Make it possible for a client to use AuriStor's service upgrade facility.
The client does this by adding an RXRPC_UPGRADE_SERVICE control message to
the first sendmsg() of a call. This takes no parameters.
When recvmsg() starts returning data from the call, the service ID field in
the returned msg_name will reflect the result of the upgrade attempt. If
the upgrade was ignored, srx_service will match what was set in the
sendmsg(); if the upgrade happened the srx_service will be altered to
indicate the service the server upgraded to.
Note that:
(1) The choice of upgrade service is up to the server
(2) Further client calls to the same server that would share a connection
are blocked if an upgrade probe is in progress.
(3) This should only be used to probe the service. Clients should then
use the returned service ID in all subsequent communications with that
server (and not set the upgrade). Note that the kernel will not
retain this information should the connection expire from its cache.
(4) If a server that supports upgrading is replaced by one that doesn't,
whilst a connection is live, and if the replacement is running, say,
OpenAFS 1.6.4 or older or an older IBM AFS, then the replacement
server will not respond to packets sent to the upgraded connection.
At this point, calls will time out and the server must be reprobed.
Signed-off-by: David Howells <dhowells@redhat.com>
RXRPC_LOCAL_ERROR -rt error num Local error encountered
RXRPC_NEW_CALL -r- n/a New call received
RXRPC_ACCEPT s-- n/a Accept new call
+ RXRPC_EXCLUSIVE_CALL s-- n/a Make an exclusive client call
+ RXRPC_UPGRADE_SERVICE s-- n/a Client call can be upgraded
(SRT = usable in Sendmsg / delivered by Recvmsg / Terminal message)
return error ENODATA. If the user ID is already in use by another call,
then error EBADSLT will be returned.
+ (*) RXRPC_EXCLUSIVE_CALL
+
+ This is used to indicate that a client call should be made on a one-off
+ connection. The connection is discarded once the call has terminated.
+
+ (*) RXRPC_UPGRADE_SERVICE
+
+ This is used to make a client call to probe if the specified service ID
+ may be upgraded by the server. The caller must check msg_name returned to
+ recvmsg() for the service ID actually in use. The operation probed must
+ be one that takes the same arguments in both services.
+
+ Once this has been used to establish the upgrade capability (or lack
+ thereof) of the server, the service ID returned should be used for all
+ future communication to that server and RXRPC_UPGRADE_SERVICE should no
+ longer be set.
+
==============
SOCKET OPTIONS
buffer instead, and MSG_EOR will be flagged to indicate the end of that
call.
+A client may ask for a service ID it knows and ask that this be upgraded to a
+better service if one is available by supplying RXRPC_UPGRADE_SERVICE on the
+first sendmsg() of a call. The client should then check srx_service in the
+msg_name filled in by recvmsg() when collecting the result. srx_service will
+hold the same value as given to sendmsg() if the upgrade request was ignored by
+the service - otherwise it will be altered to indicate the service ID the
+server upgraded to. Note that the upgraded service ID is chosen by the server.
+The caller has to wait until it sees the service ID in the reply before sending
+any more calls (further calls to the same destination will be blocked until the
+probe is concluded).
+
====================
EXAMPLE SERVER USAGE
#define RXRPC_NEW_CALL 8 /* -r: [Service] new incoming call notification */
#define RXRPC_ACCEPT 9 /* s-: [Service] accept request */
#define RXRPC_EXCLUSIVE_CALL 10 /* s-: Call should be on exclusive connection */
+#define RXRPC_UPGRADE_SERVICE 11 /* s-: Request service upgrade for client call */
/*
* RxRPC security levels
EM(RXRPC_CONN_CLIENT_INACTIVE, "Inac") \
EM(RXRPC_CONN_CLIENT_WAITING, "Wait") \
EM(RXRPC_CONN_CLIENT_ACTIVE, "Actv") \
+ EM(RXRPC_CONN_CLIENT_UPGRADE, "Upgd") \
EM(RXRPC_CONN_CLIENT_CULLED, "Cull") \
E_(RXRPC_CONN_CLIENT_IDLE, "Idle") \
struct rxrpc_peer *peer; /* Remote endpoint */
struct key *key; /* Security details */
bool exclusive; /* T if conn is exclusive */
+ bool upgrade; /* T if service ID can be upgraded */
u16 service_id; /* Service ID for this connection */
u32 security_level; /* Security level selected */
};
RXRPC_CONN_EXPOSED, /* Conn has extra ref for exposure */
RXRPC_CONN_DONT_REUSE, /* Don't reuse this connection */
RXRPC_CONN_COUNTED, /* Counted by rxrpc_nr_client_conns */
+ RXRPC_CONN_PROBING_FOR_UPGRADE, /* Probing for service upgrade */
};
/*
RXRPC_CONN_CLIENT_INACTIVE, /* Conn is not yet listed */
RXRPC_CONN_CLIENT_WAITING, /* Conn is on wait list, waiting for capacity */
RXRPC_CONN_CLIENT_ACTIVE, /* Conn is on active list, doing calls */
+ RXRPC_CONN_CLIENT_UPGRADE, /* Conn is on active list, probing for upgrade */
RXRPC_CONN_CLIENT_CULLED, /* Conn is culled and delisted, doing calls */
RXRPC_CONN_CLIENT_IDLE, /* Conn is on idle list, doing mostly nothing */
RXRPC_CONN__NR_CACHE_STATES
*
* rxrpc_nr_active_client_conns is held incremented also.
