sched: Move all scheduler bits into kernel/sched/
authorPeter Zijlstra <a.p.zijlstra@chello.nl>
Tue, 15 Nov 2011 16:14:39 +0000 (17:14 +0100)
committerIngo Molnar <mingo@elte.hu>
Thu, 17 Nov 2011 11:20:22 +0000 (12:20 +0100)
There's too many sched*.[ch] files in kernel/, give them their own
directory.

(No code changed, other than Makefile glue added.)

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
32 files changed:
kernel/Makefile
kernel/sched.c [deleted file]
kernel/sched.h [deleted file]
kernel/sched/Makefile [new file with mode: 0644]
kernel/sched/auto_group.c [new file with mode: 0644]
kernel/sched/auto_group.h [new file with mode: 0644]
kernel/sched/clock.c [new file with mode: 0644]
kernel/sched/core.c [new file with mode: 0644]
kernel/sched/cpupri.c [new file with mode: 0644]
kernel/sched/cpupri.h [new file with mode: 0644]
kernel/sched/debug.c [new file with mode: 0644]
kernel/sched/fair.c [new file with mode: 0644]
kernel/sched/features.h [new file with mode: 0644]
kernel/sched/idle_task.c [new file with mode: 0644]
kernel/sched/rt.c [new file with mode: 0644]
kernel/sched/sched.h [new file with mode: 0644]
kernel/sched/stats.c [new file with mode: 0644]
kernel/sched/stats.h [new file with mode: 0644]
kernel/sched/stop_task.c [new file with mode: 0644]
kernel/sched_autogroup.c [deleted file]
kernel/sched_autogroup.h [deleted file]
kernel/sched_clock.c [deleted file]
kernel/sched_cpupri.c [deleted file]
kernel/sched_cpupri.h [deleted file]
kernel/sched_debug.c [deleted file]
kernel/sched_fair.c [deleted file]
kernel/sched_features.h [deleted file]
kernel/sched_idletask.c [deleted file]
kernel/sched_rt.c [deleted file]
kernel/sched_stats.c [deleted file]
kernel/sched_stats.h [deleted file]
kernel/sched_stoptask.c [deleted file]

index 1a4d37d7f39a03bc0d13d468c90c86caa0a33e09..f70396e5a24b8cef95d994ed612aca85beaaac92 100644 (file)
@@ -9,14 +9,9 @@ obj-y     = fork.o exec_domain.o panic.o printk.o \
            rcupdate.o extable.o params.o posix-timers.o \
            kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
            hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \
-           notifier.o ksysfs.o sched_clock.o cred.o \
+           notifier.o ksysfs.o cred.o \
            async.o range.o groups.o
 
-obj-y += sched.o sched_idletask.o sched_fair.o sched_rt.o sched_stoptask.o
-obj-$(CONFIG_SCHED_AUTOGROUP) += sched_autogroup.o
-obj-$(CONFIG_SCHEDSTATS) += sched_stats.o
-obj-$(CONFIG_SCHED_DEBUG) += sched_debug.o
-
 ifdef CONFIG_FUNCTION_TRACER
 # Do not trace debug files and internal ftrace files
 CFLAGS_REMOVE_lockdep.o = -pg
@@ -24,10 +19,11 @@ CFLAGS_REMOVE_lockdep_proc.o = -pg
 CFLAGS_REMOVE_mutex-debug.o = -pg
 CFLAGS_REMOVE_rtmutex-debug.o = -pg
 CFLAGS_REMOVE_cgroup-debug.o = -pg
-CFLAGS_REMOVE_sched_clock.o = -pg
 CFLAGS_REMOVE_irq_work.o = -pg
 endif
 
+obj-y += sched/
+
 obj-$(CONFIG_FREEZER) += freezer.o
 obj-$(CONFIG_PROFILING) += profile.o
 obj-$(CONFIG_SYSCTL_SYSCALL_CHECK) += sysctl_check.o
@@ -103,7 +99,6 @@ obj-$(CONFIG_TRACING) += trace/
 obj-$(CONFIG_X86_DS) += trace/
 obj-$(CONFIG_RING_BUFFER) += trace/
 obj-$(CONFIG_TRACEPOINTS) += trace/
-obj-$(CONFIG_SMP) += sched_cpupri.o
 obj-$(CONFIG_IRQ_WORK) += irq_work.o
 obj-$(CONFIG_CPU_PM) += cpu_pm.o
 
@@ -114,15 +109,6 @@ obj-$(CONFIG_PADATA) += padata.o
 obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
 obj-$(CONFIG_JUMP_LABEL) += jump_label.o
 
-ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
-# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
-# needed for x86 only.  Why this used to be enabled for all architectures is beyond
-# me.  I suspect most platforms don't need this, but until we know that for sure
-# I turn this off for IA-64 only.  Andreas Schwab says it's also needed on m68k
-# to get a correct value for the wait-channel (WCHAN in ps). --davidm
-CFLAGS_sched.o := $(PROFILING) -fno-omit-frame-pointer
-endif
-
 $(obj)/configs.o: $(obj)/config_data.h
 
 # config_data.h contains the same information as ikconfig.h but gzipped.
diff --git a/kernel/sched.c b/kernel/sched.c
deleted file mode 100644 (file)
index 2ffccee..0000000
+++ /dev/null
@@ -1,8101 +0,0 @@
-/*
- *  kernel/sched.c
- *
- *  Kernel scheduler and related syscalls
- *
- *  Copyright (C) 1991-2002  Linus Torvalds
- *
- *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
- *             make semaphores SMP safe
- *  1998-11-19 Implemented schedule_timeout() and related stuff
- *             by Andrea Arcangeli
- *  2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- *             hybrid priority-list and round-robin design with
- *             an array-switch method of distributing timeslices
- *             and per-CPU runqueues.  Cleanups and useful suggestions
- *             by Davide Libenzi, preemptible kernel bits by Robert Love.
- *  2003-09-03 Interactivity tuning by Con Kolivas.
- *  2004-04-02 Scheduler domains code by Nick Piggin
- *  2007-04-15  Work begun on replacing all interactivity tuning with a
- *              fair scheduling design by Con Kolivas.
