/* STM32 F4 maximum analog clock rate (from datasheet) */
#define STM32F4_ADC_MAX_CLK_RATE 36000000
+/**
+ * stm32_adc_common_regs - stm32 common registers, compatible dependent data
+ * @csr: common status register offset
+ * @eoc1: adc1 end of conversion flag in @csr
+ * @eoc2: adc2 end of conversion flag in @csr
+ * @eoc3: adc3 end of conversion flag in @csr
+ */
+struct stm32_adc_common_regs {
+ u32 csr;
+ u32 eoc1_msk;
+ u32 eoc2_msk;
+ u32 eoc3_msk;
+};
+
+struct stm32_adc_priv;
+
+/**
+ * stm32_adc_priv_cfg - stm32 core compatible configuration data
+ * @regs: common registers for all instances
+ * @clk_sel: clock selection routine
+ */
+struct stm32_adc_priv_cfg {
+ const struct stm32_adc_common_regs *regs;
+ int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
+};
+
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq for ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @vref: regulator reference
+ * @cfg: compatible configuration data
* @common: common data for all ADC instances
*/
struct stm32_adc_priv {
struct irq_domain *domain;
struct clk *aclk;
struct regulator *vref;
+ const struct stm32_adc_priv_cfg *cfg;
struct stm32_adc_common common;
};
return 0;
}
+/* STM32F4 common registers definitions */
+static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
+ .csr = STM32F4_ADC_CSR,
+ .eoc1_msk = STM32F4_EOC1,
+ .eoc2_msk = STM32F4_EOC2,
+ .eoc3_msk = STM32F4_EOC3,
+};
+
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
u32 status;
chained_irq_enter(chip, desc);
- status = readl_relaxed(priv->common.base + STM32F4_ADC_CSR);
+ status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
- if (status & STM32F4_EOC1)
+ if (status & priv->cfg->regs->eoc1_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 0));
- if (status & STM32F4_EOC2)
+ if (status & priv->cfg->regs->eoc2_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 1));
- if (status & STM32F4_EOC3)
+ if (status & priv->cfg->regs->eoc3_msk)
generic_handle_irq(irq_find_mapping(priv->domain, 2));
chained_irq_exit(chip, desc);
static int stm32_adc_probe(struct platform_device *pdev)
{
struct stm32_adc_priv *priv;
+ struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
int ret;
if (!priv)
return -ENOMEM;
+ priv->cfg = (const struct stm32_adc_priv_cfg *)
+ of_match_device(dev->driver->of_match_table, dev)->data;
+
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->common.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->common.base))
}
}
- ret = stm32f4_adc_clk_sel(pdev, priv);
+ ret = priv->cfg->clk_sel(pdev, priv);
if (ret < 0)
goto err_clk_disable;
return 0;
}
+static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
+ .regs = &stm32f4_adc_common_regs,
+ .clk_sel = stm32f4_adc_clk_sel,
+};
+
static const struct of_device_id stm32_adc_of_match[] = {
- { .compatible = "st,stm32f4-adc-core" },
- {},
+ {
+ .compatible = "st,stm32f4-adc-core",
+ .data = (void *)&stm32f4_adc_priv_cfg
+ }, {
+ },
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
+#include <linux/of_device.h>
#include "stm32-adc-core.h"
int shift;
};
+/**
+ * stm32_adc_regspec - stm32 registers definition, compatible dependent data
+ * @dr: data register offset
+ * @ier_eoc: interrupt enable register & eocie bitfield
+ * @isr_eoc: interrupt status register & eoc bitfield
+ * @sqr: reference to sequence registers array
+ * @exten: trigger control register & bitfield
+ * @extsel: trigger selection register & bitfield
+ * @res: resolution selection register & bitfield
+ */
+struct stm32_adc_regspec {
+ const u32 dr;
+ const struct stm32_adc_regs ier_eoc;
+ const struct stm32_adc_regs isr_eoc;
+ const struct stm32_adc_regs *sqr;
+ const struct stm32_adc_regs exten;
+ const struct stm32_adc_regs extsel;