*
- * (4) CULLED - The connection got summarily culled to try and free up
+ * (4) UPGRADE - As for ACTIVE, but only one call may be in progress and is
+ * being used to probe for service upgrade.
+ *
+ * (5) CULLED - The connection got summarily culled to try and free up
* capacity. Calls currently in progress on the connection are allowed to
* continue, but new calls will have to wait. There can be no waiters in
* this state - the conn would have to go to the WAITING state instead.
*
- * (5) IDLE - The connection has no calls in progress upon it and must have
+ * (6) IDLE - The connection has no calls in progress upon it and must have
* been exposed to the world (ie. the EXPOSED flag must be set). When it
* expires, the EXPOSED flag is cleared and the connection transitions to
* the INACTIVE state.
atomic_set(&conn->usage, 1);
if (cp->exclusive)
__set_bit(RXRPC_CONN_DONT_REUSE, &conn->flags);
+ if (cp->upgrade)
+ __set_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags);
conn->params = *cp;
conn->out_clientflag = RXRPC_CLIENT_INITIATED;
#define cmp(X) ((long)conn->params.X - (long)cp->X)
diff = (cmp(peer) ?:
cmp(key) ?:
- cmp(security_level));
+ cmp(security_level) ?:
+ cmp(upgrade));
#undef cmp
if (diff < 0) {
p = p->rb_left;
#define cmp(X) ((long)conn->params.X - (long)candidate->params.X)
diff = (cmp(peer) ?:
cmp(key) ?:
- cmp(security_level));
+ cmp(security_level) ?:
+ cmp(upgrade));
#undef cmp
if (diff < 0) {
pp = &(*pp)->rb_left;
static void rxrpc_activate_conn(struct rxrpc_net *rxnet,
struct rxrpc_connection *conn)
{
- trace_rxrpc_client(conn, -1, rxrpc_client_to_active);
- conn->cache_state = RXRPC_CONN_CLIENT_ACTIVE;
+ if (test_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags)) {
+ trace_rxrpc_client(conn, -1, rxrpc_client_to_upgrade);
+ conn->cache_state = RXRPC_CONN_CLIENT_UPGRADE;
+ } else {
+ trace_rxrpc_client(conn, -1, rxrpc_client_to_active);
+ conn->cache_state = RXRPC_CONN_CLIENT_ACTIVE;
+ }
rxnet->nr_active_client_conns++;
list_move_tail(&conn->cache_link, &rxnet->active_client_conns);
}
_enter("%d,%d", conn->debug_id, conn->cache_state);
- if (conn->cache_state == RXRPC_CONN_CLIENT_ACTIVE)
+ if (conn->cache_state == RXRPC_CONN_CLIENT_ACTIVE ||
+ conn->cache_state == RXRPC_CONN_CLIENT_UPGRADE)
goto out;
spin_lock(&rxnet->client_conn_cache_lock);
switch (conn->cache_state) {
case RXRPC_CONN_CLIENT_ACTIVE:
+ case RXRPC_CONN_CLIENT_UPGRADE:
case RXRPC_CONN_CLIENT_WAITING:
break;
case RXRPC_CONN_CLIENT_ACTIVE:
mask = RXRPC_ACTIVE_CHANS_MASK;
break;
+ case RXRPC_CONN_CLIENT_UPGRADE:
+ mask = 0x01;
+ break;
default:
return;
}
spin_lock(&rxnet->client_conn_cache_lock);
switch (conn->cache_state) {
+ case RXRPC_CONN_CLIENT_UPGRADE:
+ /* Deal with termination of a service upgrade probe. */
+ if (test_bit(RXRPC_CONN_EXPOSED, &conn->flags)) {
+ clear_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags);
+ trace_rxrpc_client(conn, channel, rxrpc_client_to_active);
+ conn->cache_state = RXRPC_CONN_CLIENT_ACTIVE;
+ rxrpc_activate_channels_locked(conn);
+ }
+ /* fall through */
case RXRPC_CONN_CLIENT_ACTIVE:
if (list_empty(&conn->waiting_calls)) {
rxrpc_deactivate_one_channel(conn, channel);