- *  2007-05-05  Load balancing (smp-nice) and other improvements
- *              by Peter Williams
- *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
- *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
- *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
- *              Thomas Gleixner, Mike Kravetz
- */
-
-#include <linux/mm.h>
-#include <linux/module.h>
-#include <linux/nmi.h>
-#include <linux/init.h>
-#include <linux/uaccess.h>
-#include <linux/highmem.h>
-#include <asm/mmu_context.h>
-#include <linux/interrupt.h>
-#include <linux/capability.h>
-#include <linux/completion.h>
-#include <linux/kernel_stat.h>
-#include <linux/debug_locks.h>
-#include <linux/perf_event.h>
-#include <linux/security.h>
-#include <linux/notifier.h>
-#include <linux/profile.h>
-#include <linux/freezer.h>
-#include <linux/vmalloc.h>
-#include <linux/blkdev.h>
-#include <linux/delay.h>
-#include <linux/pid_namespace.h>
-#include <linux/smp.h>
-#include <linux/threads.h>
-#include <linux/timer.h>
-#include <linux/rcupdate.h>
-#include <linux/cpu.h>
-#include <linux/cpuset.h>
-#include <linux/percpu.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/sysctl.h>
-#include <linux/syscalls.h>
-#include <linux/times.h>
-#include <linux/tsacct_kern.h>
-#include <linux/kprobes.h>
-#include <linux/delayacct.h>
-#include <linux/unistd.h>
-#include <linux/pagemap.h>
-#include <linux/hrtimer.h>
-#include <linux/tick.h>
-#include <linux/debugfs.h>
-#include <linux/ctype.h>
-#include <linux/ftrace.h>
-#include <linux/slab.h>
-#include <linux/init_task.h>
-
-#include <asm/tlb.h>
-#include <asm/irq_regs.h>
-#ifdef CONFIG_PARAVIRT
-#include <asm/paravirt.h>
-#endif
-
-#include "sched.h"
-#include "workqueue_sched.h"
-
-#define CREATE_TRACE_POINTS
-#include <trace/events/sched.h>
-
-void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
-{
-       unsigned long delta;
-       ktime_t soft, hard, now;
-
-       for (;;) {
-               if (hrtimer_active(period_timer))
-                       break;
-
-               now = hrtimer_cb_get_time(period_timer);
-               hrtimer_forward(period_timer, now, period);
-
-               soft = hrtimer_get_softexpires(period_timer);
-               hard = hrtimer_get_expires(period_timer);
-               delta = ktime_to_ns(ktime_sub(hard, soft));
-               __hrtimer_start_range_ns(period_timer, soft, delta,
-                                        HRTIMER_MODE_ABS_PINNED, 0);
-       }
-}
-
-DEFINE_MUTEX(sched_domains_mutex);
-DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-
-static void update_rq_clock_task(struct rq *rq, s64 delta);
-
-void update_rq_clock(struct rq *rq)
-{
-       s64 delta;
-
-       if (rq->skip_clock_update > 0)
-               return;
-
-       delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
-       rq->clock += delta;
-       update_rq_clock_task(rq, delta);
-}
-
-/*
- * Debugging: various feature bits
- */
-
-#define SCHED_FEAT(name, enabled)      \
-       (1UL << __SCHED_FEAT_##name) * enabled |
-
-const_debug unsigned int sysctl_sched_features =
-#include "sched_features.h"
-       0;
-
-#undef SCHED_FEAT
-
-#ifdef CONFIG_SCHED_DEBUG
-#define SCHED_FEAT(name, enabled)      \
-       #name ,
-
-static __read_mostly char *sched_feat_names[] = {
-#include "sched_features.h"
-       NULL
-};
-
-#undef SCHED_FEAT
-
-static int sched_feat_show(struct seq_file *m, void *v)
-{
-       int i;
-
-       for (i = 0; sched_feat_names[i]; i++) {
-               if (!(sysctl_sched_features & (1UL << i)))
-                       seq_puts(m, "NO_");
-               seq_printf(m, "%s ", sched_feat_names[i]);
-       }
-       seq_puts(m, "\n");
-
-       return 0;
-}
-
-static ssize_t
-sched_feat_write(struct file *filp, const char __user *ubuf,
-               size_t cnt, loff_t *ppos)
-{
-       char buf[64];
-       char *cmp;
-       int neg = 0;
-       int i;
-
-       if (cnt > 63)
-               cnt = 63;
-
-       if (copy_from_user(&buf, ubuf, cnt))
-               return -EFAULT;
-
-       buf[cnt] = 0;
-       cmp = strstrip(buf);
-
-       if (strncmp(cmp, "NO_", 3) == 0) {
-               neg = 1;
-               cmp += 3;
-       }
-
-       for (i = 0; sched_feat_names[i]; i++) {
-               if (strcmp(cmp, sched_feat_names[i]) == 0) {
-                       if (neg)
-                               sysctl_sched_features &= ~(1UL << i);
-                       else
-                               sysctl_sched_features |= (1UL << i);
-                       break;
-               }
-       }
-
-       if (!sched_feat_names[i])
-               return -EINVAL;
-
-       *ppos += cnt;
-
-       return cnt;
-}
-
-static int sched_feat_open(struct inode *inode, struct file *filp)
-{
-       return single_open(filp, sched_feat_show, NULL);
-}
-
-static const struct file_operations sched_feat_fops = {
-       .open           = sched_feat_open,
-       .write          = sched_feat_write,
-       .read           = seq_read,
-       .llseek         = seq_lseek,
-       .release        = single_release,
-};
-
-static __init int sched_init_debug(void)
-{
-       debugfs_create_file("sched_features", 0644, NULL, NULL,
-                       &sched_feat_fops);
-
-       return 0;
-}
-late_initcall(sched_init_debug);
-
-#endif
-
-/*
- * Number of tasks to iterate in a single balance run.
- * Limited because this is done with IRQs disabled.
- */
-const_debug unsigned int sysctl_sched_nr_migrate = 32;
-
-/*
- * period over which we average the RT time consumption, measured
- * in ms.
- *
- * default: 1s
- */
-const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
-
-/*
- * period over which we measure -rt task cpu usage in us.
- * default: 1s
- */
-unsigned int sysctl_sched_rt_period = 1000000;
-
-__read_mostly int scheduler_running;
-
-/*
- * part of the period that we allow rt tasks to run in us.
- * default: 0.95s
- */
-int sysctl_sched_rt_runtime = 950000;
-
-
-
-/*
- * __task_rq_lock - lock the rq @p resides on.
- */
-static inline struct rq *__task_rq_lock(struct task_struct *p)
-       __acquires(rq->lock)
-{
-       struct rq *rq;
-
-       lockdep_assert_held(&p->pi_lock);
-
-       for (;;) {
-               rq = task_rq(p);
-               raw_spin_lock(&rq->lock);
-               if (likely(rq == task_rq(p)))
-                       return rq;
-               raw_spin_unlock(&rq->lock);
-       }
-}
-
-/*
- * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
- */
-static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
-       __acquires(p->pi_lock)
-       __acquires(rq->lock)
-{
-       struct rq *rq;
-
-       for (;;) {
-               raw_spin_lock_irqsave(&p->pi_lock, *flags);
-               rq = task_rq(p);
-               raw_spin_lock(&rq->lock);
-               if (likely(rq == task_rq(p)))
-                       return rq;
-               raw_spin_unlock(&rq->lock);
-               raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
-       }
-}
-
-static void __task_rq_unlock(struct rq *rq)
-       __releases(rq->lock)
-{
-       raw_spin_unlock(&rq->lock);
-}
-
-static inline void
-task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
-       __releases(rq->lock)
-       __releases(p->pi_lock)
-{
-       raw_spin_unlock(&rq->lock);
-       raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
-}
-
-/*
- * this_rq_lock - lock this runqueue and disable interrupts.
