+ denom = qm_shl16(denom, nDenom);
+ *qQuotient = nNum - 1 - nDenom + 15;
+ if (sign >= 0) {
+ return qm_div_s(num, denom);
+ } else {
+ return -qm_div_s(num, denom);
+ }
+}
+
+/*
+Description: This function compute absolute value of a 32 bit number.
+*/
+s32 qm_abs32(s32 op)
+{
+ if (op < 0) {
+ if (op == (s32) 0x80000000) {
+ return 0x7fffffff;
+ } else {
+ return -op;
+ }
+ } else {
+ return op;
+ }
+}
+
+/*
+Description: This function divide two 32 bit numbers. The division is performed
+by considering only important 16 bits in 32 bit numbers.
+The quotient is returned through return value.
+The qformat of the quotient is returned through the pointer (qquotient) passed
+to this function. The qformat of quotient is adjusted appropriately such that
+the quotient occupies all 16 bits.
+*/
+s16 qm_div163232(s32 num, s32 denom, s16 *qquotient)
+{
+ s32 sign;
+ s16 nNum, nDenom;
+ sign = num ^ denom;
+ num = qm_abs32(num);
+ denom = qm_abs32(denom);
+ nNum = qm_norm32(num);
+ nDenom = qm_norm32(denom);
+ num = qm_shl32(num, nNum - 1);
+ denom = qm_shl32(denom, nDenom);
+ *qquotient = nNum - 1 - nDenom + 15;
+ if (sign >= 0) {
+ return qm_div_s((s16) (num >> 16), (s16) (denom >> 16));
+ } else {
+ return -qm_div_s((s16) (num >> 16), (s16) (denom >> 16));
+ }
+}
+
+/*
+Description: This function multiply a 32 bit number with a 16 bit number.
+The multiplicaton result is right shifted by 16 bits to fit the result
+into 32 bit output.
+*/
+s32 qm_mul323216(s32 op1, s16 op2)
+{
+ s16 hi;
+ u16 lo;
+ s32 result;
+ hi = op1 >> 16;
+ lo = (s16) (op1 & 0xffff);
+ result = qm_mul321616(hi, op2);
+ result = result + (qm_mulsu321616(op2, lo) >> 16);
+ return result;
+}
+
+/*
+Description: This function multiply signed 16 bit number with unsigned 16 bit number and return
+the result in 32 bits.
+*/
+s32 qm_mulsu321616(s16 op1, u16 op2)
+{
+ return (s32) (op1) * op2;
+}
+
+/*
+Description: This function multiply 32 bit number with 16 bit number. The multiplication result is
+right shifted by 15 bits to fit the result into 32 bits. Right shifting by only 15 bits instead of
+16 bits is done to remove the extra sign bit formed by multiplication from the return value.
+When the input numbers are 0x80000000, 0x8000 the return value is saturated to 0x7fffffff.
+*/
+s32 qm_muls323216(s32 op1, s16 op2)
+{
+ s16 hi;
+ u16 lo;
+ s32 result;
+ hi = op1 >> 16;
+ lo = (s16) (op1 & 0xffff);
+ result = qm_muls321616(hi, op2);
+ result = qm_add32(result, (qm_mulsu321616(op2, lo) >> 15));
+ return result;
+}
+
+/*
+Description: This function multiply two 32 bit numbers. The multiplication result is right
+shifted by 32 bits to fit the multiplication result into 32 bits. The right shifted
+multiplication result is returned as output.
+*/
+s32 qm_mul32(s32 a, s32 b)
+{
+ s16 hi1, hi2;
+ u16 lo1, lo2;
+ s32 result;
+ hi1 = a >> 16;
+ hi2 = b >> 16;
+ lo1 = (u16) (a & 0xffff);
+ lo2 = (u16) (b & 0xffff);
+ result = qm_mul321616(hi1, hi2);
+ result = result + (qm_mulsu321616(hi1, lo2) >> 16);
+ result = result + (qm_mulsu321616(hi2, lo1) >> 16);
+ return result;
+}
+
+/*
+Description: This function multiply two 32 bit numbers. The multiplication result is
+right shifted by 31 bits to fit the multiplication result into 32 bits. The right
+shifted multiplication result is returned as output. Right shifting by only 31 bits
+instead of 32 bits is done to remove the extra sign bit formed by multiplication.
+When the input numbers are 0x80000000, 0x80000000 the return value is saturated to
+0x7fffffff.
