/*
* UML SIGWINCH handling
*
- * The point of this is to handle SIGWINCH on consoles which have host ttys and
- * relay them inside UML to whatever might be running on the console and cares
- * about the window size (since SIGWINCH notifies about terminal size changes).
+ * The point of this is to handle SIGWINCH on consoles which have host
+ * ttys and relay them inside UML to whatever might be running on the
+ * console and cares about the window size (since SIGWINCH notifies
+ * about terminal size changes).
*
- * So, we have a separate thread for each host tty attached to a UML device
- * (side-issue - I'm annoyed that one thread can't have multiple controlling
- * ttys for purposed of handling SIGWINCH, but I imagine there are other reasons
- * that doesn't make any sense).
+ * So, we have a separate thread for each host tty attached to a UML
+ * device (side-issue - I'm annoyed that one thread can't have
+ * multiple controlling ttys for the purpose of handling SIGWINCH, but
+ * I imagine there are other reasons that doesn't make any sense).
*
- * SIGWINCH can't be received synchronously, so you have to set up to receive it
- * as a signal. That being the case, if you are going to wait for it, it is
- * convenient to sit in sigsuspend() and wait for the signal to bounce you out of
- * it (see below for how we make sure to exit only on SIGWINCH).
+ * SIGWINCH can't be received synchronously, so you have to set up to
+ * receive it as a signal. That being the case, if you are going to
+ * wait for it, it is convenient to sit in sigsuspend() and wait for
+ * the signal to bounce you out of it (see below for how we make sure
+ * to exit only on SIGWINCH).
*/
static void winch_handler(int sig)
err = os_new_tty_pgrp(pty_fd, os_getpid());
if(err < 0){
- printk("winch_thread : new_tty_pgrp failed, err = %d\n", -err);
+ printk("winch_thread : new_tty_pgrp failed on fd %d, "
+ "err = %d\n", pty_fd, -err);
exit(1);
}
"err = %d\n", -count);
while(1){
- /* This will be interrupted by SIGWINCH only, since other signals
- * are blocked.*/
+ /* This will be interrupted by SIGWINCH only, since
+ * other signals are blocked.
+ */
sigsuspend(&sigs);
count = os_write_file(pipe_fd, &c, sizeof(c));
}
}
-static int winch_tramp(int fd, struct tty_struct *tty, int *fd_out)
+static int winch_tramp(int fd, struct tty_struct *tty, int *fd_out,
+ unsigned long *stack_out)
{
struct winch_data data;
- unsigned long stack;
int fds[2], n, err;
char c;
data = ((struct winch_data) { .pty_fd = fd,
.pipe_fd = fds[1] } );
/* CLONE_FILES so this thread doesn't hold open files which are open
- * now, but later closed. This is a problem with /dev/net/tun.
+ * now, but later closed in a different thread. This is a
+ * problem with /dev/net/tun, which if held open by this
+ * thread, prevents the TUN/TAP device from being reused.
