x86: clean up drivers/char/rtc.c
authorIngo Molnar <mingo@elte.hu>
Wed, 30 Jan 2008 12:31:09 +0000 (13:31 +0100)
committerIngo Molnar <mingo@elte.hu>
Wed, 30 Jan 2008 12:31:09 +0000 (13:31 +0100)
tons of style cleanup in drivers/char/rtc.c - no code changed:

   text    data     bss     dec     hex filename
   6400     384      32    6816    1aa0 rtc.o.before
   6400     384      32    6816    1aa0 rtc.o.after

since we seem to have a number of open breakages in this code we might
as well start with making the code more readable and maintainable.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
drivers/char/rtc.c

index 0c66b802736a10540bca3ed9d7ef34f5b0208b4a..3ac7952fe086fd47da23dc733a88f1bacdab5204 100644 (file)
@@ -1,5 +1,5 @@
 /*
- *     Real Time Clock interface for Linux     
+ *     Real Time Clock interface for Linux
  *
  *     Copyright (C) 1996 Paul Gortmaker
  *
@@ -17,7 +17,7 @@
  *     has been received. If a RTC interrupt has already happened,
  *     it will output an unsigned long and then block. The output value
  *     contains the interrupt status in the low byte and the number of
- *     interrupts since the last read in the remaining high bytes. The 
+ *     interrupts since the last read in the remaining high bytes. The
  *     /dev/rtc interface can also be used with the select(2) call.
  *
  *     This program is free software; you can redistribute it and/or
@@ -104,12 +104,12 @@ static int rtc_has_irq = 1;
 
 #ifndef CONFIG_HPET_EMULATE_RTC
 #define is_hpet_enabled()                      0
-#define hpet_set_alarm_time(hrs, min, sec)     0
-#define hpet_set_periodic_freq(arg)            0
-#define hpet_mask_rtc_irq_bit(arg)             0
-#define hpet_set_rtc_irq_bit(arg)              0
-#define hpet_rtc_timer_init()                  do { } while (0)
-#define hpet_rtc_dropped_irq()                         0
+#define hpet_set_alarm_time(hrs, min, sec)     0
+#define hpet_set_periodic_freq(arg)            0
+#define hpet_mask_rtc_irq_bit(arg)             0
+#define hpet_set_rtc_irq_bit(arg)              0
+#define hpet_rtc_timer_init()                  do { } while (0)
+#define hpet_rtc_dropped_irq()                 0
 #ifdef RTC_IRQ
 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 {
@@ -147,7 +147,7 @@ static int rtc_ioctl(struct inode *inode, struct file *file,
 static unsigned int rtc_poll(struct file *file, poll_table *wait);
 #endif
 
-static void get_rtc_alm_time (struct rtc_time *alm_tm);
+static void get_rtc_alm_time(struct rtc_time *alm_tm);
 #ifdef RTC_IRQ
 static void set_rtc_irq_bit_locked(unsigned char bit);
 static void mask_rtc_irq_bit_locked(unsigned char bit);
@@ -185,9 +185,9 @@ static int rtc_proc_open(struct inode *inode, struct file *file);
  * rtc_status but before mod_timer is called, which would then reenable the
  * timer (but you would need to have an awful timing before you'd trip on it)
  */
-static unsigned long rtc_status = 0;   /* bitmapped status byte.       */
-static unsigned long rtc_freq = 0;     /* Current periodic IRQ rate    */
-static unsigned long rtc_irq_data = 0; /* our output to the world      */
+static unsigned long rtc_status;       /* bitmapped status byte.       */
+static unsigned long rtc_freq;         /* Current periodic IRQ rate    */
+static unsigned long rtc_irq_data;     /* our output to the world      */
 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 
 #ifdef RTC_IRQ
@@ -195,7 +195,7 @@ static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
  * rtc_task_lock nests inside rtc_lock.
  */
 static DEFINE_SPINLOCK(rtc_task_lock);
-static rtc_task_t *rtc_callback = NULL;
+static rtc_task_t *rtc_callback;
 #endif
 
 /*
@@ -205,7 +205,7 @@ static rtc_task_t *rtc_callback = NULL;
 
 static unsigned long epoch = 1900;     /* year corresponding to 0x00   */
 
-static const unsigned char days_in_mo[] = 
+static const unsigned char days_in_mo[] =
 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 
 /*
@@ -242,7 +242,7 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id)
         *      the last read in the remainder of rtc_irq_data.
         */
 
