+++ /dev/null
-<?xml version="1.0" encoding="UTF-8"?>
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
- "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
-
-<book id="scsimid">
- <bookinfo>
- <title>SCSI Interfaces Guide</title>
-
- <authorgroup>
- <author>
- <firstname>James</firstname>
- <surname>Bottomley</surname>
- <affiliation>
- <address>
- <email>James.Bottomley@hansenpartnership.com</email>
- </address>
- </affiliation>
- </author>
-
- <author>
- <firstname>Rob</firstname>
- <surname>Landley</surname>
- <affiliation>
- <address>
- <email>rob@landley.net</email>
- </address>
- </affiliation>
- </author>
-
- </authorgroup>
-
- <copyright>
- <year>2007</year>
- <holder>Linux Foundation</holder>
- </copyright>
-
- <legalnotice>
- <para>
- This documentation is free software; you can redistribute
- it and/or modify it under the terms of the GNU General Public
- License version 2.
- </para>
-
- <para>
- This program is distributed in the hope that it will be
- useful, but WITHOUT ANY WARRANTY; without even the implied
- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- For more details see the file COPYING in the source
- distribution of Linux.
- </para>
- </legalnotice>
- </bookinfo>
-
- <toc></toc>
-
- <chapter id="intro">
- <title>Introduction</title>
- <sect1 id="protocol_vs_bus">
- <title>Protocol vs bus</title>
- <para>
- Once upon a time, the Small Computer Systems Interface defined both
- a parallel I/O bus and a data protocol to connect a wide variety of
- peripherals (disk drives, tape drives, modems, printers, scanners,
- optical drives, test equipment, and medical devices) to a host
- computer.
- </para>
- <para>
- Although the old parallel (fast/wide/ultra) SCSI bus has largely
- fallen out of use, the SCSI command set is more widely used than ever
- to communicate with devices over a number of different busses.
- </para>
- <para>
- The <ulink url='http://www.t10.org/scsi-3.htm'>SCSI protocol</ulink>
- is a big-endian peer-to-peer packet based protocol. SCSI commands
- are 6, 10, 12, or 16 bytes long, often followed by an associated data
- payload.
- </para>
- <para>
- SCSI commands can be transported over just about any kind of bus, and
- are the default protocol for storage devices attached to USB, SATA,
- SAS, Fibre Channel, FireWire, and ATAPI devices. SCSI packets are
- also commonly exchanged over Infiniband,
- <ulink url='http://i2o.shadowconnect.com/faq.php'>I20</ulink>, TCP/IP
- (<ulink url='https://en.wikipedia.org/wiki/ISCSI'>iSCSI</ulink>), even
- <ulink url='http://cyberelk.net/tim/parport/parscsi.html'>Parallel
- ports</ulink>.
- </para>
- </sect1>
- <sect1 id="subsystem_design">
- <title>Design of the Linux SCSI subsystem</title>
- <para>
- The SCSI subsystem uses a three layer design, with upper, mid, and low
- layers. Every operation involving the SCSI subsystem (such as reading
- a sector from a disk) uses one driver at each of the 3 levels: one
- upper layer driver, one lower layer driver, and the SCSI midlayer.
- </para>
- <para>
- The SCSI upper layer provides the interface between userspace and the
- kernel, in the form of block and char device nodes for I/O and
- ioctl(). The SCSI lower layer contains drivers for specific hardware
- devices.
- </para>
- <para>
- In between is the SCSI mid-layer, analogous to a network routing
- layer such as the IPv4 stack. The SCSI mid-layer routes a packet
- based data protocol between the upper layer's /dev nodes and the
- corresponding devices in the lower layer. It manages command queues,
- provides error handling and power management functions, and responds
- to ioctl() requests.
- </para>
- </sect1>
- </chapter>
-
- <chapter id="upper_layer">
- <title>SCSI upper layer</title>
- <para>
- The upper layer supports the user-kernel interface by providing
- device nodes.