- */
-static struct rq *this_rq_lock(void)
-       __acquires(rq->lock)
-{
-       struct rq *rq;
-
-       local_irq_disable();
-       rq = this_rq();
-       raw_spin_lock(&rq->lock);
-
-       return rq;
-}
-
-#ifdef CONFIG_SCHED_HRTICK
-/*
- * Use HR-timers to deliver accurate preemption points.
- *
- * Its all a bit involved since we cannot program an hrt while holding the
- * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
- * reschedule event.
- *
- * When we get rescheduled we reprogram the hrtick_timer outside of the
- * rq->lock.
- */
-
-static void hrtick_clear(struct rq *rq)
-{
-       if (hrtimer_active(&rq->hrtick_timer))
-               hrtimer_cancel(&rq->hrtick_timer);
-}
-
-/*
- * High-resolution timer tick.
- * Runs from hardirq context with interrupts disabled.
- */
-static enum hrtimer_restart hrtick(struct hrtimer *timer)
-{
-       struct rq *rq = container_of(timer, struct rq, hrtick_timer);
-
-       WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
-
-       raw_spin_lock(&rq->lock);
-       update_rq_clock(rq);
-       rq->curr->sched_class->task_tick(rq, rq->curr, 1);
-       raw_spin_unlock(&rq->lock);
-
-       return HRTIMER_NORESTART;
-}
-
-#ifdef CONFIG_SMP
-/*
- * called from hardirq (IPI) context
- */
-static void __hrtick_start(void *arg)
-{
-       struct rq *rq = arg;
-
-       raw_spin_lock(&rq->lock);
-       hrtimer_restart(&rq->hrtick_timer);
-       rq->hrtick_csd_pending = 0;
-       raw_spin_unlock(&rq->lock);
-}
-
-/*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
-void hrtick_start(struct rq *rq, u64 delay)
-{
-       struct hrtimer *timer = &rq->hrtick_timer;
-       ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
-
-       hrtimer_set_expires(timer, time);
-
-       if (rq == this_rq()) {
-               hrtimer_restart(timer);
-       } else if (!rq->hrtick_csd_pending) {
-               __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
-               rq->hrtick_csd_pending = 1;
-       }
-}
-
-static int
-hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
-       int cpu = (int)(long)hcpu;
-
-       switch (action) {
-       case CPU_UP_CANCELED:
-       case CPU_UP_CANCELED_FROZEN:
-       case CPU_DOWN_PREPARE:
-       case CPU_DOWN_PREPARE_FROZEN:
-       case CPU_DEAD:
-       case CPU_DEAD_FROZEN:
-               hrtick_clear(cpu_rq(cpu));
-               return NOTIFY_OK;
-       }
-
-       return NOTIFY_DONE;
-}
-
-static __init void init_hrtick(void)
-{
-       hotcpu_notifier(hotplug_hrtick, 0);
-}
-#else
-/*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
-void hrtick_start(struct rq *rq, u64 delay)
-{
-       __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
-                       HRTIMER_MODE_REL_PINNED, 0);
-}
-
-static inline void init_hrtick(void)
-{
-}
-#endif /* CONFIG_SMP */
-
-static void init_rq_hrtick(struct rq *rq)
-{
-#ifdef CONFIG_SMP
-       rq->hrtick_csd_pending = 0;
-
-       rq->hrtick_csd.flags = 0;
-       rq->hrtick_csd.func = __hrtick_start;
-       rq->hrtick_csd.info = rq;
-#endif
-
-       hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-       rq->hrtick_timer.function = hrtick;
-}
-#else  /* CONFIG_SCHED_HRTICK */
-static inline void hrtick_clear(struct rq *rq)
-{
-}
-
-static inline void init_rq_hrtick(struct rq *rq)
-{
-}
-
-static inline void init_hrtick(void)
-{
-}
-#endif /* CONFIG_SCHED_HRTICK */
-
-/*
- * resched_task - mark a task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
-#ifdef CONFIG_SMP
-
-#ifndef tsk_is_polling
-#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
-#endif
-
-void resched_task(struct task_struct *p)
-{
-       int cpu;
-
-       assert_raw_spin_locked(&task_rq(p)->lock);
-
-       if (test_tsk_need_resched(p))
-               return;
-
-       set_tsk_need_resched(p);
-
-       cpu = task_cpu(p);
-       if (cpu == smp_processor_id())
-               return;
-
-       /* NEED_RESCHED must be visible before we test polling */
-       smp_mb();
-       if (!tsk_is_polling(p))
-               smp_send_reschedule(cpu);
-}
-
-void resched_cpu(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-       if (!raw_spin_trylock_irqsave(&rq->lock, flags))
-               return;
-       resched_task(cpu_curr(cpu));
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * In the semi idle case, use the nearest busy cpu for migrating timers
- * from an idle cpu.  This is good for power-savings.
- *
- * We don't do similar optimization for completely idle system, as
- * selecting an idle cpu will add more delays to the timers than intended
- * (as that cpu's timer base may not be uptodate wrt jiffies etc).
- */
-int get_nohz_timer_target(void)
-{
-       int cpu = smp_processor_id();
-       int i;
-       struct sched_domain *sd;
-
-       rcu_read_lock();
-       for_each_domain(cpu, sd) {
-               for_each_cpu(i, sched_domain_span(sd)) {
-                       if (!idle_cpu(i)) {
-                               cpu = i;
-                               goto unlock;
-                       }
-               }
-       }
-unlock:
-       rcu_read_unlock();
-       return cpu;
-}
-/*
- * When add_timer_on() enqueues a timer into the timer wheel of an
- * idle CPU then this timer might expire before the next timer event
- * which is scheduled to wake up that CPU. In case of a completely
- * idle system the next event might even be infinite time into the
- * future. wake_up_idle_cpu() ensures that the CPU is woken up and
- * leaves the inner idle loop so the newly added timer is taken into
- * account when the CPU goes back to idle and evaluates the timer
- * wheel for the next timer event.
- */
-void wake_up_idle_cpu(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-       if (cpu == smp_processor_id())
-               return;
-
-       /*
-        * This is safe, as this function is called with the timer
-        * wheel base lock of (cpu) held. When the CPU is on the way
-        * to idle and has not yet set rq->curr to idle then it will
-        * be serialized on the timer wheel base lock and take the new
-        * timer into account automatically.
-        */
-       if (rq->curr != rq->idle)
-               return;
-
-       /*
-        * We can set TIF_RESCHED on the idle task of the other CPU
-        * lockless. The worst case is that the other CPU runs the
-        * idle task through an additional NOOP schedule()
-        */
-       set_tsk_need_resched(rq->idle);
-
-       /* NEED_RESCHED must be visible before we test polling */
-       smp_mb();
-       if (!tsk_is_polling(rq->idle))
-               smp_send_reschedule(cpu);
-}
-
-static inline bool got_nohz_idle_kick(void)
-{
-       return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
-}
-
-#else /* CONFIG_NO_HZ */
-
-static inline bool got_nohz_idle_kick(void)
-{
-       return false;
-}
-
-#endif /* CONFIG_NO_HZ */
-
-void sched_avg_update(struct rq *rq)
-{
-       s64 period = sched_avg_period();
-
-       while ((s64)(rq->clock - rq->age_stamp) > period) {
-               /*
-                * Inline assembly required to prevent the compiler
-                * optimising this loop into a divmod call.