+ const struct stm32_adc_regs res;
+};
+
+struct stm32_adc;
+
+/**
+ * stm32_adc_cfg - stm32 compatible configuration data
+ * @regs: registers descriptions
+ * @adc_info: per instance input channels definitions
+ * @trigs: external trigger sources
+ * @start_conv: routine to start conversions
+ * @stop_conv: routine to stop conversions
+ */
+struct stm32_adc_cfg {
+ const struct stm32_adc_regspec *regs;
+ const struct stm32_adc_info *adc_info;
+ struct stm32_adc_trig_info *trigs;
+ void (*start_conv)(struct stm32_adc *, bool dma);
+ void (*stop_conv)(struct stm32_adc *);
+};
+
/**
* struct stm32_adc - private data of each ADC IIO instance
* @common: reference to ADC block common data
* @offset: ADC instance register offset in ADC block
+ * @cfg: compatible configuration data
* @completion: end of single conversion completion
* @buffer: data buffer
* @clk: clock for this adc instance
struct stm32_adc {
struct stm32_adc_common *common;
u32 offset;
+ const struct stm32_adc_cfg *cfg;
struct completion completion;
u16 buffer[STM32_ADC_MAX_SQ];
struct clk *clk;
const char *name;
};
-/* Input definitions common for all STM32F4 instances */
-static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
+/**
+ * struct stm32_adc_info - stm32 ADC, per instance config data
+ * @channels: Reference to stm32 channels spec
+ * @max_channels: Number of channels
+ * @resolutions: available resolutions
+ * @num_res: number of available resolutions
+ */
+struct stm32_adc_info {
+ const struct stm32_adc_chan_spec *channels;
+ int max_channels;
+ const unsigned int *resolutions;
+ const unsigned int num_res;
+};
+
+/*
+ * Input definitions common for all instances:
+ * stm32f4 can have up to 16 channels
+ */
+static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
{ IIO_VOLTAGE, 0, "in0" },
{ IIO_VOLTAGE, 1, "in1" },
{ IIO_VOLTAGE, 2, "in2" },
12, 10, 8, 6,
};
+static const struct stm32_adc_info stm32f4_adc_info = {
+ .channels = stm32_adc_channels,
+ .max_channels = 16,
+ .resolutions = stm32f4_adc_resolutions,
+ .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
+};
+
/**
* stm32f4_sq - describe regular sequence registers
* - L: sequence len (register & bit field)
{}, /* sentinel */
};
+static const struct stm32_adc_regspec stm32f4_adc_regspec = {
+ .dr = STM32F4_ADC_DR,
+ .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
+ .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
+ .sqr = stm32f4_sq,
+ .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
+ .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
+ STM32F4_EXTSEL_SHIFT },
+ .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
+};
+
/**
* STM32 ADC registers access routines
* @adc: stm32 adc instance
*/
static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
{
- stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
+ stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
+ adc->cfg->regs->ier_eoc.mask);
};
/**
*/
static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
{
- stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
+ stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
+ adc->cfg->regs->ier_eoc.mask);
}
static void stm32_adc_set_res(struct stm32_adc *adc)
{
- u32 val = stm32_adc_readl(adc, STM32F4_ADC_CR1);
+ const struct stm32_adc_regs *res = &adc->cfg->regs->res;
+ u32 val;
- val = (val & ~STM32F4_RES_MASK) | (adc->res << STM32F4_RES_SHIFT);
- stm32_adc_writel(adc, STM32F4_ADC_CR1, val);
+ val = stm32_adc_readl(adc, res->reg);
+ val = (val & ~res->mask) | (adc->res << res->shift);
+ stm32_adc_writel(adc, res->reg, val);
}
/**
- * stm32_adc_start_conv() - Start conversions for regular channels.
+ * stm32f4_adc_start_conv() - Start conversions for regular channels.