- </para>
- <sect1 id="sd">
- <title>sd (SCSI Disk)</title>
- <para>sd (sd_mod.o)</para>
-<!-- !Idrivers/scsi/sd.c -->
- </sect1>
- <sect1 id="sr">
- <title>sr (SCSI CD-ROM)</title>
- <para>sr (sr_mod.o)</para>
- </sect1>
- <sect1 id="st">
- <title>st (SCSI Tape)</title>
- <para>st (st.o)</para>
- </sect1>
- <sect1 id="sg">
- <title>sg (SCSI Generic)</title>
- <para>sg (sg.o)</para>
- </sect1>
- <sect1 id="ch">
- <title>ch (SCSI Media Changer)</title>
- <para>ch (ch.c)</para>
- </sect1>
- </chapter>
-
- <chapter id="mid_layer">
- <title>SCSI mid layer</title>
-
- <sect1 id="midlayer_implementation">
- <title>SCSI midlayer implementation</title>
- <sect2 id="scsi_device.h">
- <title>include/scsi/scsi_device.h</title>
- <para>
- </para>
-!Iinclude/scsi/scsi_device.h
- </sect2>
-
- <sect2 id="scsi.c">
- <title>drivers/scsi/scsi.c</title>
- <para>Main file for the SCSI midlayer.</para>
-!Edrivers/scsi/scsi.c
- </sect2>
- <sect2 id="scsicam.c">
- <title>drivers/scsi/scsicam.c</title>
- <para>
- <ulink url='http://www.t10.org/ftp/t10/drafts/cam/cam-r12b.pdf'>SCSI
- Common Access Method</ulink> support functions, for use with
- HDIO_GETGEO, etc.
- </para>
-!Edrivers/scsi/scsicam.c
- </sect2>
- <sect2 id="scsi_error.c">
- <title>drivers/scsi/scsi_error.c</title>
- <para>Common SCSI error/timeout handling routines.</para>
-!Edrivers/scsi/scsi_error.c
- </sect2>
- <sect2 id="scsi_devinfo.c">
- <title>drivers/scsi/scsi_devinfo.c</title>
- <para>
- Manage scsi_dev_info_list, which tracks blacklisted and whitelisted
- devices.
- </para>
-!Idrivers/scsi/scsi_devinfo.c
- </sect2>
- <sect2 id="scsi_ioctl.c">
- <title>drivers/scsi/scsi_ioctl.c</title>
- <para>
- Handle ioctl() calls for SCSI devices.
- </para>
-!Edrivers/scsi/scsi_ioctl.c
- </sect2>
- <sect2 id="scsi_lib.c">
- <title>drivers/scsi/scsi_lib.c</title>
- <para>
- SCSI queuing library.
- </para>
-!Edrivers/scsi/scsi_lib.c
- </sect2>
- <sect2 id="scsi_lib_dma.c">
- <title>drivers/scsi/scsi_lib_dma.c</title>
- <para>
- SCSI library functions depending on DMA
- (map and unmap scatter-gather lists).
- </para>
-!Edrivers/scsi/scsi_lib_dma.c
- </sect2>
- <sect2 id="scsi_module.c">
- <title>drivers/scsi/scsi_module.c</title>
- <para>
- The file drivers/scsi/scsi_module.c contains legacy support for
- old-style host templates. It should never be used by any new driver.
- </para>
- </sect2>
- <sect2 id="scsi_proc.c">
- <title>drivers/scsi/scsi_proc.c</title>
- <para>
- The functions in this file provide an interface between
- the PROC file system and the SCSI device drivers
- It is mainly used for debugging, statistics and to pass
- information directly to the lowlevel driver.
-
- I.E. plumbing to manage /proc/scsi/*
- </para>
-!Idrivers/scsi/scsi_proc.c
- </sect2>
- <sect2 id="scsi_netlink.c">
- <title>drivers/scsi/scsi_netlink.c</title>
- <para>
- Infrastructure to provide async events from transports to userspace
- via netlink, using a single NETLINK_SCSITRANSPORT protocol for all
- transports.
-
- See <ulink url='http://marc.info/?l=linux-scsi&m=115507374832500&w=2'>the
- original patch submission</ulink> for more details.
- </para>
-!Idrivers/scsi/scsi_netlink.c
- </sect2>
- <sect2 id="scsi_scan.c">
- <title>drivers/scsi/scsi_scan.c</title>
- <para>
- Scan a host to determine which (if any) devices are attached.