-                * See __iter_div_u64_rem() for another example of this.
-                */
-               asm("" : "+rm" (rq->age_stamp));
-               rq->age_stamp += period;
-               rq->rt_avg /= 2;
-       }
-}
-
-#else /* !CONFIG_SMP */
-void resched_task(struct task_struct *p)
-{
-       assert_raw_spin_locked(&task_rq(p)->lock);
-       set_tsk_need_resched(p);
-}
-#endif /* CONFIG_SMP */
-
-#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
-                       (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
-/*
- * Iterate task_group tree rooted at *from, calling @down when first entering a
- * node and @up when leaving it for the final time.
- *
- * Caller must hold rcu_lock or sufficient equivalent.
- */
-int walk_tg_tree_from(struct task_group *from,
-                            tg_visitor down, tg_visitor up, void *data)
-{
-       struct task_group *parent, *child;
-       int ret;
-
-       parent = from;
-
-down:
-       ret = (*down)(parent, data);
-       if (ret)
-               goto out;
-       list_for_each_entry_rcu(child, &parent->children, siblings) {
-               parent = child;
-               goto down;
-
-up:
-               continue;
-       }
-       ret = (*up)(parent, data);
-       if (ret || parent == from)
-               goto out;
-
-       child = parent;
-       parent = parent->parent;
-       if (parent)
-               goto up;
-out:
-       return ret;
-}
-
-int tg_nop(struct task_group *tg, void *data)
-{
-       return 0;
-}
-#endif
-
-void update_cpu_load(struct rq *this_rq);
-
-static void set_load_weight(struct task_struct *p)
-{
-       int prio = p->static_prio - MAX_RT_PRIO;
-       struct load_weight *load = &p->se.load;
-
-       /*
-        * SCHED_IDLE tasks get minimal weight:
-        */
-       if (p->policy == SCHED_IDLE) {
-               load->weight = scale_load(WEIGHT_IDLEPRIO);
-               load->inv_weight = WMULT_IDLEPRIO;
-               return;
-       }
-
-       load->weight = scale_load(prio_to_weight[prio]);
-       load->inv_weight = prio_to_wmult[prio];
-}
-
-static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       update_rq_clock(rq);
-       sched_info_queued(p);
-       p->sched_class->enqueue_task(rq, p, flags);
-}
-
-static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       update_rq_clock(rq);
-       sched_info_dequeued(p);
-       p->sched_class->dequeue_task(rq, p, flags);
-}
-
-/*
- * activate_task - move a task to the runqueue.
- */
-void activate_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible--;
-
-       enqueue_task(rq, p, flags);
-}
-
-/*
- * deactivate_task - remove a task from the runqueue.
- */
-void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible++;
-
-       dequeue_task(rq, p, flags);
-}
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-
-/*
- * There are no locks covering percpu hardirq/softirq time.
- * They are only modified in account_system_vtime, on corresponding CPU
- * with interrupts disabled. So, writes are safe.
- * They are read and saved off onto struct rq in update_rq_clock().
- * This may result in other CPU reading this CPU's irq time and can
- * race with irq/account_system_vtime on this CPU. We would either get old
- * or new value with a side effect of accounting a slice of irq time to wrong
- * task when irq is in progress while we read rq->clock. That is a worthy
- * compromise in place of having locks on each irq in account_system_time.
- */
-static DEFINE_PER_CPU(u64, cpu_hardirq_time);
-static DEFINE_PER_CPU(u64, cpu_softirq_time);
-
-static DEFINE_PER_CPU(u64, irq_start_time);
-static int sched_clock_irqtime;
-
-void enable_sched_clock_irqtime(void)
-{
-       sched_clock_irqtime = 1;
-}
-
-void disable_sched_clock_irqtime(void)
-{
-       sched_clock_irqtime = 0;
-}
-
-#ifndef CONFIG_64BIT
-static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
-
-static inline void irq_time_write_begin(void)
-{
-       __this_cpu_inc(irq_time_seq.sequence);
-       smp_wmb();
-}
-
-static inline void irq_time_write_end(void)
-{
-       smp_wmb();
-       __this_cpu_inc(irq_time_seq.sequence);
-}
-
-static inline u64 irq_time_read(int cpu)
-{
-       u64 irq_time;
-       unsigned seq;
-
-       do {
-               seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
-               irq_time = per_cpu(cpu_softirq_time, cpu) +
-                          per_cpu(cpu_hardirq_time, cpu);
-       } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
-
-       return irq_time;
-}
-#else /* CONFIG_64BIT */
-static inline void irq_time_write_begin(void)
-{
-}
-
-static inline void irq_time_write_end(void)
-{
-}
-
-static inline u64 irq_time_read(int cpu)
-{
-       return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
-}
-#endif /* CONFIG_64BIT */
-
-/*
- * Called before incrementing preempt_count on {soft,}irq_enter
- * and before decrementing preempt_count on {soft,}irq_exit.
- */
-void account_system_vtime(struct task_struct *curr)
-{
-       unsigned long flags;
-       s64 delta;
-       int cpu;
-
-       if (!sched_clock_irqtime)
-               return;
-
-       local_irq_save(flags);
-
-       cpu = smp_processor_id();
-       delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
-       __this_cpu_add(irq_start_time, delta);
-
-       irq_time_write_begin();
-       /*
-        * We do not account for softirq time from ksoftirqd here.
-        * We want to continue accounting softirq time to ksoftirqd thread
-        * in that case, so as not to confuse scheduler with a special task
-        * that do not consume any time, but still wants to run.
-        */
-       if (hardirq_count())
-               __this_cpu_add(cpu_hardirq_time, delta);
-       else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
-               __this_cpu_add(cpu_softirq_time, delta);
-
-       irq_time_write_end();
-       local_irq_restore(flags);
-}
-EXPORT_SYMBOL_GPL(account_system_vtime);
-
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#ifdef CONFIG_PARAVIRT
-static inline u64 steal_ticks(u64 steal)
-{
-       if (unlikely(steal > NSEC_PER_SEC))
-               return div_u64(steal, TICK_NSEC);
-
-       return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
-}
-#endif
-
-static void update_rq_clock_task(struct rq *rq, s64 delta)
-{
-/*
- * In theory, the compile should just see 0 here, and optimize out the call
- * to sched_rt_avg_update. But I don't trust it...
- */
-#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
-       s64 steal = 0, irq_delta = 0;
-#endif
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-       irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
-
-       /*
-        * Since irq_time is only updated on {soft,}irq_exit, we might run into
-        * this case when a previous update_rq_clock() happened inside a
-        * {soft,}irq region.