+*/
+s32 qm_muls32(s32 a, s32 b)
+{
+ s16 hi1, hi2;
+ u16 lo1, lo2;
+ s32 result;
+ hi1 = a >> 16;
+ hi2 = b >> 16;
+ lo1 = (u16) (a & 0xffff);
+ lo2 = (u16) (b & 0xffff);
+ result = qm_muls321616(hi1, hi2);
+ result = qm_add32(result, (qm_mulsu321616(hi1, lo2) >> 15));
+ result = qm_add32(result, (qm_mulsu321616(hi2, lo1) >> 15));
+ result = qm_add32(result, (qm_mulu16(lo1, lo2) >> 15));
+ return result;
+}
+
+/* This table is log2(1+(i/32)) where i=[0:1:31], in q.15 format */
+static const s16 log_table[] = {
+ 0,
+ 1455,
+ 2866,
+ 4236,
+ 5568,
+ 6863,
+ 8124,
+ 9352,
+ 10549,
+ 11716,
+ 12855,
+ 13968,
+ 15055,
+ 16117,
+ 17156,
+ 18173,
+ 19168,
+ 20143,
+ 21098,
+ 22034,
+ 22952,
+ 23852,
+ 24736,
+ 25604,
+ 26455,
+ 27292,
+ 28114,
+ 28922,
+ 29717,
+ 30498,
+ 31267,
+ 32024
+};
+
+#define LOG_TABLE_SIZE 32 /* log_table size */
+#define LOG2_LOG_TABLE_SIZE 5 /* log2(log_table size) */
+#define Q_LOG_TABLE 15 /* qformat of log_table */
+#define LOG10_2 19728 /* log10(2) in q.16 */
+
+/*
+Description:
+This routine takes the input number N and its q format qN and compute
+the log10(N). This routine first normalizes the input no N. Then N is in mag*(2^x) format.
+mag is any number in the range 2^30-(2^31 - 1). Then log2(mag * 2^x) = log2(mag) + x is computed.
+From that log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
+This routine looks the log2 value in the table considering LOG2_LOG_TABLE_SIZE+1 MSBs.
+As the MSB is always 1, only next LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup.
+Next 16 MSBs are used for interpolation.
+Inputs:
+N - number to which log10 has to be found.
+qN - q format of N
+log10N - address where log10(N) will be written.
+qLog10N - address where log10N qformat will be written.
+Note/Problem:
+For accurate results input should be in normalized or near normalized form.
+*/
+void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
+{
+ s16 s16norm, s16tableIndex, s16errorApproximation;
+ u16 u16offset;
+ s32 s32log;
+
+ /* normalize the N. */
+ s16norm = qm_norm32(N);
+ N = N << s16norm;
+
+ /* The qformat of N after normalization.
+ * -30 is added to treat the no as between 1.0 to 2.0
+ * i.e. after adding the -30 to the qformat the decimal point will be
+ * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
+ * at the right side of 30th bit.
+ */
+ qN = qN + s16norm - 30;
+
+ /* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the MSB */
+ s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));
+
+ /* remove the MSB. the MSB is always 1 after normalization. */
+ s16tableIndex =
+ s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);
+
+ /* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
+ N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);
+
+ /* take the offset as the 16 MSBS after table index.
+ */
+ u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));
+
+ /* look the log value in the table. */
+ s32log = log_table[s16tableIndex]; /* q.15 format */
+
+ /* interpolate using the offset. */
+ s16errorApproximation = (s16) qm_mulu16(u16offset, (u16) (log_table[s16tableIndex + 1] - log_table[s16tableIndex])); /* q.15 */
+
+ s32log = qm_add16((s16) s32log, s16errorApproximation); /* q.15 format */
+
+ /* adjust for the qformat of the N as
+ * log2(mag * 2^x) = log2(mag) + x
+ */
+ s32log = qm_add32(s32log, ((s32) -qN) << 15); /* q.15 format */
+
+ /* normalize the result. */
+ s16norm = qm_norm32(s32log);
+
+ /* bring all the important bits into lower 16 bits */
+ s32log = qm_shl32(s32log, s16norm - 16); /* q.15+s16norm-16 format */
+
+ /* compute the log10(N) by multiplying log2(N) with log10(2).
+ * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
+ * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
+ */
+ *log10N = qm_muls16((s16) s32log, (s16) LOG10_2);
+
+ /* write the q format of the result. */
+ *qLog10N = 15 + s16norm - 16 + 1;
+
+ return;
+}
+
+/*
+Description:
+This routine compute 1/N.
+This routine reformates the given no N as N * 2^qN where N is in between 0.5 and 1.0
+in q.15 format in 16 bits. So the problem now boils down to finding the inverse of a
+q.15 no in 16 bits which is in the range of 0.5 to 1.0. The output is always between
+2.0 to 1. So the output is 2.0 to 1.0 in q.30 format. Once the final output format is found
+by taking the qN into account. Inverse is found with newton rapson method. Initially
+inverse (x) is guessed as 1/0.75 (with appropriate sign). The new guess is calculated
+using the formula x' = 2*x - N*x*x. After 4 or 5 iterations the inverse is very close to
+inverse of N.