-       spin_lock (&rtc_lock);
+       spin_lock(&rtc_lock);
        rtc_irq_data += 0x100;
        rtc_irq_data &= ~0xff;
        if (is_hpet_enabled()) {
@@ -259,16 +259,16 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id)
        if (rtc_status & RTC_TIMER_ON)
                mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 
-       spin_unlock (&rtc_lock);
+       spin_unlock(&rtc_lock);
 
        /* Now do the rest of the actions */
        spin_lock(&rtc_task_lock);
        if (rtc_callback)
                rtc_callback->func(rtc_callback->private_data);
        spin_unlock(&rtc_task_lock);
-       wake_up_interruptible(&rtc_wait);       
+       wake_up_interruptible(&rtc_wait);
 
-       kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
+       kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 
        return IRQ_HANDLED;
 }
@@ -335,7 +335,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
        DECLARE_WAITQUEUE(wait, current);
        unsigned long data;
        ssize_t retval;
-       
+
        if (rtc_has_irq == 0)
                return -EIO;
 
@@ -358,11 +358,11 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
                 * confusing. And no, xchg() is not the answer. */
 
                __set_current_state(TASK_INTERRUPTIBLE);
-               
-               spin_lock_irq (&rtc_lock);
+
+               spin_lock_irq(&rtc_lock);
                data = rtc_irq_data;
                rtc_irq_data = 0;
-               spin_unlock_irq (&rtc_lock);
+               spin_unlock_irq(&rtc_lock);
 
                if (data != 0)
                        break;
@@ -378,10 +378,13 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
                schedule();
        } while (1);
 
-       if (count == sizeof(unsigned int))
-               retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
-       else
-               retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
+       if (count == sizeof(unsigned int)) {
+               retval = put_user(data,
+                                 (unsigned int __user *)buf) ?: sizeof(int);
+       } else {
+               retval = put_user(data,
+                                 (unsigned long __user *)buf) ?: sizeof(long);
+       }
        if (!retval)
                retval = count;
  out:
@@ -394,7 +397,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
 
 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 {
-       struct rtc_time wtime; 
+       struct rtc_time wtime;
 
 #ifdef RTC_IRQ
        if (rtc_has_irq == 0) {
@@ -426,35 +429,41 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
        }
        case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
        {
-               unsigned long flags; /* can be called from isr via rtc_control() */
-               spin_lock_irqsave (&rtc_lock, flags);
+               /* can be called from isr via rtc_control() */
+               unsigned long flags;
+
+               spin_lock_irqsave(&rtc_lock, flags);
                mask_rtc_irq_bit_locked(RTC_PIE);
                if (rtc_status & RTC_TIMER_ON) {
                        rtc_status &= ~RTC_TIMER_ON;
                        del_timer(&rtc_irq_timer);
                }
-               spin_unlock_irqrestore (&rtc_lock, flags);
+               spin_unlock_irqrestore(&rtc_lock, flags);
+
                return 0;
        }
        case RTC_PIE_ON:        /* Allow periodic ints          */
        {
-               unsigned long flags; /* can be called from isr via rtc_control() */
+               /* can be called from isr via rtc_control() */
+               unsigned long flags;
+
                /*
                 * We don't really want Joe User enabling more
                 * than 64Hz of interrupts on a multi-user machine.
                 */
                if (!kernel && (rtc_freq > rtc_max_user_freq) &&
-                       (!capable(CAP_SYS_RESOURCE)))
+                                               (!capable(CAP_SYS_RESOURCE)))
                        return -EACCES;
 