* @adc: stm32 adc instance
* @dma: use dma to transfer conversion result
*
* conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
* DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
*/
-static void stm32_adc_start_conv(struct stm32_adc *adc, bool dma)
+static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
{
stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
}
-static void stm32_adc_stop_conv(struct stm32_adc *adc)
+static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
{
stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
const unsigned long *scan_mask)
{
struct stm32_adc *adc = iio_priv(indio_dev);
+ const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
const struct iio_chan_spec *chan;
u32 val, bit;
int i = 0;
dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
__func__, chan->channel, i);
- val = stm32_adc_readl(adc, stm32f4_sq[i].reg);
- val &= ~stm32f4_sq[i].mask;
- val |= chan->channel << stm32f4_sq[i].shift;
- stm32_adc_writel(adc, stm32f4_sq[i].reg, val);
+ val = stm32_adc_readl(adc, sqr[i].reg);
+ val &= ~sqr[i].mask;
+ val |= chan->channel << sqr[i].shift;
+ stm32_adc_writel(adc, sqr[i].reg, val);
}
if (!i)
return -EINVAL;
/* Sequence len */
- val = stm32_adc_readl(adc, stm32f4_sq[0].reg);
- val &= ~stm32f4_sq[0].mask;
- val |= ((i - 1) << stm32f4_sq[0].shift);
- stm32_adc_writel(adc, stm32f4_sq[0].reg, val);
+ val = stm32_adc_readl(adc, sqr[0].reg);
+ val &= ~sqr[0].mask;
+ val |= ((i - 1) << sqr[0].shift);
+ stm32_adc_writel(adc, sqr[0].reg, val);
return 0;
}
*
* Returns trigger extsel value, if trig matches, -EINVAL otherwise.
*/
-static int stm32_adc_get_trig_extsel(struct iio_trigger *trig)
+static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
+ struct iio_trigger *trig)
{
+ struct stm32_adc *adc = iio_priv(indio_dev);
int i;
/* lookup triggers registered by stm32 timer trigger driver */
- for (i = 0; stm32f4_adc_trigs[i].name; i++) {
+ for (i = 0; adc->cfg->trigs[i].name; i++) {
/**
* Checking both stm32 timer trigger type and trig name
* should be safe against arbitrary trigger names.
*/
if (is_stm32_timer_trigger(trig) &&
- !strcmp(stm32f4_adc_trigs[i].name, trig->name)) {
- return stm32f4_adc_trigs[i].extsel;
+ !strcmp(adc->cfg->trigs[i].name, trig->name)) {
+ return adc->cfg->trigs[i].extsel;
}
}
int ret;
if (trig) {
- ret = stm32_adc_get_trig_extsel(trig);
+ ret = stm32_adc_get_trig_extsel(indio_dev, trig);
if (ret < 0)
return ret;
}
spin_lock_irqsave(&adc->lock, flags);
- val = stm32_adc_readl(adc, STM32F4_ADC_CR2);
- val &= ~(STM32F4_EXTEN_MASK | STM32F4_EXTSEL_MASK);
- val |= exten << STM32F4_EXTEN_SHIFT;
- val |= extsel << STM32F4_EXTSEL_SHIFT;
- stm32_adc_writel(adc, STM32F4_ADC_CR2, val);
+ val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
+ val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
+ val |= exten << adc->cfg->regs->exten.shift;
+ val |= extsel << adc->cfg->regs->extsel.shift;
+ stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
spin_unlock_irqrestore(&adc->lock, flags);
return 0;
int *res)
{
struct stm32_adc *adc = iio_priv(indio_dev);
+ const struct stm32_adc_regspec *regs = adc->cfg->regs;
long timeout;
u32 val;
int ret;
adc->bufi = 0;
/* Program chan number in regular sequence (SQ1) */
- val = stm32_adc_readl(adc, stm32f4_sq[1].reg);
- val &= ~stm32f4_sq[1].mask;
- val |= chan->channel << stm32f4_sq[1].shift;
- stm32_adc_writel(adc, stm32f4_sq[1].reg, val);
+ val = stm32_adc_readl(adc, regs->sqr[1].reg);
+ val &= ~regs->sqr[1].mask;
+ val |= chan->channel << regs->sqr[1].shift;
+ stm32_adc_writel(adc, regs->sqr[1].reg, val);
/* Set regular sequence len (0 for 1 conversion) */
- stm32_adc_clr_bits(adc, stm32f4_sq[0].reg, stm32f4_sq[0].mask);
+ stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
/* Trigger detection disabled (conversion can be launched in SW) */
- stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
+ stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
stm32_adc_conv_irq_enable(adc);
- stm32_adc_start_conv(adc, false);
+ adc->cfg->start_conv(adc, false);
timeout = wait_for_completion_interruptible_timeout(
&adc->completion, STM32_ADC_TIMEOUT);
ret = IIO_VAL_INT;