+Inputs:
+N - number to which 1/N has to be found.
+qn - q format of N.
+sqrtN - address where 1/N has to be written.
+qsqrtN - address where q format of 1/N has to be written.
+*/
+#define qx 29
+void qm_1byN(s32 N, s16 qN, s32 *result, s16 *qResult)
+{
+ s16 normN;
+ s32 s32firstTerm, s32secondTerm, x;
+ int i;
+
+ normN = qm_norm32(N);
+
+ /* limit N to least significant 16 bits. 15th bit is the sign bit. */
+ N = qm_shl32(N, normN - 16);
+ qN = qN + normN - 16 - 15;
+ /* -15 is added to treat N as 16 bit q.15 number in the range from 0.5 to 1 */
+
+ /* Take the initial guess as 1/0.75 in qx format with appropriate sign. */
+ if (N >= 0) {
+ x = (s32) ((1 / 0.75) * (1 << qx));
+ /* input no is in the range 0.5 to 1. So 1/0.75 is taken as initial guess. */
+ } else {
+ x = (s32) ((1 / -0.75) * (1 << qx));
+ /* input no is in the range -0.5 to -1. So 1/-0.75 is taken as initial guess. */
+ }
+
+ /* iterate the equation x = 2*x - N*x*x for 4 times. */
+ for (i = 0; i < 4; i++) {
+ s32firstTerm = qm_shl32(x, 1); /* s32firstTerm = 2*x in q.29 */
+ s32secondTerm =
+ qm_muls321616((s16) (s32firstTerm >> 16),
+ (s16) (s32firstTerm >> 16));
+ /* s32secondTerm = x*x in q.(29+1-16)*2+1 */
+ s32secondTerm =
+ qm_muls321616((s16) (s32secondTerm >> 16), (s16) N);
+ /* s32secondTerm = N*x*x in q.((29+1-16)*2+1)-16+15+1 i.e. in q.29 */
+ x = qm_sub32(s32firstTerm, s32secondTerm);
+ /* can be added directly as both are in q.29 */
+ }
+
+ /* Bring the x to q.30 format. */
+ *result = qm_shl32(x, 1);
+ /* giving the output in q.30 format for q.15 input in 16 bits. */
+
+ /* compute the final q format of the result. */
+ *qResult = -qN + 30; /* adjusting the q format of actual output */
+
+ return;
+}
+
+#undef qx
--- /dev/null
+/*
+ * Copyright (c) 2010 Broadcom Corporation
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#ifndef __QMATH_H__
+#define __QMATH_H__
+
+s16 qm_sat32(s32 op);
+
+s32 qm_mul321616(s16 op1, s16 op2);
+
+s16 qm_mul16(s16 op1, s16 op2);
+
+s32 qm_muls321616(s16 op1, s16 op2);
+
+u16 qm_mulu16(u16 op1, u16 op2);
+
+s16 qm_muls16(s16 op1, s16 op2);
+
+s32 qm_add32(s32 op1, s32 op2);
+
+s16 qm_add16(s16 op1, s16 op2);
+
+s16 qm_sub16(s16 op1, s16 op2);
+
+s32 qm_sub32(s32 op1, s32 op2);
+
+s32 qm_mac321616(s32 acc, s16 op1, s16 op2);
+
+s32 qm_shl32(s32 op, int shift);
+
+s32 qm_shr32(s32 op, int shift);
+
+s16 qm_shl16(s16 op, int shift);
+
+s16 qm_shr16(s16 op, int shift);
+
+s16 qm_norm16(s16 op);
+
+s16 qm_norm32(s32 op);
+
+s16 qm_div_s(s16 num, s16 denom);
+
+s16 qm_abs16(s16 op);
+
+s16 qm_div16(s16 num, s16 denom, s16 *qQuotient);
+
+s32 qm_abs32(s32 op);
+
+s16 qm_div163232(s32 num, s32 denom, s16 *qquotient);
+
+s32 qm_mul323216(s32 op1, s16 op2);
+
+s32 qm_mulsu321616(s16 op1, u16 op2);
+
+s32 qm_muls323216(s32 op1, s16 op2);
+
+s32 qm_mul32(s32 a, s32 b);
+
+s32 qm_muls32(s32 a, s32 b);
+
+void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N);
+
+void qm_1byN(s32 N, s16 qN, s32 *result, s16 *qResult);
+
+#endif /* #ifndef __QMATH_H__ */
+++ /dev/null
-/*
- * Copyright (c) 2010 Broadcom Corporation
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
- * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
- * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-
-#ifndef __QMATH_H__
-#define __QMATH_H__
-
-s16 qm_sat32(s32 op);
-
-s32 qm_mul321616(s16 op1, s16 op2);
-
-s16 qm_mul16(s16 op1, s16 op2);
-
-s32 qm_muls321616(s16 op1, s16 op2);
-
-u16 qm_mulu16(u16 op1, u16 op2);
-
-s16 qm_muls16(s16 op1, s16 op2);
-
-s32 qm_add32(s32 op1, s32 op2);
-
-s16 qm_add16(s16 op1, s16 op2);
-
-s16 qm_sub16(s16 op1, s16 op2);