-
- The general scanning/probing algorithm is as follows, exceptions are
- made to it depending on device specific flags, compilation options,
- and global variable (boot or module load time) settings.
-
- A specific LUN is scanned via an INQUIRY command; if the LUN has a
- device attached, a scsi_device is allocated and setup for it.
-
- For every id of every channel on the given host, start by scanning
- LUN 0. Skip hosts that don't respond at all to a scan of LUN 0.
- Otherwise, if LUN 0 has a device attached, allocate and setup a
- scsi_device for it. If target is SCSI-3 or up, issue a REPORT LUN,
- and scan all of the LUNs returned by the REPORT LUN; else,
- sequentially scan LUNs up until some maximum is reached, or a LUN is
- seen that cannot have a device attached to it.
- </para>
-!Idrivers/scsi/scsi_scan.c
- </sect2>
- <sect2 id="scsi_sysctl.c">
- <title>drivers/scsi/scsi_sysctl.c</title>
- <para>
- Set up the sysctl entry: "/dev/scsi/logging_level"
- (DEV_SCSI_LOGGING_LEVEL) which sets/returns scsi_logging_level.
- </para>
- </sect2>
- <sect2 id="scsi_sysfs.c">
- <title>drivers/scsi/scsi_sysfs.c</title>
- <para>
- SCSI sysfs interface routines.
- </para>
-!Edrivers/scsi/scsi_sysfs.c
- </sect2>
- <sect2 id="hosts.c">
- <title>drivers/scsi/hosts.c</title>
- <para>
- mid to lowlevel SCSI driver interface
- </para>
-!Edrivers/scsi/hosts.c
- </sect2>
- <sect2 id="constants.c">
- <title>drivers/scsi/constants.c</title>
- <para>
- mid to lowlevel SCSI driver interface
- </para>
-!Edrivers/scsi/constants.c
- </sect2>
- </sect1>
-
- <sect1 id="Transport_classes">
- <title>Transport classes</title>
- <para>
- Transport classes are service libraries for drivers in the SCSI
- lower layer, which expose transport attributes in sysfs.
- </para>
- <sect2 id="Fibre_Channel_transport">
- <title>Fibre Channel transport</title>
- <para>
- The file drivers/scsi/scsi_transport_fc.c defines transport attributes
- for Fibre Channel.
- </para>
-!Edrivers/scsi/scsi_transport_fc.c
- </sect2>
- <sect2 id="iSCSI_transport">
- <title>iSCSI transport class</title>
- <para>
- The file drivers/scsi/scsi_transport_iscsi.c defines transport
- attributes for the iSCSI class, which sends SCSI packets over TCP/IP
- connections.
- </para>
-!Edrivers/scsi/scsi_transport_iscsi.c
- </sect2>
- <sect2 id="SAS_transport">
- <title>Serial Attached SCSI (SAS) transport class</title>
- <para>
- The file drivers/scsi/scsi_transport_sas.c defines transport
- attributes for Serial Attached SCSI, a variant of SATA aimed at
- large high-end systems.
- </para>
- <para>
- The SAS transport class contains common code to deal with SAS HBAs,
- an aproximated representation of SAS topologies in the driver model,
- and various sysfs attributes to expose these topologies and management
- interfaces to userspace.
- </para>
- <para>
- In addition to the basic SCSI core objects this transport class
- introduces two additional intermediate objects: The SAS PHY
- as represented by struct sas_phy defines an "outgoing" PHY on
- a SAS HBA or Expander, and the SAS remote PHY represented by
- struct sas_rphy defines an "incoming" PHY on a SAS Expander or
- end device. Note that this is purely a software concept, the
- underlying hardware for a PHY and a remote PHY is the exactly
- the same.
- </para>
- <para>
- There is no concept of a SAS port in this code, users can see
- what PHYs form a wide port based on the port_identifier attribute,
- which is the same for all PHYs in a port.
- </para>
-!Edrivers/scsi/scsi_transport_sas.c
- </sect2>
- <sect2 id="SATA_transport">
- <title>SATA transport class</title>
- <para>
- The SATA transport is handled by libata, which has its own book of
- documentation in this directory.