-               spin_lock_irqsave (&rtc_lock, flags);
+               spin_lock_irqsave(&rtc_lock, flags);
                if (!(rtc_status & RTC_TIMER_ON)) {
                        mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
                                        2*HZ/100);
                        rtc_status |= RTC_TIMER_ON;
                }
                set_rtc_irq_bit_locked(RTC_PIE);
-               spin_unlock_irqrestore (&rtc_lock, flags);
+               spin_unlock_irqrestore(&rtc_lock, flags);
+
                return 0;
        }
        case RTC_UIE_OFF:       /* Mask ints from RTC updates.  */
@@ -477,7 +486,7 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
                 */
                memset(&wtime, 0, sizeof(struct rtc_time));
                get_rtc_alm_time(&wtime);
-               break; 
+               break;
        }
        case RTC_ALM_SET:       /* Store a time into the alarm */
        {
@@ -505,16 +514,21 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
                         */
                }
                if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
-                   RTC_ALWAYS_BCD)
-               {
-                       if (sec < 60) BIN_TO_BCD(sec);
-                       else sec = 0xff;
-
-                       if (min < 60) BIN_TO_BCD(min);
-                       else min = 0xff;
-
-                       if (hrs < 24) BIN_TO_BCD(hrs);
-                       else hrs = 0xff;
+                                                       RTC_ALWAYS_BCD) {
+                       if (sec < 60)
+                               BIN_TO_BCD(sec);
+                       else
+                               sec = 0xff;
+
+                       if (min < 60)
+                               BIN_TO_BCD(min);
+                       else
+                               min = 0xff;
+
+                       if (hrs < 24)
+                               BIN_TO_BCD(hrs);
+                       else
+                               hrs = 0xff;
                }
                CMOS_WRITE(hrs, RTC_HOURS_ALARM);
                CMOS_WRITE(min, RTC_MINUTES_ALARM);
@@ -563,11 +577,12 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 
                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
                        return -EINVAL;
-                       
+
                if ((hrs >= 24) || (min >= 60) || (sec >= 60))
                        return -EINVAL;
 
-               if ((yrs -= epoch) > 255)    /* They are unsigned */
+               yrs -= epoch;
+               if (yrs > 255)          /* They are unsigned */
                        return -EINVAL;
 
                spin_lock_irq(&rtc_lock);
@@ -635,9 +650,10 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
        {
                int tmp = 0;
                unsigned char val;
-               unsigned long flags; /* can be called from isr via rtc_control() */
+               /* can be called from isr via rtc_control() */
+               unsigned long flags;
 
-               /* 
+               /*
                 * The max we can do is 8192Hz.
                 */
                if ((arg < 2) || (arg > 8192))
@@ -646,7 +662,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
                 * We don't really want Joe User generating more
                 * than 64Hz of interrupts on a multi-user machine.
                 */
-               if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
+               if (!kernel && (arg > rtc_max_user_freq) &&
+                                       !capable(CAP_SYS_RESOURCE))
                        return -EACCES;
 
                while (arg > (1<<tmp))
@@ -674,11 +691,11 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 #endif
        case RTC_EPOCH_READ:    /* Read the epoch.      */
        {
-               return put_user (epoch, (unsigned long __user *)arg);
+               return put_user(epoch, (unsigned long __user *)arg);
        }
        case RTC_EPOCH_SET:     /* Set the epoch.       */
        {
-               /* 
+               /*
                 * There were no RTC clocks before 1900.
                 */
                if (arg < 1900)
@@ -693,7 +710,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
        default:
                return -ENOTTY;
        }
-       return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
+       return copy_to_user((void __user *)arg,
+                           &wtime, sizeof wtime) ? -EFAULT : 0;
 }
 
 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
@@ -712,26 +730,25 @@ static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
  * needed here. Or anywhere else in this driver. */
 static int rtc_open(struct inode *inode, struct file *file)
 {
-       spin_lock_irq (&rtc_lock);
+       spin_lock_irq(&rtc_lock);
 
-       if(rtc_status & RTC_IS_OPEN)
+       if (rtc_status & RTC_IS_OPEN)
                goto out_busy;
 
        rtc_status |= RTC_IS_OPEN;
 
        rtc_irq_data = 0;
-       spin_unlock_irq (&rtc_lock);
+       spin_unlock_irq(&rtc_lock);
        return 0;
 
 out_busy:
-       spin_unlock_irq (&rtc_lock);
+       spin_unlock_irq(&rtc_lock);
        return -EBUSY;
 }
 
-static int rtc_fasync (int fd, struct file *filp, int on)
-
+static int rtc_fasync(int fd, struct file *filp, int on)
 {
-       return fasync_helper (fd, filp, on, &rtc_async_queue);
+       return fasync_helper(fd, filp, on, &rtc_async_queue);
 }
 
 static int rtc_release(struct inode *inode, struct file *file)
@@ -762,16 +779,16 @@ static int rtc_release(struct inode *inode, struct file *file)
        }
        spin_unlock_irq(&rtc_lock);
 
-       if (file->f_flags & FASYNC) {
-               rtc_fasync (-1, file, 0);
-       }
+       if (file->f_flags & FASYNC)
+               rtc_fasync(-1, file, 0);
 no_irq:
 #endif
 
-       spin_lock_irq (&rtc_lock);
+       spin_lock_irq(&rtc_lock);
        rtc_irq_data = 0;
        rtc_status &= ~RTC_IS_OPEN;
-       spin_unlock_irq (&rtc_lock);
+       spin_unlock_irq(&rtc_lock);
+
        return 0;
 }
 
