#define VSP1_HAS_WPF_HFLIP (1 << 6)
#define VSP1_HAS_HGO (1 << 7)
#define VSP1_HAS_HGT (1 << 8)
+#define VSP1_HAS_BRS (1 << 9)
struct vsp1_device_info {
u32 version;
struct rcar_fcp_device *fcp;
struct device *bus_master;
+ struct vsp1_bru *brs;
struct vsp1_bru *bru;
struct vsp1_clu *clu;
struct vsp1_hgo *hgo;
static inline void vsp1_bru_write(struct vsp1_bru *bru, struct vsp1_dl_list *dl,
u32 reg, u32 data)
{
- vsp1_dl_list_write(dl, reg, data);
+ vsp1_dl_list_write(dl, bru->base + reg, data);
}
/* -----------------------------------------------------------------------------
/*
* Route BRU input 1 as SRC input to the ROP unit and configure the ROP
* unit with a NOP operation to make BRU input 1 available as the
- * Blend/ROP unit B SRC input.
+ * Blend/ROP unit B SRC input. Only needed for BRU, the BRS has no ROP
+ * unit.
*/
- vsp1_bru_write(bru, dl, VI6_BRU_ROP, VI6_BRU_ROP_DSTSEL_BRUIN(1) |
- VI6_BRU_ROP_CROP(VI6_ROP_NOP) |
- VI6_BRU_ROP_AROP(VI6_ROP_NOP));
+ if (entity->type == VSP1_ENTITY_BRU)
+ vsp1_bru_write(bru, dl, VI6_BRU_ROP,
+ VI6_BRU_ROP_DSTSEL_BRUIN(1) |
+ VI6_BRU_ROP_CROP(VI6_ROP_NOP) |
+ VI6_BRU_ROP_AROP(VI6_ROP_NOP));
for (i = 0; i < bru->entity.source_pad; ++i) {
bool premultiplied = false;
ctrl |= VI6_BRU_CTRL_DSTSEL_VRPF;
/*
- * Route BRU inputs 0 to 3 as SRC inputs to Blend/ROP units A to
- * D in that order. The Blend/ROP unit B SRC is hardwired to the
- * ROP unit output, the corresponding register bits must be set
- * to 0.
+ * Route inputs 0 to 3 as SRC inputs to Blend/ROP units A to D
+ * in that order. In the BRU the Blend/ROP unit B SRC is
+ * hardwired to the ROP unit output, the corresponding register
+ * bits must be set to 0. The BRS has no ROP unit and doesn't
+ * need any special processing.
*/
- if (i != 1)
+ if (!(entity->type == VSP1_ENTITY_BRU && i == 1))
ctrl |= VI6_BRU_CTRL_SRCSEL_BRUIN(i);
vsp1_bru_write(bru, dl, VI6_BRU_CTRL(i), ctrl);
* Initialization and Cleanup
*/
-struct vsp1_bru *vsp1_bru_create(struct vsp1_device *vsp1)
+struct vsp1_bru *vsp1_bru_create(struct vsp1_device *vsp1,
+ enum vsp1_entity_type type)
{
struct vsp1_bru *bru;
+ unsigned int num_pads;
+ const char *name;
int ret;
bru = devm_kzalloc(vsp1->dev, sizeof(*bru), GFP_KERNEL);
if (bru == NULL)
return ERR_PTR(-ENOMEM);
+ bru->base = type == VSP1_ENTITY_BRU ? VI6_BRU_BASE : VI6_BRS_BASE;
bru->entity.ops = &bru_entity_ops;
- bru->entity.type = VSP1_ENTITY_BRU;
+ bru->entity.type = type;
+
+ if (type == VSP1_ENTITY_BRU) {
+ num_pads = vsp1->info->num_bru_inputs + 1;
+ name = "bru";
+ } else {
+ num_pads = 3;
+ name = "brs";
+ }
- ret = vsp1_entity_init(vsp1, &bru->entity, "bru",
- vsp1->info->num_bru_inputs + 1, &bru_ops,
+ ret = vsp1_entity_init(vsp1, &bru->entity, name, num_pads, &bru_ops,
MEDIA_ENT_F_PROC_VIDEO_COMPOSER);
if (ret < 0)
return ERR_PTR(ret);
bru->entity.subdev.ctrl_handler = &bru->ctrls;
if (bru->ctrls.error) {
- dev_err(vsp1->dev, "bru: failed to initialize controls\n");
+ dev_err(vsp1->dev, "%s: failed to initialize controls\n", name);
ret = bru->ctrls.error;
vsp1_entity_destroy(&bru->entity);
return ERR_PTR(ret);
struct vsp1_bru {
struct vsp1_entity entity;
+ unsigned int base;
struct v4l2_ctrl_handler ctrls;
return container_of(subdev, struct vsp1_bru, entity.subdev);
}
-struct vsp1_bru *vsp1_bru_create(struct vsp1_device *vsp1);
+struct vsp1_bru *vsp1_bru_create(struct vsp1_device *vsp1,
+ enum vsp1_entity_type type);
#endif /* __VSP1_BRU_H__ */
* @cfg: the LIF configuration
*
* Configure the output part of VSP DRM pipeline for the given frame @cfg.width
- * and @cfg.height. This sets up formats on the BRU source pad, the WPF0 sink
- * and source pads, and the LIF sink pad.