- </para>
- </sect2>
- <sect2 id="SPI_transport">
- <title>Parallel SCSI (SPI) transport class</title>
- <para>
- The file drivers/scsi/scsi_transport_spi.c defines transport
- attributes for traditional (fast/wide/ultra) SCSI busses.
- </para>
-!Edrivers/scsi/scsi_transport_spi.c
- </sect2>
- <sect2 id="SRP_transport">
- <title>SCSI RDMA (SRP) transport class</title>
- <para>
- The file drivers/scsi/scsi_transport_srp.c defines transport
- attributes for SCSI over Remote Direct Memory Access.
- </para>
-!Edrivers/scsi/scsi_transport_srp.c
- </sect2>
- </sect1>
-
- </chapter>
-
- <chapter id="lower_layer">
- <title>SCSI lower layer</title>
- <sect1 id="hba_drivers">
- <title>Host Bus Adapter transport types</title>
- <para>
- Many modern device controllers use the SCSI command set as a protocol to
- communicate with their devices through many different types of physical
- connections.
- </para>
- <para>
- In SCSI language a bus capable of carrying SCSI commands is
- called a "transport", and a controller connecting to such a bus is
- called a "host bus adapter" (HBA).
- </para>
- <sect2 id="scsi_debug.c">
- <title>Debug transport</title>
- <para>
- The file drivers/scsi/scsi_debug.c simulates a host adapter with a
- variable number of disks (or disk like devices) attached, sharing a
- common amount of RAM. Does a lot of checking to make sure that we are
- not getting blocks mixed up, and panics the kernel if anything out of
- the ordinary is seen.
- </para>
- <para>
- To be more realistic, the simulated devices have the transport
- attributes of SAS disks.
- </para>
- <para>
- For documentation see
- <ulink url='http://sg.danny.cz/sg/sdebug26.html'>http://sg.danny.cz/sg/sdebug26.html</ulink>
- </para>
-<!-- !Edrivers/scsi/scsi_debug.c -->
- </sect2>
- <sect2 id="todo">
- <title>todo</title>
- <para>Parallel (fast/wide/ultra) SCSI, USB, SATA,
- SAS, Fibre Channel, FireWire, ATAPI devices, Infiniband,
- I20, iSCSI, Parallel ports, netlink...
- </para>
- </sect2>
- </sect1>
- </chapter>
-</book>
--- /dev/null
+=====================
+SCSI Interfaces Guide
+=====================
+
+:Author: James Bottomley
+:Author: Rob Landley
+
+Introduction
+============
+
+Protocol vs bus
+---------------
+
+Once upon a time, the Small Computer Systems Interface defined both a
+parallel I/O bus and a data protocol to connect a wide variety of
+peripherals (disk drives, tape drives, modems, printers, scanners,
+optical drives, test equipment, and medical devices) to a host computer.
+
+Although the old parallel (fast/wide/ultra) SCSI bus has largely fallen
+out of use, the SCSI command set is more widely used than ever to
+communicate with devices over a number of different busses.
+
+The `SCSI protocol <http://www.t10.org/scsi-3.htm>`__ is a big-endian
+peer-to-peer packet based protocol. SCSI commands are 6, 10, 12, or 16
+bytes long, often followed by an associated data payload.
+
+SCSI commands can be transported over just about any kind of bus, and
+are the default protocol for storage devices attached to USB, SATA, SAS,
+Fibre Channel, FireWire, and ATAPI devices. SCSI packets are also
+commonly exchanged over Infiniband,
+`I20 <http://i2o.shadowconnect.com/faq.php>`__, TCP/IP
+(`iSCSI <https://en.wikipedia.org/wiki/ISCSI>`__), even `Parallel
+ports <http://cyberelk.net/tim/parport/parscsi.html>`__.
+
+Design of the Linux SCSI subsystem
+----------------------------------
+
+The SCSI subsystem uses a three layer design, with upper, mid, and low
+layers. Every operation involving the SCSI subsystem (such as reading a
+sector from a disk) uses one driver at each of the 3 levels: one upper
+layer driver, one lower layer driver, and the SCSI midlayer.
+
+The SCSI upper layer provides the interface between userspace and the
+kernel, in the form of block and char device nodes for I/O and ioctl().
