On vblank instant-off systems, we can get into a situation where the cost
of enabling and disabling the vblank IRQ around a drmWaitVblank query
dominates. And with the advent of even deeper hardware sleep state,
touching registers becomes ever more expensive. However, we know that if
the user wants the current vblank counter, they are also very likely to
immediately queue a vblank wait and so we can keep the interrupt around
and only turn it off if we have no further vblank requests queued within
the interrupt interval.
After vblank event delivery, this patch adds a shadow of one vblank where
the interrupt is kept alive for the user to query and queue another vblank
event. Similarly, if the user is using blocking drmWaitVblanks, the
interrupt will be disabled on the IRQ following the wait completion.
However, if the user is simply querying the current vblank counter and
timestamp, the interrupt will be disabled after every IRQ and the user
will enabled it again on the first query following the IRQ.
v2: Mario Kleiner -
After testing this, one more thing that would make sense is to move
the disable block at the end of drm_handle_vblank() instead of at the
top.
Turns out that if high precision timestaming is disabled or doesn't
work for some reason (as can be simulated by echo 0 >
/sys/module/drm/parameters/timestamp_precision_usec), then with your
delayed disable code at its current place, the vblank counter won't
increment anymore at all for instant queries, ie. with your other
"instant query" patches. Clients which repeatedly query the counter
and wait for it to progress will simply hang, spinning in an endless
query loop. There's that comment in vblank_disable_and_save:
"* Skip this step if there isn't any high precision timestamp
* available. In that case we can't account for this and just
* hope for the best.
*/
With the disable happening after leading edge of vblank (== hw counter
increment already happened) but before the vblank counter/timestamp
handling in drm_handle_vblank, that step is needed to keep the counter
progressing, so skipping it is bad.
Now without high precision timestamping support, a kms driver must not
set dev->vblank_disable_immediate = true, as this would cause problems
for clients, so this shouldn't matter, but it would be good to still
make this robust against a future kms driver which might have
unreliable high precision timestamping, e.g., high precision
timestamping that intermittently doesn't work.
v3: Patch before coffee needs extra coffee.
Testcase: igt/kms_vblank
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Michel Dänzer <michel@daenzer.net>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Dave Airlie <airlied@redhat.com>,
Cc: Mario Kleiner <mario.kleiner.de@gmail.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/20170315204027.20160-1-chris@chris-wilson.co.uk
if (atomic_dec_and_test(&vblank->refcount)) {
if (drm_vblank_offdelay == 0)
return;
- else if (dev->vblank_disable_immediate || drm_vblank_offdelay < 0)
+ else if (drm_vblank_offdelay < 0)
vblank_disable_fn((unsigned long)vblank);
- else
+ else if (!dev->vblank_disable_immediate)
mod_timer(&vblank->disable_timer,
jiffies + ((drm_vblank_offdelay * HZ)/1000));
}
wake_up(&vblank->queue);
drm_handle_vblank_events(dev, pipe);
+ /* With instant-off, we defer disabling the interrupt until after
+ * we finish processing the following vblank. The disable has to
+ * be last (after drm_handle_vblank_events) so that the timestamp
+ * is always accurate.
+ */
+ if (dev->vblank_disable_immediate &&
+ drm_vblank_offdelay > 0 &&
+ !atomic_read(&vblank->refcount))
+ vblank_disable_fn((unsigned long)vblank);
+
spin_unlock_irqrestore(&dev->event_lock, irqflags);
return true;