+ * and @cfg.height. This sets up formats on the blend unit (BRU or BRS) source
+ * pad, the WPF sink and source pads, and the LIF sink pad.
*
* The @pipe_index argument selects which DRM pipeline to setup. The number of
* available pipelines depend on the VSP instance.
*
- * As the media bus code on the BRU source pad is conditioned by the
- * configuration of the BRU sink 0 pad, we also set up the formats on all BRU
+ * As the media bus code on the blend unit source pad is conditioned by the
+ * configuration of its sink 0 pad, we also set up the formats on all blend unit
* sinks, even if the configuration will be overwritten later by
- * vsp1_du_setup_rpf(). This ensures that the BRU configuration is set to a well
- * defined state.
+ * vsp1_du_setup_rpf(). This ensures that the blend unit configuration is set to
+ * a well defined state.
*
* Return 0 on success or a negative error code on failure.
*/
*
* - from a UDS to a UDS (UDS entities can't be chained)
* - from an entity to itself (no loops are allowed)
+ *
+ * Furthermore, the BRS can't be connected to histogram generators, but no
+ * special check is currently needed as all VSP instances that include a BRS
+ * have no histogram generator.
*/
static int vsp1_create_sink_links(struct vsp1_device *vsp1,
struct vsp1_entity *sink)
}
/* Instantiate all the entities. */
+ if (vsp1->info->features & VSP1_HAS_BRS) {
+ vsp1->brs = vsp1_bru_create(vsp1, VSP1_ENTITY_BRS);
+ if (IS_ERR(vsp1->brs)) {
+ ret = PTR_ERR(vsp1->brs);
+ goto done;
+ }
+
+ list_add_tail(&vsp1->brs->entity.list_dev, &vsp1->entities);
+ }
+
if (vsp1->info->features & VSP1_HAS_BRU) {
- vsp1->bru = vsp1_bru_create(vsp1);
+ vsp1->bru = vsp1_bru_create(vsp1, VSP1_ENTITY_BRU);
if (IS_ERR(vsp1->bru)) {
ret = PTR_ERR(vsp1->bru);
goto done;
vsp1_write(vsp1, VI6_DPR_HSI_ROUTE, VI6_DPR_NODE_UNUSED);
vsp1_write(vsp1, VI6_DPR_BRU_ROUTE, VI6_DPR_NODE_UNUSED);
+ if (vsp1->info->features & VSP1_HAS_BRS)
+ vsp1_write(vsp1, VI6_DPR_ILV_BRS_ROUTE, VI6_DPR_NODE_UNUSED);
+
vsp1_write(vsp1, VI6_DPR_HGO_SMPPT, (7 << VI6_DPR_SMPPT_TGW_SHIFT) |
(VI6_DPR_NODE_UNUSED << VI6_DPR_SMPPT_PT_SHIFT));
vsp1_write(vsp1, VI6_DPR_HGT_SMPPT, (7 << VI6_DPR_SMPPT_TGW_SHIFT) |
struct vsp1_dl_list *dl)
{
struct vsp1_entity *source;
+ u32 route;
if (entity->type == VSP1_ENTITY_HGO) {
u32 smppt;
if (source->route->reg == 0)
return;
- vsp1_dl_list_write(dl, source->route->reg,
- source->sink->route->inputs[source->sink_pad]);
+ route = source->sink->route->inputs[source->sink_pad];
+ /*
+ * The ILV and BRS share the same data path route. The extra BRSSEL bit
+ * selects between the ILV and BRS.