}
- stm32_adc_stop_conv(adc);
+ adc->cfg->stop_conv(adc);
stm32_adc_conv_irq_disable(adc);
{
struct stm32_adc *adc = data;
struct iio_dev *indio_dev = iio_priv_to_dev(adc);
- u32 status = stm32_adc_readl(adc, STM32F4_ADC_SR);
+ const struct stm32_adc_regspec *regs = adc->cfg->regs;
+ u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
- if (status & STM32F4_EOC) {
+ if (status & regs->isr_eoc.mask) {
/* Reading DR also clears EOC status flag */
- adc->buffer[adc->bufi] = stm32_adc_readw(adc, STM32F4_ADC_DR);
+ adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
if (iio_buffer_enabled(indio_dev)) {
adc->bufi++;
if (adc->bufi >= adc->num_conv) {
static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
- return stm32_adc_get_trig_extsel(trig) < 0 ? -EINVAL : 0;
+ return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
}
static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
if (!adc->dma_chan)
stm32_adc_conv_irq_enable(adc);
- stm32_adc_start_conv(adc, !!adc->dma_chan);
+ adc->cfg->start_conv(adc, !!adc->dma_chan);
return 0;
struct stm32_adc *adc = iio_priv(indio_dev);
int ret;
- stm32_adc_stop_conv(adc);
+ adc->cfg->stop_conv(adc);
if (!adc->dma_chan)
stm32_adc_conv_irq_disable(adc);
u32 res;
if (of_property_read_u32(node, "assigned-resolution-bits", &res))
- res = stm32f4_adc_resolutions[0];
+ res = adc->cfg->adc_info->resolutions[0];
- for (i = 0; i < ARRAY_SIZE(stm32f4_adc_resolutions); i++)
- if (res == stm32f4_adc_resolutions[i])
+ for (i = 0; i < adc->cfg->adc_info->num_res; i++)
+ if (res == adc->cfg->adc_info->resolutions[i])
break;
- if (i >= ARRAY_SIZE(stm32f4_adc_resolutions)) {
+ if (i >= adc->cfg->adc_info->num_res) {
dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
return -EINVAL;
}
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_type.sign = 'u';
- chan->scan_type.realbits = stm32f4_adc_resolutions[adc->res];
+ chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
chan->scan_type.storagebits = 16;
chan->ext_info = stm32_adc_ext_info;
}
static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
{
struct device_node *node = indio_dev->dev.of_node;
+ struct stm32_adc *adc = iio_priv(indio_dev);
+ const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
struct property *prop;
const __be32 *cur;
struct iio_chan_spec *channels;
num_channels = of_property_count_u32_elems(node, "st,adc-channels");
if (num_channels < 0 ||
- num_channels >= ARRAY_SIZE(stm32f4_adc123_channels)) {
+ num_channels >= adc_info->max_channels) {
dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
return num_channels < 0 ? num_channels : -EINVAL;
}
return -ENOMEM;
of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
- if (val >= ARRAY_SIZE(stm32f4_adc123_channels)) {
+ if (val >= adc_info->max_channels) {
dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
return -EINVAL;
}
stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
- &stm32f4_adc123_channels[val],
+ &adc_info->channels[val],
scan_index);
scan_index++;
}
/* Configure DMA channel to read data register */
memset(&config, 0, sizeof(config));
config.src_addr = (dma_addr_t)adc->common->phys_base;
- config.src_addr += adc->offset + STM32F4_ADC_DR;
+ config.src_addr += adc->offset + adc->cfg->regs->dr;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
ret = dmaengine_slave_config(adc->dma_chan, &config);
static int stm32_adc_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
+ struct device *dev = &pdev->dev;
struct stm32_adc *adc;
int ret;
adc->common = dev_get_drvdata(pdev->dev.parent);
spin_lock_init(&adc->lock);
init_completion(&adc->completion);
+ adc->cfg = (const struct stm32_adc_cfg *)
+ of_match_device(dev->driver->of_match_table, dev)->data;
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
return 0;
}
+static const struct stm32_adc_cfg stm32f4_adc_cfg = {
+ .regs = &stm32f4_adc_regspec,
+ .adc_info = &stm32f4_adc_info,
+ .trigs = stm32f4_adc_trigs,
+ .start_conv = stm32f4_adc_start_conv,
+ .stop_conv = stm32f4_adc_stop_conv,
+};
+
static const struct of_device_id stm32_adc_of_match[] = {
- { .compatible = "st,stm32f4-adc" },
+ { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);