-
-s32 qm_sub32(s32 op1, s32 op2);
-
-s32 qm_mac321616(s32 acc, s16 op1, s16 op2);
-
-s32 qm_shl32(s32 op, int shift);
-
-s32 qm_shr32(s32 op, int shift);
-
-s16 qm_shl16(s16 op, int shift);
-
-s16 qm_shr16(s16 op, int shift);
-
-s16 qm_norm16(s16 op);
-
-s16 qm_norm32(s32 op);
-
-s16 qm_div_s(s16 num, s16 denom);
-
-s16 qm_abs16(s16 op);
-
-s16 qm_div16(s16 num, s16 denom, s16 *qQuotient);
-
-s32 qm_abs32(s32 op);
-
-s16 qm_div163232(s32 num, s32 denom, s16 *qquotient);
-
-s32 qm_mul323216(s32 op1, s16 op2);
-
-s32 qm_mulsu321616(s16 op1, u16 op2);
-
-s32 qm_muls323216(s32 op1, s16 op2);
-
-s32 qm_mul32(s32 a, s32 b);
-
-s32 qm_muls32(s32 a, s32 b);
-
-void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N);
-
-void qm_1byN(s32 N, s16 qN, s32 *result, s16 *qResult);
-
-#endif /* #ifndef __QMATH_H__ */
+++ /dev/null
-/*
- * Copyright (c) 2010 Broadcom Corporation
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
- * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
- * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-
-#include <linux/types.h>
-#include "qmath.h"
-
-/*
-Description: This function saturate input 32 bit number into a 16 bit number.
-If input number is greater than 0x7fff then output is saturated to 0x7fff.
-else if input number is less than 0xffff8000 then output is saturated to 0xffff8000
-else output is same as input.
-*/
-s16 qm_sat32(s32 op)
-{
- s16 result;
- if (op > (s32) 0x7fff) {
- result = 0x7fff;
- } else if (op < (s32) 0xffff8000) {
- result = (s16) (0x8000);
- } else {
- result = (s16) op;
- }
- return result;
-}
-
-/*
-Description: This function multiply two input 16 bit numbers and return the 32 bit result.
-This multiplication is similar to compiler multiplication. This operation is defined if
-16 bit multiplication on the processor platform is cheaper than 32 bit multiplication (as
-the most of qmath functions can be replaced with processor intrinsic instructions).
-*/
-s32 qm_mul321616(s16 op1, s16 op2)
-{
- return (s32) (op1) * (s32) (op2);
-}
-
-/*
-Description: This function make 16 bit multiplication and return the result in 16 bits.
-To fit the result into 16 bits the 32 bit multiplication result is right
-shifted by 16 bits.
-*/
-s16 qm_mul16(s16 op1, s16 op2)
-{
- s32 result;
- result = ((s32) (op1) * (s32) (op2));
- return (s16) (result >> 16);
-}
-
-/*
-Description: This function multiply two 16 bit numbers and return the result in 32 bits.
-This function remove the extra sign bit created by the multiplication by leftshifting the
-32 bit multiplication result by 1 bit before returning the result. So the output is
-twice that of compiler multiplication. (i.e. qm_muls321616(2,3)=12).
-When both input 16 bit numbers are 0x8000, then the result is saturated to 0x7fffffff.
-*/
-s32 qm_muls321616(s16 op1, s16 op2)
-{
- s32 result;
- if (op1 == (s16) (0x8000) && op2 == (s16) (0x8000)) {
- result = 0x7fffffff;
- } else {
- result = ((s32) (op1) * (s32) (op2));
- result = result << 1;
- }
- return result;
-}
-
-/*
-Description: This function make 16 bit unsigned multiplication. To fit the output into
-16 bits the 32 bit multiplication result is right shifted by 16 bits.
-*/
-u16 qm_mulu16(u16 op1, u16 op2)
-{
- return (u16) (((u32) op1 * (u32) op2) >> 16);
-}
-
-/*
-Description: This function make 16 bit multiplication and return the result in 16 bits.
-To fit the multiplication result into 16 bits the multiplication result is right shifted by
-15 bits. Right shifting 15 bits instead of 16 bits is done to remove the extra sign bit formed
-due to the multiplication.