+The SCSI lower layer contains drivers for specific hardware devices.
+
+In between is the SCSI mid-layer, analogous to a network routing layer
+such as the IPv4 stack. The SCSI mid-layer routes a packet based data
+protocol between the upper layer's /dev nodes and the corresponding
+devices in the lower layer. It manages command queues, provides error
+handling and power management functions, and responds to ioctl()
+requests.
+
+SCSI upper layer
+================
+
+The upper layer supports the user-kernel interface by providing device
+nodes.
+
+sd (SCSI Disk)
+--------------
+
+sd (sd_mod.o)
+
+sr (SCSI CD-ROM)
+----------------
+
+sr (sr_mod.o)
+
+st (SCSI Tape)
+--------------
+
+st (st.o)
+
+sg (SCSI Generic)
+-----------------
+
+sg (sg.o)
+
+ch (SCSI Media Changer)
+-----------------------
+
+ch (ch.c)
+
+SCSI mid layer
+==============
+
+SCSI midlayer implementation
+----------------------------
+
+include/scsi/scsi_device.h
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: include/scsi/scsi_device.h
+ :internal:
+
+drivers/scsi/scsi.c
+~~~~~~~~~~~~~~~~~~~
+
+Main file for the SCSI midlayer.
+
+.. kernel-doc:: drivers/scsi/scsi.c
+ :export:
+
+drivers/scsi/scsicam.c
+~~~~~~~~~~~~~~~~~~~~~~
+
+`SCSI Common Access
+Method <http://www.t10.org/ftp/t10/drafts/cam/cam-r12b.pdf>`__ support
+functions, for use with HDIO_GETGEO, etc.
+
+.. kernel-doc:: drivers/scsi/scsicam.c
+ :export:
+
+drivers/scsi/scsi_error.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Common SCSI error/timeout handling routines.
+
+.. kernel-doc:: drivers/scsi/scsi_error.c
+ :export:
+
+drivers/scsi/scsi_devinfo.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Manage scsi_dev_info_list, which tracks blacklisted and whitelisted
+devices.
+
+.. kernel-doc:: drivers/scsi/scsi_devinfo.c
+ :internal:
+
+drivers/scsi/scsi_ioctl.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Handle ioctl() calls for SCSI devices.
+
+.. kernel-doc:: drivers/scsi/scsi_ioctl.c
+ :export:
+
+drivers/scsi/scsi_lib.c
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+SCSI queuing library.
+
+.. kernel-doc:: drivers/scsi/scsi_lib.c
+ :export:
+
+drivers/scsi/scsi_lib_dma.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+SCSI library functions depending on DMA (map and unmap scatter-gather
+lists).
+
+.. kernel-doc:: drivers/scsi/scsi_lib_dma.c
+ :export:
+
+drivers/scsi/scsi_module.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_module.c contains legacy support for
+old-style host templates. It should never be used by any new driver.
+
+drivers/scsi/scsi_proc.c
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The functions in this file provide an interface between the PROC file
+system and the SCSI device drivers It is mainly used for debugging,
+statistics and to pass information directly to the lowlevel driver. I.E.
+plumbing to manage /proc/scsi/\*
+
+.. kernel-doc:: drivers/scsi/scsi_proc.c
+ :internal:
+
+drivers/scsi/scsi_netlink.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Infrastructure to provide async events from transports to userspace via
+netlink, using a single NETLINK_SCSITRANSPORT protocol for all
+transports. See `the original patch
+submission <http://marc.info/?l=linux-scsi&m=115507374832500&w=2>`__ for
+more details.
+
+.. kernel-doc:: drivers/scsi/scsi_netlink.c
+ :internal:
+
+drivers/scsi/scsi_scan.c
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Scan a host to determine which (if any) devices are attached. The
+general scanning/probing algorithm is as follows, exceptions are made to
+it depending on device specific flags, compilation options, and global
+variable (boot or module load time) settings. A specific LUN is scanned
+via an INQUIRY command; if the LUN has a device attached, a scsi_device
+is allocated and setup for it. For every id of every channel on the
+given host, start by scanning LUN 0. Skip hosts that don't respond at
+all to a scan of LUN 0. Otherwise, if LUN 0 has a device attached,
+allocate and setup a scsi_device for it. If target is SCSI-3 or up,
+issue a REPORT LUN, and scan all of the LUNs returned by the REPORT LUN;
+else, sequentially scan LUNs up until some maximum is reached, or a LUN
+is seen that cannot have a device attached to it.
