c->interval_snsecs = (u64)c->interval_cycles * c->mult;
}
+
+/**
+ * error_aproximation - calculates an error adjustment for a given error
+ *
+ * @error: Error value (unsigned)
+ * @unit: Adjustment unit
+ *
+ * For a given error value, this function takes the adjustment unit
+ * and uses binary approximation to return a power of two adjustment value.
+ *
+ * This function is only for use by the the make_ntp_adj() function
+ * and you must hold a write on the xtime_lock when calling.
+ */
+static inline int error_aproximation(u64 error, u64 unit)
+{
+ static int saved_adj = 0;
+ u64 adjusted_unit = unit << saved_adj;
+
+ if (error > (adjusted_unit * 2)) {
+ /* large error, so increment the adjustment factor */
+ saved_adj++;
+ } else if (error > adjusted_unit) {
+ /* just right, don't touch it */
+ } else if (saved_adj) {
+ /* small error, so drop the adjustment factor */
+ saved_adj--;
+ return 0;
+ }
+
+ return saved_adj;
+}
+
+
+/**
+ * make_ntp_adj - Adjusts the specified clocksource for a given error
+ *
+ * @clock: Pointer to clock to be adjusted
+ * @cycles_delta: Current unacounted cycle delta
+ * @error: Pointer to current error value
+ *
+ * Returns clock shifted nanosecond adjustment to be applied against
+ * the accumulated time value (ie: xtime).
+ *
+ * If the error value is large enough, this function calulates the
+ * (power of two) adjustment value, and adjusts the clock's mult and
+ * interval_snsecs values accordingly.
+ *
+ * However, since there may be some unaccumulated cycles, to avoid
+ * time inconsistencies we must adjust the accumulation value
+ * accordingly.
+ *
+ * This is not very intuitive, so the following proof should help:
+ * The basic timeofday algorithm: base + cycle * mult
+ * Thus:
+ * new_base + cycle * new_mult = old_base + cycle * old_mult
+ * new_base = old_base + cycle * old_mult - cycle * new_mult
+ * new_base = old_base + cycle * (old_mult - new_mult)
+ * new_base - old_base = cycle * (old_mult - new_mult)
+ * base_delta = cycle * (old_mult - new_mult)
+ * base_delta = cycle * (mult_delta)
+ *
+ * Where mult_delta is the adjustment value made to mult
+ *
+ */
+static inline s64 make_ntp_adj(struct clocksource *clock,
+ cycles_t cycles_delta, s64* error)
+{
+ s64 ret = 0;
+ if (*error > ((s64)clock->interval_cycles+1)/2) {
+ /* calculate adjustment value */
+ int adjustment = error_aproximation(*error,
+ clock->interval_cycles);
+ /* adjust clock */
+ clock->mult += 1 << adjustment;
+ clock->interval_snsecs += clock->interval_cycles << adjustment;
+
+ /* adjust the base and error for the adjustment */
+ ret = -(cycles_delta << adjustment);
+ *error -= clock->interval_cycles << adjustment;
+ /* XXX adj error for cycle_delta offset? */
+ } else if ((-(*error)) > ((s64)clock->interval_cycles+1)/2) {
+ /* calculate adjustment value */
+ int adjustment = error_aproximation(-(*error),
+ clock->interval_cycles);
+ /* adjust clock */
+ clock->mult -= 1 << adjustment;
+ clock->interval_snsecs -= clock->interval_cycles << adjustment;
+
+ /* adjust the base and error for the adjustment */
+ ret = cycles_delta << adjustment;
+ *error += clock->interval_cycles << adjustment;
+ /* XXX adj error for cycle_delta offset? */
+ }
+ return ret;
+}
+
+
/* used to install a new clocksource */
int register_clocksource(struct clocksource*);
void reselect_clocksource(void);
long time_precision = 1; /* clock precision (us) */
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
-static long time_phase; /* phase offset (scaled us) */
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
/* frequency offset (scaled ppm)*/
static long time_adj; /* tick adjust (scaled 1 / HZ) */
}
/* in the NTP reference this is called "hardclock()" */
-static void update_wall_time_one_tick(void)
+static void update_ntp_one_tick(void)
{
- long time_adjust_step, delta_nsec;
+ long time_adjust_step;
time_adjust_step = adjtime_adjustment();
if (time_adjust_step)
/* Reduce by this step the amount of time left */
time_adjust -= time_adjust_step;
- delta_nsec = tick_nsec + time_adjust_step * 1000;
- /*
- * Advance the phase, once it gets to one microsecond, then
- * advance the tick more.
- */
- time_phase += time_adj;
- if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
- long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
- time_phase -= ltemp << (SHIFT_SCALE - 10);
- delta_nsec += ltemp;
- }
- xtime.tv_nsec += delta_nsec;
- time_interpolator_update(delta_nsec);
/* Changes by adjtime() do not take effect till next tick. */
if (time_next_adjust != 0) {
*/
static void update_wall_time(void)
{
+ static s64 remainder_snsecs, error;
+ s64 snsecs_per_sec;
cycle_t now, offset;
+ snsecs_per_sec = (s64)NSEC_PER_SEC << clock->shift;
+ remainder_snsecs += (s64)xtime.tv_nsec << clock->shift;
+
now = read_clocksource(clock);
offset = (now - last_clock_cycle)&clock->mask;
* case of lost or late ticks, it will accumulate correctly.
*/
while (offset > clock->interval_cycles) {
+ /* get the ntp interval in clock shifted nanoseconds */
+ s64 ntp_snsecs = current_tick_length(clock->shift);
+
/* accumulate one interval */
+ remainder_snsecs += clock->interval_snsecs;
last_clock_cycle += clock->interval_cycles;
offset -= clock->interval_cycles;
- update_wall_time_one_tick();
- if (xtime.tv_nsec >= 1000000000) {
- xtime.tv_nsec -= 1000000000;
+ /* interpolator bits */
+ time_interpolator_update(clock->interval_snsecs
+ >> clock->shift);
+ /* increment the NTP state machine */
+ update_ntp_one_tick();
+
+ /* accumulate error between NTP and clock interval */
+ error += (ntp_snsecs - (s64)clock->interval_snsecs);
+
+ /* correct the clock when NTP error is too big */
+ remainder_snsecs += make_ntp_adj(clock, offset, &error);
+
+ if (remainder_snsecs >= snsecs_per_sec) {
+ remainder_snsecs -= snsecs_per_sec;
xtime.tv_sec++;
second_overflow();
}
}
+ /* store full nanoseconds into xtime */
+ xtime.tv_nsec = remainder_snsecs >> clock->shift;
+ remainder_snsecs -= (s64)xtime.tv_nsec << clock->shift;
}
/*