-        *
-        * When this happens, we stop ->clock_task and only update the
-        * prev_irq_time stamp to account for the part that fit, so that a next
-        * update will consume the rest. This ensures ->clock_task is
-        * monotonic.
-        *
-        * It does however cause some slight miss-attribution of {soft,}irq
-        * time, a more accurate solution would be to update the irq_time using
-        * the current rq->clock timestamp, except that would require using
-        * atomic ops.
-        */
-       if (irq_delta > delta)
-               irq_delta = delta;
-
-       rq->prev_irq_time += irq_delta;
-       delta -= irq_delta;
-#endif
-#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
-       if (static_branch((&paravirt_steal_rq_enabled))) {
-               u64 st;
-
-               steal = paravirt_steal_clock(cpu_of(rq));
-               steal -= rq->prev_steal_time_rq;
-
-               if (unlikely(steal > delta))
-                       steal = delta;
-
-               st = steal_ticks(steal);
-               steal = st * TICK_NSEC;
-
-               rq->prev_steal_time_rq += steal;
-
-               delta -= steal;
-       }
-#endif
-
-       rq->clock_task += delta;
-
-#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
-       if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
-               sched_rt_avg_update(rq, irq_delta + steal);
-#endif
-}
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-static int irqtime_account_hi_update(void)
-{
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       unsigned long flags;
-       u64 latest_ns;
-       int ret = 0;
-
-       local_irq_save(flags);
-       latest_ns = this_cpu_read(cpu_hardirq_time);
-       if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
-               ret = 1;
-       local_irq_restore(flags);
-       return ret;
-}
-
-static int irqtime_account_si_update(void)
-{
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       unsigned long flags;
-       u64 latest_ns;
-       int ret = 0;
-
-       local_irq_save(flags);
-       latest_ns = this_cpu_read(cpu_softirq_time);
-       if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
-               ret = 1;
-       local_irq_restore(flags);
-       return ret;
-}
-
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#define sched_clock_irqtime    (0)
-
-#endif
-
-void sched_set_stop_task(int cpu, struct task_struct *stop)
-{
-       struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
-       struct task_struct *old_stop = cpu_rq(cpu)->stop;
-
-       if (stop) {
-               /*
-                * Make it appear like a SCHED_FIFO task, its something
-                * userspace knows about and won't get confused about.
-                *
-                * Also, it will make PI more or less work without too
-                * much confusion -- but then, stop work should not
-                * rely on PI working anyway.
-                */
-               sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
-
-               stop->sched_class = &stop_sched_class;
-       }
-
-       cpu_rq(cpu)->stop = stop;
-
-       if (old_stop) {
-               /*
-                * Reset it back to a normal scheduling class so that
-                * it can die in pieces.
-                */
-               old_stop->sched_class = &rt_sched_class;
-       }
-}
-
-/*
- * __normal_prio - return the priority that is based on the static prio
- */
-static inline int __normal_prio(struct task_struct *p)
-{
-       return p->static_prio;
-}
-
-/*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
-static inline int normal_prio(struct task_struct *p)
-{
-       int prio;
-
-       if (task_has_rt_policy(p))
-               prio = MAX_RT_PRIO-1 - p->rt_priority;
-       else
-               prio = __normal_prio(p);
-       return prio;
-}
-
-/*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
-static int effective_prio(struct task_struct *p)
-{
-       p->normal_prio = normal_prio(p);
-       /*
-        * If we are RT tasks or we were boosted to RT priority,
-        * keep the priority unchanged. Otherwise, update priority
-        * to the normal priority:
-        */
-       if (!rt_prio(p->prio))
-               return p->normal_prio;
-       return p->prio;
-}
-
-/**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- */
-inline int task_curr(const struct task_struct *p)
-{
-       return cpu_curr(task_cpu(p)) == p;
-}
-
-static inline void check_class_changed(struct rq *rq, struct task_struct *p,
-                                      const struct sched_class *prev_class,
-                                      int oldprio)
-{
-       if (prev_class != p->sched_class) {
-               if (prev_class->switched_from)
-                       prev_class->switched_from(rq, p);
-               p->sched_class->switched_to(rq, p);
-       } else if (oldprio != p->prio)
-               p->sched_class->prio_changed(rq, p, oldprio);
-}
-
-void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
-{
-       const struct sched_class *class;
-
-       if (p->sched_class == rq->curr->sched_class) {
-               rq->curr->sched_class->check_preempt_curr(rq, p, flags);
-       } else {
-               for_each_class(class) {
-                       if (class == rq->curr->sched_class)
-                               break;
-                       if (class == p->sched_class) {
-                               resched_task(rq->curr);
-                               break;
-                       }
-               }
-       }
-
-       /*
-        * A queue event has occurred, and we're going to schedule.  In
-        * this case, we can save a useless back to back clock update.
-        */
-       if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
-               rq->skip_clock_update = 1;
-}
-
-#ifdef CONFIG_SMP
-void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
-{
-#ifdef CONFIG_SCHED_DEBUG
-       /*
-        * We should never call set_task_cpu() on a blocked task,
-        * ttwu() will sort out the placement.
-        */
-       WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
-                       !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
-
-#ifdef CONFIG_LOCKDEP
-       /*
-        * The caller should hold either p->pi_lock or rq->lock, when changing
-        * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
-        *
-        * sched_move_task() holds both and thus holding either pins the cgroup,
-        * see set_task_rq().
-        *
-        * Furthermore, all task_rq users should acquire both locks, see
-        * task_rq_lock().
-        */
-       WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
-                                     lockdep_is_held(&task_rq(p)->lock)));
-#endif
-#endif
-
-       trace_sched_migrate_task(p, new_cpu);
-
-       if (task_cpu(p) != new_cpu) {
-               p->se.nr_migrations++;
-               perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
-       }
-
-       __set_task_cpu(p, new_cpu);
-}
-
-struct migration_arg {
-       struct task_struct *task;
-       int dest_cpu;
-};
-
-static int migration_cpu_stop(void *data);
-
-/*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * If @match_state is nonzero, it's the @p->state value just checked and
- * not expected to change.  If it changes, i.e. @p might have woken up,
- * then return zero.  When we succeed in waiting for @p to be off its CPU,
- * we return a positive number (its total switch count).  If a second call
- * a short while later returns the same number, the caller can be sure that
- * @p has remained unscheduled the whole time.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
-unsigned long wait_task_inactive(struct task_struct *p, long match_state)
-{
-       unsigned long flags;
-       int running, on_rq;
-       unsigned long ncsw;
-       struct rq *rq;
-
-       for (;;) {
-               /*
-                * We do the initial early heuristics without holding
-                * any task-queue locks at all. We'll only try to get
-                * the runqueue lock when things look like they will
-                * work out!
-                */
-               rq = task_rq(p);
-
-               /*
-                * If the task is actively running on another CPU
-                * still, just relax and busy-wait without holding
-                * any locks.