*/
- err = run_helper_thread(winch_thread, &data, CLONE_FILES, &stack, 0);
+ err = run_helper_thread(winch_thread, &data, CLONE_FILES, stack_out, 0);
if(err < 0){
printk("fork of winch_thread failed - errno = %d\n", -err);
goto out_close;
void register_winch(int fd, struct tty_struct *tty)
{
- int pid, thread, thread_fd = -1;
- int count;
+ unsigned long stack;
+ int pid, thread, count, thread_fd = -1;
char c = 1;
if(!isatty(fd))
return;
pid = tcgetpgrp(fd);
- if(!CHOOSE_MODE_PROC(is_tracer_winch, is_skas_winch, pid, fd,
- tty) && (pid == -1)){
- thread = winch_tramp(fd, tty, &thread_fd);
- if(thread > 0){
- register_winch_irq(thread_fd, fd, thread, tty);
-
- count = os_write_file(thread_fd, &c, sizeof(c));
- if(count != sizeof(c))
- printk("register_winch : failed to write "
- "synchronization byte, err = %d\n",
- -count);
- }
+ if (!CHOOSE_MODE_PROC(is_tracer_winch, is_skas_winch, pid, fd, tty) &&
+ (pid == -1)) {
+ thread = winch_tramp(fd, tty, &thread_fd, &stack);
+ if (thread < 0)
+ return;
+
+ register_winch_irq(thread_fd, fd, thread, tty, stack);
+
+ count = os_write_file(thread_fd, &c, sizeof(c));
+ if(count != sizeof(c))
+ printk("register_winch : failed to write "
+ "synchronization byte, err = %d\n", -count);
}
}
int tty_fd;
int pid;
struct tty_struct *tty;
+ unsigned long stack;
};
+static void free_winch(struct winch *winch, int free_irq_ok)
+{
+ list_del(&winch->list);
+
+ if (winch->pid != -1)
+ os_kill_process(winch->pid, 1);
+ if (winch->fd != -1)
+ os_close_file(winch->fd);
+ if (winch->stack != 0)
+ free_stack(winch->stack, 0);
+ if (free_irq_ok)
+ free_irq(WINCH_IRQ, winch);
+ kfree(winch);
+}
+
static irqreturn_t winch_interrupt(int irq, void *data)
{
struct winch *winch = data;
"errno = %d\n", -err);
printk("fd %d is losing SIGWINCH support\n",
winch->tty_fd);
+ free_winch(winch, 0);
return IRQ_HANDLED;
}
goto out;
}
}
- tty = winch->tty;
+ tty = winch->tty;
if (tty != NULL) {
line = tty->driver_data;
chan_window_size(&line->chan_list, &tty->winsize.ws_row,
return IRQ_HANDLED;
}
-void register_winch_irq(int fd, int tty_fd, int pid, struct tty_struct *tty)
+void register_winch_irq(int fd, int tty_fd, int pid, struct tty_struct *tty,
+ unsigned long stack)
{
struct winch *winch;
winch = kmalloc(sizeof(*winch), GFP_KERNEL);
if (winch == NULL) {
printk("register_winch_irq - kmalloc failed\n");
- return;
+ goto cleanup;
}
*winch = ((struct winch) { .list = LIST_HEAD_INIT(winch->list),
.fd = fd,
.tty_fd = tty_fd,
.pid = pid,
- .tty = tty });
+ .tty = tty,
+ .stack = stack });
+
+ if (um_request_irq(WINCH_IRQ, fd, IRQ_READ, winch_interrupt,
+ IRQF_DISABLED | IRQF_SHARED | IRQF_SAMPLE_RANDOM,
+ "winch", winch) < 0) {
+ printk("register_winch_irq - failed to register IRQ\n");
+ goto out_free;
+ }
spin_lock(&winch_handler_lock);
list_add(&winch->list, &winch_handlers);
spin_unlock(&winch_handler_lock);
- if(um_request_irq(WINCH_IRQ, fd, IRQ_READ, winch_interrupt,
- IRQF_DISABLED | IRQF_SHARED | IRQF_SAMPLE_RANDOM,
- "winch", winch) < 0)
- printk("register_winch_irq - failed to register IRQ\n");
-}
-
-static void free_winch(struct winch *winch)
-{
- list_del(&winch->list);
-
- if(winch->pid != -1)
- os_kill_process(winch->pid, 1);
- if(winch->fd != -1)
- os_close_file(winch->fd);
+ return;
- free_irq(WINCH_IRQ, winch);
+ out_free:
kfree(winch);
+ cleanup:
+ os_kill_process(pid, 1);
+ os_close_file(fd);
+ if (stack != 0)
+ free_stack(stack, 0);
}
static void unregister_winch(struct tty_struct *tty)
list_for_each(ele, &winch_handlers){
winch = list_entry(ele, struct winch, list);
if(winch->tty == tty){
- free_winch(winch);
+ free_winch(winch, 1);
break;
}
}
list_for_each_safe(ele, next, &winch_handlers){
winch = list_entry(ele, struct winch, list);
- free_winch(winch);
+ free_winch(winch, 1);
}
spin_unlock(&winch_handler_lock);