+ */
+ if (source->type == VSP1_ENTITY_BRS)
+ route |= VI6_DPR_ROUTE_BRSSEL;
+ vsp1_dl_list_write(dl, source->route->reg, route);
}
/* -----------------------------------------------------------------------------
{ VI6_DPR_NODE_WPF(idx) }, VI6_DPR_NODE_WPF(idx) }
static const struct vsp1_route vsp1_routes[] = {
+ { VSP1_ENTITY_BRS, 0, VI6_DPR_ILV_BRS_ROUTE,
+ { VI6_DPR_NODE_BRS_IN(0), VI6_DPR_NODE_BRS_IN(1) }, 0 },
{ VSP1_ENTITY_BRU, 0, VI6_DPR_BRU_ROUTE,
{ VI6_DPR_NODE_BRU_IN(0), VI6_DPR_NODE_BRU_IN(1),
VI6_DPR_NODE_BRU_IN(2), VI6_DPR_NODE_BRU_IN(3),
struct vsp1_pipeline;
enum vsp1_entity_type {
+ VSP1_ENTITY_BRS,
VSP1_ENTITY_BRU,
VSP1_ENTITY_CLU,
VSP1_ENTITY_HGO,
return;
/*
- * The BRU background color has a fixed alpha value set to 255, the
- * output alpha value is thus always equal to 255.
+ * The BRU and BRS background color has a fixed alpha value set to 255,
+ * the output alpha value is thus always equal to 255.
*/
- if (pipe->uds_input->type == VSP1_ENTITY_BRU)
+ if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
+ pipe->uds_input->type == VSP1_ENTITY_BRS)
alpha = 255;
vsp1_uds_set_alpha(pipe->uds, dl, alpha);
#define VI6_WPF_SRCRPF_VIRACT_SUB (1 << 28)
#define VI6_WPF_SRCRPF_VIRACT_MST (2 << 28)
#define VI6_WPF_SRCRPF_VIRACT_MASK (3 << 28)
+#define VI6_WPF_SRCRPF_VIRACT2_DIS (0 << 24)
+#define VI6_WPF_SRCRPF_VIRACT2_SUB (1 << 24)
+#define VI6_WPF_SRCRPF_VIRACT2_MST (2 << 24)
+#define VI6_WPF_SRCRPF_VIRACT2_MASK (3 << 24)
#define VI6_WPF_SRCRPF_RPF_ACT_DIS(n) (0 << ((n) * 2))
#define VI6_WPF_SRCRPF_RPF_ACT_SUB(n) (1 << ((n) * 2))
#define VI6_WPF_SRCRPF_RPF_ACT_MST(n) (2 << ((n) * 2))
#define VI6_DPR_HST_ROUTE 0x2044
#define VI6_DPR_HSI_ROUTE 0x2048
#define VI6_DPR_BRU_ROUTE 0x204c
+#define VI6_DPR_ILV_BRS_ROUTE 0x2050
+#define VI6_DPR_ROUTE_BRSSEL (1 << 28)
#define VI6_DPR_ROUTE_FXA_MASK (0xff << 16)
#define VI6_DPR_ROUTE_FXA_SHIFT 16
#define VI6_DPR_ROUTE_FP_MASK (0x3f << 8)
#define VI6_DPR_NODE_CLU 29
#define VI6_DPR_NODE_HST 30
#define VI6_DPR_NODE_HSI 31
+#define VI6_DPR_NODE_BRS_IN(n) (38 + (n))
#define VI6_DPR_NODE_LIF 55
#define VI6_DPR_NODE_WPF(n) (56 + (n))
#define VI6_DPR_NODE_UNUSED 63
#define VI6_HSI_CTRL_EN (1 << 0)
/* -----------------------------------------------------------------------------
- * BRU Control Registers
+ * BRS and BRU Control Registers
*/
#define VI6_ROP_NOP 0
#define VI6_ROP_NAND 14
#define VI6_ROP_SET 15
-#define VI6_BRU_INCTRL 0x2c00
+#define VI6_BRU_BASE 0x2c00