+
+.. kernel-doc:: drivers/scsi/scsi_scan.c
+ :internal:
+
+drivers/scsi/scsi_sysctl.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Set up the sysctl entry: "/dev/scsi/logging_level"
+(DEV_SCSI_LOGGING_LEVEL) which sets/returns scsi_logging_level.
+
+drivers/scsi/scsi_sysfs.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+SCSI sysfs interface routines.
+
+.. kernel-doc:: drivers/scsi/scsi_sysfs.c
+ :export:
+
+drivers/scsi/hosts.c
+~~~~~~~~~~~~~~~~~~~~
+
+mid to lowlevel SCSI driver interface
+
+.. kernel-doc:: drivers/scsi/hosts.c
+ :export:
+
+drivers/scsi/constants.c
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+mid to lowlevel SCSI driver interface
+
+.. kernel-doc:: drivers/scsi/constants.c
+ :export:
+
+Transport classes
+-----------------
+
+Transport classes are service libraries for drivers in the SCSI lower
+layer, which expose transport attributes in sysfs.
+
+Fibre Channel transport
+~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_fc.c defines transport attributes
+for Fibre Channel.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_fc.c
+ :export:
+
+iSCSI transport class
+~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_iscsi.c defines transport
+attributes for the iSCSI class, which sends SCSI packets over TCP/IP
+connections.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_iscsi.c
+ :export:
+
+Serial Attached SCSI (SAS) transport class
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_sas.c defines transport
+attributes for Serial Attached SCSI, a variant of SATA aimed at large
+high-end systems.
+
+The SAS transport class contains common code to deal with SAS HBAs, an
+aproximated representation of SAS topologies in the driver model, and
+various sysfs attributes to expose these topologies and management
+interfaces to userspace.
+
+In addition to the basic SCSI core objects this transport class
+introduces two additional intermediate objects: The SAS PHY as
+represented by struct sas_phy defines an "outgoing" PHY on a SAS HBA or
+Expander, and the SAS remote PHY represented by struct sas_rphy defines
+an "incoming" PHY on a SAS Expander or end device. Note that this is
+purely a software concept, the underlying hardware for a PHY and a
+remote PHY is the exactly the same.
+
+There is no concept of a SAS port in this code, users can see what PHYs
+form a wide port based on the port_identifier attribute, which is the
+same for all PHYs in a port.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_sas.c
+ :export:
+
+SATA transport class
+~~~~~~~~~~~~~~~~~~~~
+
+The SATA transport is handled by libata, which has its own book of
+documentation in this directory.
+
+Parallel SCSI (SPI) transport class
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_spi.c defines transport
+attributes for traditional (fast/wide/ultra) SCSI busses.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_spi.c
+ :export:
+
+SCSI RDMA (SRP) transport class
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_srp.c defines transport
+attributes for SCSI over Remote Direct Memory Access.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_srp.c
+ :export:
+
+SCSI lower layer
+================
+
+Host Bus Adapter transport types
+--------------------------------
+
+Many modern device controllers use the SCSI command set as a protocol to
+communicate with their devices through many different types of physical
+connections.
+
+In SCSI language a bus capable of carrying SCSI commands is called a
+"transport", and a controller connecting to such a bus is called a "host
+bus adapter" (HBA).
+
+Debug transport
+~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_debug.c simulates a host adapter with a
+variable number of disks (or disk like devices) attached, sharing a
+common amount of RAM. Does a lot of checking to make sure that we are
+not getting blocks mixed up, and panics the kernel if anything out of
+the ordinary is seen.
+
+To be more realistic, the simulated devices have the transport
+attributes of SAS disks.
+
+For documentation see http://sg.danny.cz/sg/sdebug26.html
+
+todo
+~~~~
+
+Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel,
+FireWire, ATAPI devices, Infiniband, I20, iSCSI, Parallel ports,
+netlink...