-When both the 16bit inputs are 0x8000 then the output is saturated to 0x7fffffff.
-*/
-s16 qm_muls16(s16 op1, s16 op2)
-{
- s32 result;
- if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000) {
- result = 0x7fffffff;
- } else {
- result = ((s32) (op1) * (s32) (op2));
- }
- return (s16) (result >> 15);
-}
-
-/*
-Description: This function add two 32 bit numbers and return the 32bit result.
-If the result overflow 32 bits, the output will be saturated to 32bits.
-*/
-s32 qm_add32(s32 op1, s32 op2)
-{
- s32 result;
- result = op1 + op2;
- if (op1 < 0 && op2 < 0 && result > 0) {
- result = 0x80000000;
- } else if (op1 > 0 && op2 > 0 && result < 0) {
- result = 0x7fffffff;
- }
- return result;
-}
-
-/*
-Description: This function add two 16 bit numbers and return the 16bit result.
-If the result overflow 16 bits, the output will be saturated to 16bits.
-*/
-s16 qm_add16(s16 op1, s16 op2)
-{
- s16 result;
- s32 temp = (s32) op1 + (s32) op2;
- if (temp > (s32) 0x7fff) {
- result = (s16) 0x7fff;
- } else if (temp < (s32) 0xffff8000) {
- result = (s16) 0xffff8000;
- } else {
- result = (s16) temp;
- }
- return result;
-}
-
-/*
-Description: This function make 16 bit subtraction and return the 16bit result.
-If the result overflow 16 bits, the output will be saturated to 16bits.
-*/
-s16 qm_sub16(s16 op1, s16 op2)
-{
- s16 result;
- s32 temp = (s32) op1 - (s32) op2;
- if (temp > (s32) 0x7fff) {
- result = (s16) 0x7fff;
- } else if (temp < (s32) 0xffff8000) {
- result = (s16) 0xffff8000;
- } else {
- result = (s16) temp;
- }
- return result;
-}
-
-/*
-Description: This function make 32 bit subtraction and return the 32bit result.
-If the result overflow 32 bits, the output will be saturated to 32bits.
-*/
-s32 qm_sub32(s32 op1, s32 op2)
-{
- s32 result;
- result = op1 - op2;
- if (op1 >= 0 && op2 < 0 && result < 0) {
- result = 0x7fffffff;
- } else if (op1 < 0 && op2 > 0 && result > 0) {
- result = 0x80000000;
- }
- return result;
-}
-
-/*
-Description: This function multiply input 16 bit numbers and accumulate the result
-into the input 32 bit number and return the 32 bit accumulated result.
-If the accumulation result in overflow, then the output will be saturated.
-*/
-s32 qm_mac321616(s32 acc, s16 op1, s16 op2)
-{
- s32 result;
- result = qm_add32(acc, qm_mul321616(op1, op2));
- return result;
-}
-
-/*
-Description: This function make a 32 bit saturated left shift when the specified shift
-is +ve. This function will make a 32 bit right shift when the specified shift is -ve.
-This function return the result after shifting operation.
-*/
-s32 qm_shl32(s32 op, int shift)
-{
- int i;
- s32 result;
- result = op;
- if (shift > 31)
- shift = 31;
- else if (shift < -31)
- shift = -31;
- if (shift >= 0) {
- for (i = 0; i < shift; i++) {
- result = qm_add32(result, result);
- }
- } else {
- result = result >> (-shift);
- }
- return result;
-}
-
-/*
-Description: This function make a 32 bit right shift when shift is +ve.
-This function make a 32 bit saturated left shift when shift is -ve. This function
-return the result of the shift operation.
-*/
-s32 qm_shr32(s32 op, int shift)
-{
- return qm_shl32(op, -shift);
-}
-
-/*
-Description: This function make a 16 bit saturated left shift when the specified shift
-is +ve. This function will make a 16 bit right shift when the specified shift is -ve.
-This function return the result after shifting operation.
-*/
-s16 qm_shl16(s16 op, int shift)
-{
- int i;
- s16 result;
- result = op;
- if (shift > 15)
- shift = 15;
- else if (shift < -15)
- shift = -15;
- if (shift > 0) {
- for (i = 0; i < shift; i++) {
- result = qm_add16(result, result);
- }
- } else {
- result = result >> (-shift);
- }
- return result;
-}
-
-/*
-Description: This function make a 16 bit right shift when shift is +ve.
-This function make a 16 bit saturated left shift when shift is -ve. This function
-return the result of the shift operation.
-*/
-s16 qm_shr16(s16 op, int shift)
-{
- return qm_shl16(op, -shift);
-}
-
-/*
-Description: This function return the number of redundant sign bits in a 16 bit number.