+#define VI6_BRS_BASE 0x3900
+
+#define VI6_BRU_INCTRL 0x0000
#define VI6_BRU_INCTRL_NRM (1 << 28)
#define VI6_BRU_INCTRL_DnON (1 << (16 + (n)))
#define VI6_BRU_INCTRL_DITHn_OFF (0 << ((n) * 4))
#define VI6_BRU_INCTRL_DITHn_MASK (7 << ((n) * 4))
#define VI6_BRU_INCTRL_DITHn_SHIFT ((n) * 4)
-#define VI6_BRU_VIRRPF_SIZE 0x2c04
+#define VI6_BRU_VIRRPF_SIZE 0x0004
#define VI6_BRU_VIRRPF_SIZE_HSIZE_MASK (0x1fff << 16)
#define VI6_BRU_VIRRPF_SIZE_HSIZE_SHIFT 16
#define VI6_BRU_VIRRPF_SIZE_VSIZE_MASK (0x1fff << 0)
#define VI6_BRU_VIRRPF_SIZE_VSIZE_SHIFT 0
-#define VI6_BRU_VIRRPF_LOC 0x2c08
+#define VI6_BRU_VIRRPF_LOC 0x0008
#define VI6_BRU_VIRRPF_LOC_HCOORD_MASK (0x1fff << 16)
#define VI6_BRU_VIRRPF_LOC_HCOORD_SHIFT 16
#define VI6_BRU_VIRRPF_LOC_VCOORD_MASK (0x1fff << 0)
#define VI6_BRU_VIRRPF_LOC_VCOORD_SHIFT 0
-#define VI6_BRU_VIRRPF_COL 0x2c0c
+#define VI6_BRU_VIRRPF_COL 0x000c
#define VI6_BRU_VIRRPF_COL_A_MASK (0xff << 24)
#define VI6_BRU_VIRRPF_COL_A_SHIFT 24
#define VI6_BRU_VIRRPF_COL_RCR_MASK (0xff << 16)
#define VI6_BRU_VIRRPF_COL_BCB_MASK (0xff << 0)
#define VI6_BRU_VIRRPF_COL_BCB_SHIFT 0
-#define VI6_BRU_CTRL(n) (0x2c10 + (n) * 8 + ((n) <= 3 ? 0 : 4))
+#define VI6_BRU_CTRL(n) (0x0010 + (n) * 8 + ((n) <= 3 ? 0 : 4))
#define VI6_BRU_CTRL_RBC (1 << 31)
#define VI6_BRU_CTRL_DSTSEL_BRUIN(n) (((n) <= 3 ? (n) : (n)+1) << 20)
#define VI6_BRU_CTRL_DSTSEL_VRPF (4 << 20)
#define VI6_BRU_CTRL_AROP(rop) ((rop) << 0)
#define VI6_BRU_CTRL_AROP_MASK (0xf << 0)
-#define VI6_BRU_BLD(n) (0x2c14 + (n) * 8 + ((n) <= 3 ? 0 : 4))
+#define VI6_BRU_BLD(n) (0x0014 + (n) * 8 + ((n) <= 3 ? 0 : 4))
#define VI6_BRU_BLD_CBES (1 << 31)
#define VI6_BRU_BLD_CCMDX_DST_A (0 << 28)
#define VI6_BRU_BLD_CCMDX_255_DST_A (1 << 28)
#define VI6_BRU_BLD_COEFY_MASK (0xff << 0)
#define VI6_BRU_BLD_COEFY_SHIFT 0
-#define VI6_BRU_ROP 0x2c30
+#define VI6_BRU_ROP 0x0030 /* Only available on BRU */
#define VI6_BRU_ROP_DSTSEL_BRUIN(n) (((n) <= 3 ? (n) : (n)+1) << 20)
#define VI6_BRU_ROP_DSTSEL_VRPF (4 << 20)
#define VI6_BRU_ROP_DSTSEL_MASK (7 << 20)
struct media_entity_enum ent_enum;
struct vsp1_entity *entity;
struct media_pad *pad;
- bool bru_found = false;
+ struct vsp1_bru *bru = NULL;
int ret;
ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
media_entity_to_v4l2_subdev(pad->entity));
/*
- * A BRU is present in the pipeline, store the BRU input pad
+ * A BRU or BRS is present in the pipeline, store its input pad
* number in the input RPF for use when configuring the RPF.