@@ -786,9 +803,9 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait)
 
        poll_wait(file, &rtc_wait, wait);
 
-       spin_lock_irq (&rtc_lock);
+       spin_lock_irq(&rtc_lock);
        l = rtc_irq_data;
-       spin_unlock_irq (&rtc_lock);
+       spin_unlock_irq(&rtc_lock);
 
        if (l != 0)
                return POLLIN | POLLRDNORM;
@@ -796,14 +813,6 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait)
 }
 #endif
 
-/*
- * exported stuffs
- */
-
-EXPORT_SYMBOL(rtc_register);
-EXPORT_SYMBOL(rtc_unregister);
-EXPORT_SYMBOL(rtc_control);
-
 int rtc_register(rtc_task_t *task)
 {
 #ifndef RTC_IRQ
@@ -829,6 +838,7 @@ int rtc_register(rtc_task_t *task)
        return 0;
 #endif
 }
+EXPORT_SYMBOL(rtc_register);
 
 int rtc_unregister(rtc_task_t *task)
 {
@@ -845,7 +855,7 @@ int rtc_unregister(rtc_task_t *task)
                return -ENXIO;
        }
        rtc_callback = NULL;
-       
+
        /* disable controls */
        if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
                tmp = CMOS_READ(RTC_CONTROL);
@@ -865,6 +875,7 @@ int rtc_unregister(rtc_task_t *task)
        return 0;
 #endif
 }
+EXPORT_SYMBOL(rtc_unregister);
 
 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
 {
@@ -883,7 +894,7 @@ int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
        return rtc_do_ioctl(cmd, arg, 1);
 #endif
 }
-
+EXPORT_SYMBOL(rtc_control);
 
 /*
  *     The various file operations we support.
@@ -910,11 +921,11 @@ static struct miscdevice rtc_dev = {
 
 #ifdef CONFIG_PROC_FS
 static const struct file_operations rtc_proc_fops = {
-       .owner = THIS_MODULE,
-       .open = rtc_proc_open,
-       .read  = seq_read,
-       .llseek = seq_lseek,
-       .release = single_release,
+       .owner          = THIS_MODULE,
+       .open           = rtc_proc_open,
+       .read           = seq_read,
+       .llseek         = seq_lseek,
+       .release        = single_release,
 };
 #endif
 
@@ -965,7 +976,7 @@ static int __init rtc_init(void)
 #ifdef CONFIG_SPARC32
        for_each_ebus(ebus) {
                for_each_ebusdev(edev, ebus) {
-                       if(strcmp(edev->prom_node->name, "rtc") == 0) {
+                       if (strcmp(edev->prom_node->name, "rtc") == 0) {
                                rtc_port = edev->resource[0].start;
                                rtc_irq = edev->irqs[0];
                                goto found;
@@ -986,7 +997,8 @@ found:
         * XXX Interrupt pin #7 in Espresso is shared between RTC and
         * PCI Slot 2 INTA# (and some INTx# in Slot 1).
         */
-       if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
+       if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
+                       (void *)&rtc_port)) {
                rtc_has_irq = 0;
                printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
                return -EIO;
@@ -1020,11 +1032,13 @@ no_irq:
                rtc_int_handler_ptr = rtc_interrupt;
        }
 
-       if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
+       if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
+                       "rtc", NULL)) {
                /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
                rtc_has_irq = 0;
                printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
                rtc_release_region();
+
                return -EIO;
        }
        hpet_rtc_timer_init();
@@ -1052,21 +1066,21 @@ no_irq:
 
 #if defined(__alpha__) || defined(__mips__)
        rtc_freq = HZ;
-       
+
        /* Each operating system on an Alpha uses its own epoch.
           Let's try to guess which one we are using now. */
-       
+
        if (rtc_is_updating() != 0)
                msleep(20);
-       
+
        spin_lock_irq(&rtc_lock);
        year = CMOS_READ(RTC_YEAR);
        ctrl = CMOS_READ(RTC_CONTROL);
        spin_unlock_irq(&rtc_lock);
-       
+
        if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
                BCD_TO_BIN(year);       /* This should never happen... */
-       
+
        if (year < 20) {
                epoch = 2000;
                guess = "SRM (post-2000)";
@@ -1087,7 +1101,8 @@ no_irq:
 #endif
        }
        if (guess)
-               printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
+               printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
+                       guess, epoch);
 #endif
 #ifdef RTC_IRQ
        if (rtc_has_irq == 0)
@@ -1096,8 +1111,12 @@ no_irq:
        spin_lock_irq(&rtc_lock);
        rtc_freq = 1024;
        if (!hpet_set_periodic_freq(rtc_freq)) {
-               /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
-               CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
+               /*
+                * Initialize periodic frequency to CMOS reset default,
+                * which is 1024Hz
+                */
+               CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
+                          RTC_FREQ_SELECT);
        }
        spin_unlock_irq(&rtc_lock);
 no_irq2:
@@ -1110,20 +1129,20 @@ no_irq2:
        return 0;
 }
 