ASSERT(!list_empty(&rxnet->active_client_conns));
conn = list_entry(rxnet->active_client_conns.next,
struct rxrpc_connection, cache_link);
- ASSERTCMP(conn->cache_state, ==, RXRPC_CONN_CLIENT_ACTIVE);
+ ASSERTIFCMP(conn->cache_state != RXRPC_CONN_CLIENT_ACTIVE,
+ conn->cache_state, ==, RXRPC_CONN_CLIENT_UPGRADE);
if (list_empty(&conn->waiting_calls)) {
trace_rxrpc_client(conn, -1, rxrpc_client_to_culled);
if (sp->hdr.securityIndex != conn->security_ix)
goto wrong_security;
+ if (sp->hdr.serviceId != conn->service_id) {
+ if (!test_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags) ||
+ conn->service_id != conn->params.service_id)
+ goto reupgrade;
+ conn->service_id = sp->hdr.serviceId;
+ }
+
if (sp->hdr.callNumber == 0) {
/* Connection-level packet */
_debug("CONN %p {%d}", conn, conn->debug_id);
rxrpc_input_implicit_end_call(conn, call);
call = NULL;
}
+
+ if (call && sp->hdr.serviceId != call->service_id)
+ call->service_id = sp->hdr.serviceId;
} else {
skew = 0;
call = NULL;
skb->priority = RXKADINCONSISTENCY;
goto post_abort;
+reupgrade:
+ rcu_read_unlock();
+ trace_rxrpc_abort("UPG", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
+ RX_PROTOCOL_ERROR, EBADMSG);
+ goto protocol_error;
+
bad_message_unlock:
rcu_read_unlock();
bad_message:
trace_rxrpc_abort("BAD", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RX_PROTOCOL_ERROR, EBADMSG);
+protocol_error:
skb->priority = RX_PROTOCOL_ERROR;
post_abort:
skb->mark = RXRPC_SKB_MARK_LOCAL_ABORT;
whdr._rsvd = htons(sp->hdr._rsvd);
whdr.serviceId = htons(call->service_id);
+ if (test_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags) &&
+ sp->hdr.seq == 1)
+ whdr.userStatus = RXRPC_USERSTATUS_SERVICE_UPGRADE;
+
iov[0].iov_base = &whdr;
iov[0].iov_len = sizeof(whdr);
iov[1].iov_base = skb->head;
unsigned long *user_call_ID,
enum rxrpc_command *command,
u32 *abort_code,
- bool *_exclusive)
+ bool *_exclusive,
+ bool *_upgrade)
{
struct cmsghdr *cmsg;
bool got_user_ID = false;
if (len != 0)
return -EINVAL;
break;
+
+ case RXRPC_UPGRADE_SERVICE:
+ *_upgrade = true;
+ if (len != 0)
+ return -EINVAL;
+ break;
+
default:
return -EINVAL;
}
*/
static struct rxrpc_call *
rxrpc_new_client_call_for_sendmsg(struct rxrpc_sock *rx, struct msghdr *msg,
- unsigned long user_call_ID, bool exclusive)
+ unsigned long user_call_ID, bool exclusive,
+ bool upgrade)
__releases(&rx->sk.sk_lock.slock)
{
struct rxrpc_conn_parameters cp;
cp.key = rx->key;
cp.security_level = rx->min_sec_level;
cp.exclusive = rx->exclusive | exclusive;
+ cp.upgrade = upgrade;
cp.service_id = srx->srx_service;
call = rxrpc_new_client_call(rx, &cp, srx, user_call_ID, GFP_KERNEL);
/* The socket is now unlocked */
struct rxrpc_call *call;
unsigned long user_call_ID = 0;
bool exclusive = false;
+ bool upgrade = true;
u32 abort_code = 0;
int ret;
_enter("");
ret = rxrpc_sendmsg_cmsg(msg, &user_call_ID, &cmd, &abort_code,
- &exclusive);
+ &exclusive, &upgrade);
if (ret < 0)
goto error_release_sock;
if (cmd != RXRPC_CMD_SEND_DATA)
goto error_release_sock;
call = rxrpc_new_client_call_for_sendmsg(rx, msg, user_call_ID,
- exclusive);
+ exclusive, upgrade);
/* The socket is now unlocked... */
if (IS_ERR(call))
return PTR_ERR(call);