*/
- if (entity->type == VSP1_ENTITY_BRU) {
- struct vsp1_bru *bru = to_bru(&entity->subdev);
+ if (entity->type == VSP1_ENTITY_BRU ||
+ entity->type == VSP1_ENTITY_BRS) {
+ /* BRU and BRS can't be chained. */
+ if (bru) {
+ ret = -EPIPE;
+ goto out;
+ }
+ bru = to_bru(&entity->subdev);
bru->inputs[pad->index].rpf = input;
input->bru_input = pad->index;
-
- bru_found = true;
}
/* We've reached the WPF, we're done. */
}
pipe->uds = entity;
- pipe->uds_input = bru_found ? pipe->bru
- : &input->entity;
+ pipe->uds_input = bru ? &bru->entity : &input->entity;
}
/* Follow the source link, ignoring any HGO or HGT. */
e = to_vsp1_entity(subdev);
list_add_tail(&e->list_pipe, &pipe->entities);
- if (e->type == VSP1_ENTITY_RPF) {
+ switch (e->type) {
+ case VSP1_ENTITY_RPF:
rwpf = to_rwpf(subdev);
pipe->inputs[rwpf->entity.index] = rwpf;
rwpf->video->pipe_index = ++pipe->num_inputs;
rwpf->pipe = pipe;
- } else if (e->type == VSP1_ENTITY_WPF) {
+ break;
+
+ case VSP1_ENTITY_WPF:
rwpf = to_rwpf(subdev);
pipe->output = rwpf;
rwpf->video->pipe_index = 0;
rwpf->pipe = pipe;
- } else if (e->type == VSP1_ENTITY_LIF) {
+ break;
+
+ case VSP1_ENTITY_LIF:
pipe->lif = e;
- } else if (e->type == VSP1_ENTITY_BRU) {
+ break;
+
+ case VSP1_ENTITY_BRU:
+ case VSP1_ENTITY_BRS:
pipe->bru = e;
- } else if (e->type == VSP1_ENTITY_HGO) {
- struct vsp1_hgo *hgo = to_hgo(subdev);
+ break;
+ case VSP1_ENTITY_HGO:
pipe->hgo = e;
- hgo->histo.pipe = pipe;
- } else if (e->type == VSP1_ENTITY_HGT) {
- struct vsp1_hgt *hgt = to_hgt(subdev);
+ to_hgo(subdev)->histo.pipe = pipe;
+ break;
+ case VSP1_ENTITY_HGT:
pipe->hgt = e;
- hgt->histo.pipe = pipe;
+ to_hgt(subdev)->histo.pipe = pipe;
+ break;
+
+ default:
+ break;
}
}
struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
/*
- * If a BRU is present in the pipeline before the UDS, the alpha
- * component doesn't need to be scaled as the BRU output alpha
- * value is fixed to 255. Otherwise we need to scale the alpha
- * component only when available at the input RPF.
+ * If a BRU or BRS is present in the pipeline before the UDS,
+ * the alpha component doesn't need to be scaled as the BRU and
+ * BRS output alpha value is fixed to 255. Otherwise we need to
+ * scale the alpha component only when available at the input
+ * RPF.
*/
- if (pipe->uds_input->type == VSP1_ENTITY_BRU) {
+ if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
+ pipe->uds_input->type == VSP1_ENTITY_BRS) {
uds->scale_alpha = false;
} else {
struct vsp1_rwpf *rpf =
}
if (pipe->bru || pipe->num_inputs > 1)
- srcrpf |= VI6_WPF_SRCRPF_VIRACT_MST;
+ srcrpf |= pipe->bru->type == VSP1_ENTITY_BRU
+ ? VI6_WPF_SRCRPF_VIRACT_MST
+ : VI6_WPF_SRCRPF_VIRACT2_MST;
vsp1_wpf_write(wpf, dl, VI6_WPF_SRCRPF, srcrpf);