-                *
-                * NOTE! Since we don't hold any locks, it's not
-                * even sure that "rq" stays as the right runqueue!
-                * But we don't care, since "task_running()" will
-                * return false if the runqueue has changed and p
-                * is actually now running somewhere else!
-                */
-               while (task_running(rq, p)) {
-                       if (match_state && unlikely(p->state != match_state))
-                               return 0;
-                       cpu_relax();
-               }
-
-               /*
-                * Ok, time to look more closely! We need the rq
-                * lock now, to be *sure*. If we're wrong, we'll
-                * just go back and repeat.
-                */
-               rq = task_rq_lock(p, &flags);
-               trace_sched_wait_task(p);
-               running = task_running(rq, p);
-               on_rq = p->on_rq;
-               ncsw = 0;
-               if (!match_state || p->state == match_state)
-                       ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
-               task_rq_unlock(rq, p, &flags);
-
-               /*
-                * If it changed from the expected state, bail out now.
-                */
-               if (unlikely(!ncsw))
-                       break;
-
-               /*
-                * Was it really running after all now that we
-                * checked with the proper locks actually held?
-                *
-                * Oops. Go back and try again..
-                */
-               if (unlikely(running)) {
-                       cpu_relax();
-                       continue;
-               }
-
-               /*
-                * It's not enough that it's not actively running,
-                * it must be off the runqueue _entirely_, and not
-                * preempted!
-                *
-                * So if it was still runnable (but just not actively
-                * running right now), it's preempted, and we should
-                * yield - it could be a while.
-                */
-               if (unlikely(on_rq)) {
-                       ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
-
-                       set_current_state(TASK_UNINTERRUPTIBLE);
-                       schedule_hrtimeout(&to, HRTIMER_MODE_REL);
-                       continue;
-               }
-
-               /*
-                * Ahh, all good. It wasn't running, and it wasn't
-                * runnable, which means that it will never become
-                * running in the future either. We're all done!
-                */
-               break;
-       }
-
-       return ncsw;
-}
-
-/***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesn't have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
-void kick_process(struct task_struct *p)
-{
-       int cpu;
-
-       preempt_disable();
-       cpu = task_cpu(p);
-       if ((cpu != smp_processor_id()) && task_curr(p))
-               smp_send_reschedule(cpu);
-       preempt_enable();
-}
-EXPORT_SYMBOL_GPL(kick_process);
-#endif /* CONFIG_SMP */
-
-#ifdef CONFIG_SMP
-/*
- * ->cpus_allowed is protected by both rq->lock and p->pi_lock
- */
-static int select_fallback_rq(int cpu, struct task_struct *p)
-{
-       int dest_cpu;
-       const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
-
-       /* Look for allowed, online CPU in same node. */
-       for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
-               if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
-                       return dest_cpu;
-
-       /* Any allowed, online CPU? */
-       dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
-       if (dest_cpu < nr_cpu_ids)
-               return dest_cpu;
-
-       /* No more Mr. Nice Guy. */
-       dest_cpu = cpuset_cpus_allowed_fallback(p);
-       /*
-        * Don't tell them about moving exiting tasks or
-        * kernel threads (both mm NULL), since they never
-        * leave kernel.
-        */
-       if (p->mm && printk_ratelimit()) {
-               printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
-                               task_pid_nr(p), p->comm, cpu);
-       }
-
-       return dest_cpu;
-}
-
-/*
- * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
- */
-static inline
-int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
-{
-       int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
-
-       /*
-        * In order not to call set_task_cpu() on a blocking task we need
-        * to rely on ttwu() to place the task on a valid ->cpus_allowed
-        * cpu.
-        *
-        * Since this is common to all placement strategies, this lives here.
-        *
-        * [ this allows ->select_task() to simply return task_cpu(p) and
-        *   not worry about this generic constraint ]
-        */
-       if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
-                    !cpu_online(cpu)))
-               cpu = select_fallback_rq(task_cpu(p), p);
-
-       return cpu;
-}
-
-static void update_avg(u64 *avg, u64 sample)
-{
-       s64 diff = sample - *avg;
-       *avg += diff >> 3;
-}
-#endif
-
-static void
-ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
-{
-#ifdef CONFIG_SCHEDSTATS
-       struct rq *rq = this_rq();
-
-#ifdef CONFIG_SMP
-       int this_cpu = smp_processor_id();
-
-       if (cpu == this_cpu) {
-               schedstat_inc(rq, ttwu_local);
-               schedstat_inc(p, se.statistics.nr_wakeups_local);
-       } else {
-               struct sched_domain *sd;
-
-               schedstat_inc(p, se.statistics.nr_wakeups_remote);
-               rcu_read_lock();
-               for_each_domain(this_cpu, sd) {
-                       if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-                               schedstat_inc(sd, ttwu_wake_remote);
-                               break;
-                       }
-               }
-               rcu_read_unlock();
-       }
-
-       if (wake_flags & WF_MIGRATED)
-               schedstat_inc(p, se.statistics.nr_wakeups_migrate);
-
-#endif /* CONFIG_SMP */
-
-       schedstat_inc(rq, ttwu_count);
-       schedstat_inc(p, se.statistics.nr_wakeups);
-
-       if (wake_flags & WF_SYNC)
-               schedstat_inc(p, se.statistics.nr_wakeups_sync);
-
-#endif /* CONFIG_SCHEDSTATS */
-}
-
-static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
-{
-       activate_task(rq, p, en_flags);
-       p->on_rq = 1;
-
-       /* if a worker is waking up, notify workqueue */
-       if (p->flags & PF_WQ_WORKER)
-               wq_worker_waking_up(p, cpu_of(rq));
-}
-
-/*
- * Mark the task runnable and perform wakeup-preemption.
- */
-static void
-ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
-{
-       trace_sched_wakeup(p, true);
-       check_preempt_curr(rq, p, wake_flags);
-
-       p->state = TASK_RUNNING;
-#ifdef CONFIG_SMP
-       if (p->sched_class->task_woken)
-               p->sched_class->task_woken(rq, p);
-
-       if (rq->idle_stamp) {
-               u64 delta = rq->clock - rq->idle_stamp;
-               u64 max = 2*sysctl_sched_migration_cost;
-
-               if (delta > max)
-                       rq->avg_idle = max;
-               else
-                       update_avg(&rq->avg_idle, delta);
-               rq->idle_stamp = 0;
-       }
-#endif
-}
-
-static void
-ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
-{
-#ifdef CONFIG_SMP
-       if (p->sched_contributes_to_load)
-               rq->nr_uninterruptible--;
-#endif
-
-       ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
-       ttwu_do_wakeup(rq, p, wake_flags);
-}
-
-/*
- * Called in case the task @p isn't fully descheduled from its runqueue,
- * in this case we must do a remote wakeup. Its a 'light' wakeup though,
- * since all we need to do is flip p->state to TASK_RUNNING, since
- * the task is still ->on_rq.