-static void __exit rtc_exit (void)
+static void __exit rtc_exit(void)
 {
        cleanup_sysctl();
-       remove_proc_entry ("driver/rtc", NULL);
+       remove_proc_entry("driver/rtc", NULL);
        misc_deregister(&rtc_dev);
 
 #ifdef CONFIG_SPARC32
        if (rtc_has_irq)
-               free_irq (rtc_irq, &rtc_port);
+               free_irq(rtc_irq, &rtc_port);
 #else
        rtc_release_region();
 #ifdef RTC_IRQ
        if (rtc_has_irq)
-               free_irq (RTC_IRQ, NULL);
+               free_irq(RTC_IRQ, NULL);
 #endif
 #endif /* CONFIG_SPARC32 */
 }
@@ -1133,14 +1152,14 @@ module_exit(rtc_exit);
 
 #ifdef RTC_IRQ
 /*
- *     At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
+ *     At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
  *     (usually during an IDE disk interrupt, with IRQ unmasking off)
  *     Since the interrupt handler doesn't get called, the IRQ status
  *     byte doesn't get read, and the RTC stops generating interrupts.
  *     A timer is set, and will call this function if/when that happens.
  *     To get it out of this stalled state, we just read the status.
  *     At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
- *     (You *really* shouldn't be trying to use a non-realtime system 
+ *     (You *really* shouldn't be trying to use a non-realtime system
  *     for something that requires a steady > 1KHz signal anyways.)
  */
 
@@ -1148,7 +1167,7 @@ static void rtc_dropped_irq(unsigned long data)
 {
        unsigned long freq;
 
-       spin_lock_irq (&rtc_lock);
+       spin_lock_irq(&rtc_lock);
 
        if (hpet_rtc_dropped_irq()) {
                spin_unlock_irq(&rtc_lock);
@@ -1167,13 +1186,15 @@ static void rtc_dropped_irq(unsigned long data)
 
        spin_unlock_irq(&rtc_lock);
 
-       if (printk_ratelimit())
-               printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
+       if (printk_ratelimit()) {
+               printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
+                       freq);
+       }
 
        /* Now we have new data */
        wake_up_interruptible(&rtc_wait);
 
-       kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
+       kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 }
 #endif
 
@@ -1277,7 +1298,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
         * can take just over 2ms. We wait 20ms. There is no need to
         * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
         * If you need to know *exactly* when a second has started, enable
-        * periodic update complete interrupts, (via ioctl) and then 
+        * periodic update complete interrupts, (via ioctl) and then
         * immediately read /dev/rtc which will block until you get the IRQ.
         * Once the read clears, read the RTC time (again via ioctl). Easy.
         */
@@ -1307,8 +1328,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
        ctrl = CMOS_READ(RTC_CONTROL);
        spin_unlock_irqrestore(&rtc_lock, flags);
 
-       if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
-       {
+       if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
                BCD_TO_BIN(rtc_tm->tm_sec);
                BCD_TO_BIN(rtc_tm->tm_min);
                BCD_TO_BIN(rtc_tm->tm_hour);
@@ -1326,7 +1346,8 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
         * Account for differences between how the RTC uses the values
         * and how they are defined in a struct rtc_time;
         */
-       if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
+       rtc_tm->tm_year += epoch - 1900;
+       if (rtc_tm->tm_year <= 69)
                rtc_tm->tm_year += 100;
 
        rtc_tm->tm_mon--;
@@ -1347,8 +1368,7 @@ static void get_rtc_alm_time(struct rtc_time *alm_tm)
        ctrl = CMOS_READ(RTC_CONTROL);
        spin_unlock_irq(&rtc_lock);
 
-       if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
-       {
+       if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
                BCD_TO_BIN(alm_tm->tm_sec);
                BCD_TO_BIN(alm_tm->tm_min);
                BCD_TO_BIN(alm_tm->tm_hour);