aarch64_insn_write() is used to write an instruction.
As on ARM64 in-memory instructions are always stored
in little-endian order, this function, taking the instruction
opcode in native order, correctly convert it to little-endian
before sending it to an helper function __aarch64_insn_write()
which will do the effective write.
This is all good, but the variable and argument holding the
converted value are not annotated for a little-endian value
but left for native values.
Fix this by adjusting the prototype of the helper and
directly using the result of cpu_to_le32() without passing
by an intermediate variable (which was not a distinct one
but the same as the one holding the native value).
Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
return ret;
}
-static int __kprobes __aarch64_insn_write(void *addr, u32 insn)
+static int __kprobes __aarch64_insn_write(void *addr, __le32 insn)
{
void *waddr = addr;
unsigned long flags = 0;
int __kprobes aarch64_insn_write(void *addr, u32 insn)
{
- insn = cpu_to_le32(insn);
- return __aarch64_insn_write(addr, insn);
+ return __aarch64_insn_write(addr, cpu_to_le32(insn));
}
static bool __kprobes __aarch64_insn_hotpatch_safe(u32 insn)