-Example: qm_norm16(0x0080) = 7.
-*/
-s16 qm_norm16(s16 op)
-{
- u16 u16extraSignBits;
- if (op == 0) {
- return 15;
- } else {
- u16extraSignBits = 0;
- while ((op >> 15) == (op >> 14)) {
- u16extraSignBits++;
- op = op << 1;
- }
- }
- return u16extraSignBits;
-}
-
-/*
-Description: This function return the number of redundant sign bits in a 32 bit number.
-Example: qm_norm32(0x00000080) = 23
-*/
-s16 qm_norm32(s32 op)
-{
- u16 u16extraSignBits;
- if (op == 0) {
- return 31;
- } else {
- u16extraSignBits = 0;
- while ((op >> 31) == (op >> 30)) {
- u16extraSignBits++;
- op = op << 1;
- }
- }
- return u16extraSignBits;
-}
-
-/*
-Description: This function divide two 16 bit unsigned numbers.
-The numerator should be less than denominator. So the quotient is always less than 1.
-This function return the quotient in q.15 format.
-*/
-s16 qm_div_s(s16 num, s16 denom)
-{
- s16 var_out;
- s16 iteration;
- s32 L_num;
- s32 L_denom;
- L_num = (num) << 15;
- L_denom = (denom) << 15;
- for (iteration = 0; iteration < 15; iteration++) {
- L_num <<= 1;
- if (L_num >= L_denom) {
- L_num = qm_sub32(L_num, L_denom);
- L_num = qm_add32(L_num, 1);
- }
- }
- var_out = (s16) (L_num & 0x7fff);
- return var_out;
-}
-
-/*
-Description: This function compute the absolute value of a 16 bit number.
-*/
-s16 qm_abs16(s16 op)
-{
- if (op < 0) {
- if (op == (s16) 0xffff8000) {
- return 0x7fff;
- } else {
- return -op;
- }
- } else {
- return op;
- }
-}
-
-/*
-Description: This function divide two 16 bit numbers.
-The quotient is returned through return value.
-The qformat of the quotient is returned through the pointer (qQuotient) passed
-to this function. The qformat of quotient is adjusted appropriately such that
-the quotient occupies all 16 bits.
-*/
-s16 qm_div16(s16 num, s16 denom, s16 *qQuotient)
-{
- s16 sign;
- s16 nNum, nDenom;
- sign = num ^ denom;
- num = qm_abs16(num);
- denom = qm_abs16(denom);
- nNum = qm_norm16(num);
- nDenom = qm_norm16(denom);
- num = qm_shl16(num, nNum - 1);
- denom = qm_shl16(denom, nDenom);
- *qQuotient = nNum - 1 - nDenom + 15;
- if (sign >= 0) {
- return qm_div_s(num, denom);
- } else {
- return -qm_div_s(num, denom);
- }
-}
-
-/*
-Description: This function compute absolute value of a 32 bit number.
-*/
-s32 qm_abs32(s32 op)
-{
- if (op < 0) {
- if (op == (s32) 0x80000000) {
- return 0x7fffffff;
- } else {
- return -op;
- }
- } else {
- return op;
- }
-}
-
-/*
-Description: This function divide two 32 bit numbers. The division is performed
-by considering only important 16 bits in 32 bit numbers.
-The quotient is returned through return value.
-The qformat of the quotient is returned through the pointer (qquotient) passed
-to this function. The qformat of quotient is adjusted appropriately such that
-the quotient occupies all 16 bits.
-*/
-s16 qm_div163232(s32 num, s32 denom, s16 *qquotient)
-{
- s32 sign;
- s16 nNum, nDenom;
- sign = num ^ denom;
- num = qm_abs32(num);
- denom = qm_abs32(denom);
- nNum = qm_norm32(num);
- nDenom = qm_norm32(denom);
- num = qm_shl32(num, nNum - 1);
- denom = qm_shl32(denom, nDenom);
- *qquotient = nNum - 1 - nDenom + 15;
- if (sign >= 0) {
- return qm_div_s((s16) (num >> 16), (s16) (denom >> 16));
- } else {
- return -qm_div_s((s16) (num >> 16), (s16) (denom >> 16));
- }
-}
-
-/*
-Description: This function multiply a 32 bit number with a 16 bit number.
-The multiplicaton result is right shifted by 16 bits to fit the result
-into 32 bit output.
-*/
-s32 qm_mul323216(s32 op1, s16 op2)
-{
- s16 hi;
- u16 lo;
- s32 result;
- hi = op1 >> 16;
- lo = (s16) (op1 & 0xffff);
- result = qm_mul321616(hi, op2);
- result = result + (qm_mulsu321616(op2, lo) >> 16);
- return result;
-}
-
-/*
-Description: This function multiply signed 16 bit number with unsigned 16 bit number and return
-the result in 32 bits.
