* efficiently. Power is stored in mW, frequency in KHz. The
* resulting table is in ascending order.
*
- * Return: 0 on success, -E* on error.
+ * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
+ * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
+ * added/enabled while the function was executing.
*/
static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
u32 capacitance)
struct power_table *power_table;
struct dev_pm_opp *opp;
struct device *dev = NULL;
- int num_opps = 0, cpu, i, ret = 0;
+ int num_opps = 0, cpu, i;
unsigned long freq;
- rcu_read_lock();
-
for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
dev = get_cpu_device(cpu);
if (!dev) {
}
num_opps = dev_pm_opp_get_opp_count(dev);
- if (num_opps > 0) {
+ if (num_opps > 0)
break;
- } else if (num_opps < 0) {
- ret = num_opps;
- goto unlock;
- }
+ else if (num_opps < 0)
+ return num_opps;
}
- if (num_opps == 0) {
- ret = -EINVAL;
- goto unlock;
- }
+ if (num_opps == 0)
+ return -EINVAL;
power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
- if (!power_table) {
- ret = -ENOMEM;
- goto unlock;
- }
+ if (!power_table)
+ return -ENOMEM;
+
+ rcu_read_lock();
for (freq = 0, i = 0;
opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
u32 freq_mhz, voltage_mv;
u64 power;
+ if (i >= num_opps) {
+ rcu_read_unlock();
+ return -EAGAIN;
+ }
+
freq_mhz = freq / 1000000;
voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
power_table[i].power = power;
}
- if (i == 0) {
- ret = PTR_ERR(opp);
- goto unlock;
- }
+ rcu_read_unlock();
+
+ if (i != num_opps)
+ return PTR_ERR(opp);
cpufreq_device->cpu_dev = dev;
cpufreq_device->dyn_power_table = power_table;
cpufreq_device->dyn_power_table_entries = i;
-unlock:
- rcu_read_unlock();
- return ret;
+ return 0;
}
static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,