int eeh_init(void);
int __init eeh_ops_register(struct eeh_ops *ops);
int __exit eeh_ops_unregister(const char *name);
-unsigned long eeh_check_failure(const volatile void __iomem *token,
- unsigned long val);
+int eeh_check_failure(const volatile void __iomem *token);
int eeh_dev_check_failure(struct eeh_dev *edev);
void eeh_addr_cache_build(void);
void eeh_add_device_early(struct device_node *);
static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
-static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
+static inline int eeh_check_failure(const volatile void __iomem *token)
{
- return val;
+ return 0;
}
#define eeh_dev_check_failure(x) (0)
{
u8 val = in_8(addr);
if (EEH_POSSIBLE_ERROR(val, u8))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
{
u16 val = in_le16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
{
u32 val = in_le32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
{
u64 val = in_le64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
{
u16 val = in_be16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
{
u32 val = in_be32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
{
u64 val = in_be64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
- return eeh_check_failure(addr, val);
+ eeh_check_failure(addr);
return val;
}
* were copied. Check all four bytes.
*/
if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
- eeh_check_failure(src, *((u32 *)(dest + n - 4)));
+ eeh_check_failure(src);
}
/* in-string eeh macros */
{
_insb(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
- eeh_check_failure(addr, *(u8*)buf);
+ eeh_check_failure(addr);
}
static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
{
_insw(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
- eeh_check_failure(addr, *(u16*)buf);
+ eeh_check_failure(addr);
}
static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
{
_insl(addr, buf, nl);
if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
- eeh_check_failure(addr, *(u32*)buf);
+ eeh_check_failure(addr);
}
#endif /* CONFIG_PPC64 */
/**
* eeh_check_failure - Check if all 1's data is due to EEH slot freeze
- * @token: I/O token, should be address in the form 0xA....
- * @val: value, should be all 1's (XXX why do we need this arg??)
+ * @token: I/O address
*
- * Check for an EEH failure at the given token address. Call this
+ * Check for an EEH failure at the given I/O address. Call this
* routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze event. This routine
+ * find out if this is due to an EEH slot freeze event. This routine
* will query firmware for the EEH status.
*
* Note this routine is safe to call in an interrupt context.
*/
-unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
+int eeh_check_failure(const volatile void __iomem *token)
{
unsigned long addr;
struct eeh_dev *edev;
edev = eeh_addr_cache_get_dev(addr);
if (!edev) {
eeh_stats.no_device++;
- return val;
+ return 0;
}
- eeh_dev_check_failure(edev);
- return val;
+ return eeh_dev_check_failure(edev);
}
-
EXPORT_SYMBOL(eeh_check_failure);