-*/
-s32 qm_mulsu321616(s16 op1, u16 op2)
-{
- return (s32) (op1) * op2;
-}
-
-/*
-Description: This function multiply 32 bit number with 16 bit number. The multiplication result is
-right shifted by 15 bits to fit the result into 32 bits. Right shifting by only 15 bits instead of
-16 bits is done to remove the extra sign bit formed by multiplication from the return value.
-When the input numbers are 0x80000000, 0x8000 the return value is saturated to 0x7fffffff.
-*/
-s32 qm_muls323216(s32 op1, s16 op2)
-{
- s16 hi;
- u16 lo;
- s32 result;
- hi = op1 >> 16;
- lo = (s16) (op1 & 0xffff);
- result = qm_muls321616(hi, op2);
- result = qm_add32(result, (qm_mulsu321616(op2, lo) >> 15));
- return result;
-}
-
-/*
-Description: This function multiply two 32 bit numbers. The multiplication result is right
-shifted by 32 bits to fit the multiplication result into 32 bits. The right shifted
-multiplication result is returned as output.
-*/
-s32 qm_mul32(s32 a, s32 b)
-{
- s16 hi1, hi2;
- u16 lo1, lo2;
- s32 result;
- hi1 = a >> 16;
- hi2 = b >> 16;
- lo1 = (u16) (a & 0xffff);
- lo2 = (u16) (b & 0xffff);
- result = qm_mul321616(hi1, hi2);
- result = result + (qm_mulsu321616(hi1, lo2) >> 16);
- result = result + (qm_mulsu321616(hi2, lo1) >> 16);
- return result;
-}
-
-/*
-Description: This function multiply two 32 bit numbers. The multiplication result is
-right shifted by 31 bits to fit the multiplication result into 32 bits. The right
-shifted multiplication result is returned as output. Right shifting by only 31 bits
-instead of 32 bits is done to remove the extra sign bit formed by multiplication.
-When the input numbers are 0x80000000, 0x80000000 the return value is saturated to
-0x7fffffff.
-*/
-s32 qm_muls32(s32 a, s32 b)
-{
- s16 hi1, hi2;
- u16 lo1, lo2;
- s32 result;
- hi1 = a >> 16;
- hi2 = b >> 16;
- lo1 = (u16) (a & 0xffff);
- lo2 = (u16) (b & 0xffff);
- result = qm_muls321616(hi1, hi2);
- result = qm_add32(result, (qm_mulsu321616(hi1, lo2) >> 15));
- result = qm_add32(result, (qm_mulsu321616(hi2, lo1) >> 15));
- result = qm_add32(result, (qm_mulu16(lo1, lo2) >> 15));
- return result;
-}
-
-/* This table is log2(1+(i/32)) where i=[0:1:31], in q.15 format */
-static const s16 log_table[] = {
- 0,
- 1455,
- 2866,
- 4236,
- 5568,
- 6863,
- 8124,
- 9352,
- 10549,
- 11716,
- 12855,
- 13968,
- 15055,
- 16117,
- 17156,
- 18173,
- 19168,
- 20143,
- 21098,
- 22034,
- 22952,
- 23852,
- 24736,
- 25604,
- 26455,
- 27292,
- 28114,
- 28922,
- 29717,
- 30498,
- 31267,
- 32024
-};
-
-#define LOG_TABLE_SIZE 32 /* log_table size */
-#define LOG2_LOG_TABLE_SIZE 5 /* log2(log_table size) */
-#define Q_LOG_TABLE 15 /* qformat of log_table */
-#define LOG10_2 19728 /* log10(2) in q.16 */
-
-/*
-Description:
-This routine takes the input number N and its q format qN and compute
-the log10(N). This routine first normalizes the input no N. Then N is in mag*(2^x) format.
-mag is any number in the range 2^30-(2^31 - 1). Then log2(mag * 2^x) = log2(mag) + x is computed.
-From that log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
-This routine looks the log2 value in the table considering LOG2_LOG_TABLE_SIZE+1 MSBs.
-As the MSB is always 1, only next LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup.
-Next 16 MSBs are used for interpolation.
-Inputs:
-N - number to which log10 has to be found.
-qN - q format of N
-log10N - address where log10(N) will be written.
-qLog10N - address where log10N qformat will be written.
-Note/Problem:
-For accurate results input should be in normalized or near normalized form.
-*/
-void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
-{
- s16 s16norm, s16tableIndex, s16errorApproximation;
- u16 u16offset;
- s32 s32log;
-
- /* normalize the N. */
- s16norm = qm_norm32(N);
- N = N << s16norm;
-
- /* The qformat of N after normalization.