- */
-static int ttwu_remote(struct task_struct *p, int wake_flags)
-{
-       struct rq *rq;
-       int ret = 0;
-
-       rq = __task_rq_lock(p);
-       if (p->on_rq) {
-               ttwu_do_wakeup(rq, p, wake_flags);
-               ret = 1;
-       }
-       __task_rq_unlock(rq);
-
-       return ret;
-}
-
-#ifdef CONFIG_SMP
-static void sched_ttwu_pending(void)
-{
-       struct rq *rq = this_rq();
-       struct llist_node *llist = llist_del_all(&rq->wake_list);
-       struct task_struct *p;
-
-       raw_spin_lock(&rq->lock);
-
-       while (llist) {
-               p = llist_entry(llist, struct task_struct, wake_entry);
-               llist = llist_next(llist);
-               ttwu_do_activate(rq, p, 0);
-       }
-
-       raw_spin_unlock(&rq->lock);
-}
-
-void scheduler_ipi(void)
-{
-       if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
-               return;
-
-       /*
-        * Not all reschedule IPI handlers call irq_enter/irq_exit, since
-        * traditionally all their work was done from the interrupt return
-        * path. Now that we actually do some work, we need to make sure
-        * we do call them.
-        *
-        * Some archs already do call them, luckily irq_enter/exit nest
-        * properly.
-        *
-        * Arguably we should visit all archs and update all handlers,
-        * however a fair share of IPIs are still resched only so this would
-        * somewhat pessimize the simple resched case.
-        */
-       irq_enter();
-       sched_ttwu_pending();
-
-       /*
-        * Check if someone kicked us for doing the nohz idle load balance.
-        */
-       if (unlikely(got_nohz_idle_kick() && !need_resched())) {
-               this_rq()->idle_balance = 1;
-               raise_softirq_irqoff(SCHED_SOFTIRQ);
-       }
-       irq_exit();
-}
-
-static void ttwu_queue_remote(struct task_struct *p, int cpu)
-{
-       if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
-               smp_send_reschedule(cpu);
-}
-
-#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
-{
-       struct rq *rq;
-       int ret = 0;
-
-       rq = __task_rq_lock(p);
-       if (p->on_cpu) {
-               ttwu_activate(rq, p, ENQUEUE_WAKEUP);
-               ttwu_do_wakeup(rq, p, wake_flags);
-               ret = 1;
-       }
-       __task_rq_unlock(rq);
-
-       return ret;
-
-}
-#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
-#endif /* CONFIG_SMP */
-
-static void ttwu_queue(struct task_struct *p, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-#if defined(CONFIG_SMP)
-       if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
-               sched_clock_cpu(cpu); /* sync clocks x-cpu */
-               ttwu_queue_remote(p, cpu);
-               return;
-       }
-#endif
-
-       raw_spin_lock(&rq->lock);
-       ttwu_do_activate(rq, p, 0);
-       raw_spin_unlock(&rq->lock);
-}
-
-/**
- * try_to_wake_up - wake up a thread
- * @p: the thread to be awakened
- * @state: the mask of task states that can be woken
- * @wake_flags: wake modifier flags (WF_*)
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * Returns %true if @p was woken up, %false if it was already running
- * or @state didn't match @p's state.
- */
-static int
-try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
-{
-       unsigned long flags;
-       int cpu, success = 0;
-
-       smp_wmb();
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       if (!(p->state & state))
-               goto out;
-
-       success = 1; /* we're going to change ->state */
-       cpu = task_cpu(p);
-
-       if (p->on_rq && ttwu_remote(p, wake_flags))
-               goto stat;
-
-#ifdef CONFIG_SMP
-       /*
-        * If the owning (remote) cpu is still in the middle of schedule() with
-        * this task as prev, wait until its done referencing the task.
-        */
-       while (p->on_cpu) {
-#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-               /*
-                * In case the architecture enables interrupts in
-                * context_switch(), we cannot busy wait, since that
-                * would lead to deadlocks when an interrupt hits and
-                * tries to wake up @prev. So bail and do a complete
-                * remote wakeup.
-                */
-               if (ttwu_activate_remote(p, wake_flags))
-                       goto stat;
-#else
-               cpu_relax();
-#endif
-       }
-       /*
-        * Pairs with the smp_wmb() in finish_lock_switch().
-        */
-       smp_rmb();
-
-       p->sched_contributes_to_load = !!task_contributes_to_load(p);
-       p->state = TASK_WAKING;
-
-       if (p->sched_class->task_waking)
-               p->sched_class->task_waking(p);
-
-       cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
-       if (task_cpu(p) != cpu) {
-               wake_flags |= WF_MIGRATED;
-               set_task_cpu(p, cpu);
-       }
-#endif /* CONFIG_SMP */
-
-       ttwu_queue(p, cpu);
-stat:
-       ttwu_stat(p, cpu, wake_flags);
-out:
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
-       return success;
-}
-
-/**
- * try_to_wake_up_local - try to wake up a local task with rq lock held
- * @p: the thread to be awakened
- *
- * Put @p on the run-queue if it's not already there. The caller must
- * ensure that this_rq() is locked, @p is bound to this_rq() and not
- * the current task.
- */
-static void try_to_wake_up_local(struct task_struct *p)
-{
-       struct rq *rq = task_rq(p);
-
-       BUG_ON(rq != this_rq());
-       BUG_ON(p == current);
-       lockdep_assert_held(&rq->lock);
-
-       if (!raw_spin_trylock(&p->pi_lock)) {
-               raw_spin_unlock(&rq->lock);
-               raw_spin_lock(&p->pi_lock);
-               raw_spin_lock(&rq->lock);
-       }
-
-       if (!(p->state & TASK_NORMAL))
-               goto out;
-
-       if (!p->on_rq)
-               ttwu_activate(rq, p, ENQUEUE_WAKEUP);
-
-       ttwu_do_wakeup(rq, p, 0);
-       ttwu_stat(p, smp_processor_id(), 0);
-out:
-       raw_spin_unlock(&p->pi_lock);
-}
-
-/**
- * wake_up_process - Wake up a specific process
- * @p: The process to be woken up.
- *
- * Attempt to wake up the nominated process and move it to the set of runnable
- * processes.  Returns 1 if the process was woken up, 0 if it was already
- * running.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-int wake_up_process(struct task_struct *p)
-{
-       return try_to_wake_up(p, TASK_ALL, 0);
-}
-EXPORT_SYMBOL(wake_up_process);
-
-int wake_up_state(struct task_struct *p, unsigned int state)
-{
-       return try_to_wake_up(p, state, 0);
-}
-
-/*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- *
- * __sched_fork() is basic setup used by init_idle() too:
- */
-static void __sched_fork(struct task_struct *p)
-{
-       p->on_rq                        = 0;
-
-       p->se.on_rq                     = 0;
-       p->se.exec_start                = 0;
-       p->se.sum_exec_runtime          = 0;
-       p->se.prev_sum_exec_runtime     = 0;
-       p->se.nr_migrations             = 0;
-       p->se.vruntime                  = 0;
-       INIT_LIST_HEAD(&p->se.group_node);
-
-#ifdef CONFIG_SCHEDSTATS
-       memset(&p->se.statistics, 0, sizeof(p->se.statistics));
-#endif
-
-       INIT_LIST_HEAD(&p->rt.run_list);
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-       INIT_HLIST_HEAD(&p->preempt_notifiers);
-#endif
-}
-
-/*
- * fork()/clone()-time setup:
- */
-void sched_fork(struct task_struct *p)
-{
-       unsigned long flags;
-       int cpu = get_cpu();
-
-       __sched_fork(p);
-       /*
-        * We mark the process as running here. This guarantees that
-        * nobody will actually run it, and a signal or other external
-        * event cannot wake it up and insert it on the runqueue either.