- * -30 is added to treat the no as between 1.0 to 2.0
- * i.e. after adding the -30 to the qformat the decimal point will be
- * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
- * at the right side of 30th bit.
- */
- qN = qN + s16norm - 30;
-
- /* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the MSB */
- s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));
-
- /* remove the MSB. the MSB is always 1 after normalization. */
- s16tableIndex =
- s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);
-
- /* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
- N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);
-
- /* take the offset as the 16 MSBS after table index.
- */
- u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));
-
- /* look the log value in the table. */
- s32log = log_table[s16tableIndex]; /* q.15 format */
-
- /* interpolate using the offset. */
- s16errorApproximation = (s16) qm_mulu16(u16offset, (u16) (log_table[s16tableIndex + 1] - log_table[s16tableIndex])); /* q.15 */
-
- s32log = qm_add16((s16) s32log, s16errorApproximation); /* q.15 format */
-
- /* adjust for the qformat of the N as
- * log2(mag * 2^x) = log2(mag) + x
- */
- s32log = qm_add32(s32log, ((s32) -qN) << 15); /* q.15 format */
-
- /* normalize the result. */
- s16norm = qm_norm32(s32log);
-
- /* bring all the important bits into lower 16 bits */
- s32log = qm_shl32(s32log, s16norm - 16); /* q.15+s16norm-16 format */
-
- /* compute the log10(N) by multiplying log2(N) with log10(2).
- * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
- * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
- */
- *log10N = qm_muls16((s16) s32log, (s16) LOG10_2);
-
- /* write the q format of the result. */
- *qLog10N = 15 + s16norm - 16 + 1;
-
- return;
-}
-
-/*
-Description:
-This routine compute 1/N.
-This routine reformates the given no N as N * 2^qN where N is in between 0.5 and 1.0
-in q.15 format in 16 bits. So the problem now boils down to finding the inverse of a
-q.15 no in 16 bits which is in the range of 0.5 to 1.0. The output is always between
-2.0 to 1. So the output is 2.0 to 1.0 in q.30 format. Once the final output format is found
-by taking the qN into account. Inverse is found with newton rapson method. Initially
-inverse (x) is guessed as 1/0.75 (with appropriate sign). The new guess is calculated
-using the formula x' = 2*x - N*x*x. After 4 or 5 iterations the inverse is very close to
-inverse of N.
-Inputs:
-N - number to which 1/N has to be found.
-qn - q format of N.
-sqrtN - address where 1/N has to be written.
-qsqrtN - address where q format of 1/N has to be written.
-*/
-#define qx 29
-void qm_1byN(s32 N, s16 qN, s32 *result, s16 *qResult)
-{
- s16 normN;
- s32 s32firstTerm, s32secondTerm, x;
- int i;
-
- normN = qm_norm32(N);
-
- /* limit N to least significant 16 bits. 15th bit is the sign bit. */
- N = qm_shl32(N, normN - 16);
- qN = qN + normN - 16 - 15;
- /* -15 is added to treat N as 16 bit q.15 number in the range from 0.5 to 1 */
-
- /* Take the initial guess as 1/0.75 in qx format with appropriate sign. */
- if (N >= 0) {
- x = (s32) ((1 / 0.75) * (1 << qx));
- /* input no is in the range 0.5 to 1. So 1/0.75 is taken as initial guess. */
- } else {
- x = (s32) ((1 / -0.75) * (1 << qx));
- /* input no is in the range -0.5 to -1. So 1/-0.75 is taken as initial guess. */
- }
-
- /* iterate the equation x = 2*x - N*x*x for 4 times. */
- for (i = 0; i < 4; i++) {
- s32firstTerm = qm_shl32(x, 1); /* s32firstTerm = 2*x in q.29 */
- s32secondTerm =
- qm_muls321616((s16) (s32firstTerm >> 16),
- (s16) (s32firstTerm >> 16));
- /* s32secondTerm = x*x in q.(29+1-16)*2+1 */
- s32secondTerm =
- qm_muls321616((s16) (s32secondTerm >> 16), (s16) N);
- /* s32secondTerm = N*x*x in q.((29+1-16)*2+1)-16+15+1 i.e. in q.29 */
- x = qm_sub32(s32firstTerm, s32secondTerm);
- /* can be added directly as both are in q.29 */
- }
-
- /* Bring the x to q.30 format. */
- *result = qm_shl32(x, 1);
- /* giving the output in q.30 format for q.15 input in 16 bits. */
-
- /* compute the final q format of the result. */
- *qResult = -qN + 30; /* adjusting the q format of actual output */
-
- return;
-}
-
-#undef qx