-        */
-       p->state = TASK_RUNNING;
-
-       /*
-        * Make sure we do not leak PI boosting priority to the child.
-        */
-       p->prio = current->normal_prio;
-
-       /*
-        * Revert to default priority/policy on fork if requested.
-        */
-       if (unlikely(p->sched_reset_on_fork)) {
-               if (task_has_rt_policy(p)) {
-                       p->policy = SCHED_NORMAL;
-                       p->static_prio = NICE_TO_PRIO(0);
-                       p->rt_priority = 0;
-               } else if (PRIO_TO_NICE(p->static_prio) < 0)
-                       p->static_prio = NICE_TO_PRIO(0);
-
-               p->prio = p->normal_prio = __normal_prio(p);
-               set_load_weight(p);
-
-               /*
-                * We don't need the reset flag anymore after the fork. It has
-                * fulfilled its duty:
-                */
-               p->sched_reset_on_fork = 0;
-       }
-
-       if (!rt_prio(p->prio))
-               p->sched_class = &fair_sched_class;
-
-       if (p->sched_class->task_fork)
-               p->sched_class->task_fork(p);
-
-       /*
-        * The child is not yet in the pid-hash so no cgroup attach races,
-        * and the cgroup is pinned to this child due to cgroup_fork()
-        * is ran before sched_fork().
-        *
-        * Silence PROVE_RCU.
-        */
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       set_task_cpu(p, cpu);
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
-#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-       if (likely(sched_info_on()))
-               memset(&p->sched_info, 0, sizeof(p->sched_info));
-#endif
-#if defined(CONFIG_SMP)
-       p->on_cpu = 0;
-#endif
-#ifdef CONFIG_PREEMPT_COUNT
-       /* Want to start with kernel preemption disabled. */
-       task_thread_info(p)->preempt_count = 1;
-#endif
-#ifdef CONFIG_SMP
-       plist_node_init(&p->pushable_tasks, MAX_PRIO);
-#endif
-
-       put_cpu();
-}
-
-/*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
-void wake_up_new_task(struct task_struct *p)
-{
-       unsigned long flags;
-       struct rq *rq;
-
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-#ifdef CONFIG_SMP
-       /*
-        * Fork balancing, do it here and not earlier because:
-        *  - cpus_allowed can change in the fork path
-        *  - any previously selected cpu might disappear through hotplug
-        */
-       set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
-#endif
-
-       rq = __task_rq_lock(p);
-       activate_task(rq, p, 0);
-       p->on_rq = 1;
-       trace_sched_wakeup_new(p, true);
-       check_preempt_curr(rq, p, WF_FORK);
-#ifdef CONFIG_SMP
-       if (p->sched_class->task_woken)
-               p->sched_class->task_woken(rq, p);
-#endif
-       task_rq_unlock(rq, p, &flags);
-}
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-
-/**
- * preempt_notifier_register - tell me when current is being preempted & rescheduled
- * @notifier: notifier struct to register
- */
-void preempt_notifier_register(struct preempt_notifier *notifier)
-{
-       hlist_add_head(&notifier->link, &current->preempt_notifiers);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_register);
-
-/**
- * preempt_notifier_unregister - no longer interested in preemption notifications
- * @notifier: notifier struct to unregister
- *
- * This is safe to call from within a preemption notifier.
- */
-void preempt_notifier_unregister(struct preempt_notifier *notifier)
-{
-       hlist_del(&notifier->link);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-
-static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
-       struct preempt_notifier *notifier;
-       struct hlist_node *node;
-
-       hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-               notifier->ops->sched_in(notifier, raw_smp_processor_id());
-}
-
-static void
-fire_sched_out_preempt_notifiers(struct task_struct *curr,
-                                struct task_struct *next)
-{
-       struct preempt_notifier *notifier;
-       struct hlist_node *node;
-
-       hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-               notifier->ops->sched_out(notifier, next);
-}
-
-#else /* !CONFIG_PREEMPT_NOTIFIERS */
-
-static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
-}
-
-static void
-fire_sched_out_preempt_notifiers(struct task_struct *curr,
-                                struct task_struct *next)
-{
-}
-
-#endif /* CONFIG_PREEMPT_NOTIFIERS */
-
-/**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @prev: the current task that is being switched out
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
-static inline void
-prepare_task_switch(struct rq *rq, struct task_struct *prev,
-                   struct task_struct *next)
-{
-       sched_info_switch(prev, next);
-       perf_event_task_sched_out(prev, next);
-       fire_sched_out_preempt_notifiers(prev, next);
-       prepare_lock_switch(rq, next);
-       prepare_arch_switch(next);
-       trace_sched_switch(prev, next);
-}
-
-/**
- * finish_task_switch - clean up after a task-switch
- * @rq: runqueue associated with task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- */
-static void finish_task_switch(struct rq *rq, struct task_struct *prev)
-       __releases(rq->lock)
-{
-       struct mm_struct *mm = rq->prev_mm;
-       long prev_state;
-
-       rq->prev_mm = NULL;
-
-       /*
-        * A task struct has one reference for the use as "current".
-        * If a task dies, then it sets TASK_DEAD in tsk->state and calls
-        * schedule one last time. The schedule call will never return, and
-        * the scheduled task must drop that reference.
-        * The test for TASK_DEAD must occur while the runqueue locks are
-        * still held, otherwise prev could be scheduled on another cpu, die
-        * there before we look at prev->state, and then the reference would
-        * be dropped twice.
-        *              Manfred Spraul <manfred@colorfullife.com>
-        */
-       prev_state = prev->state;
-       finish_arch_switch(prev);
-#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-       local_irq_disable();
-#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
-       perf_event_task_sched_in(prev, current);
-#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-       local_irq_enable();
-#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
-       finish_lock_switch(rq, prev);
-
-       fire_sched_in_preempt_notifiers(current);
-       if (mm)
-               mmdrop(mm);
-       if (unlikely(prev_state == TASK_DEAD)) {
-               /*
-                * Remove function-return probe instances associated with this
-                * task and put them back on the free list.
-                */
-               kprobe_flush_task(prev);
-               put_task_struct(prev);
-       }
-}
-
-#ifdef CONFIG_SMP
-
-/* assumes rq->lock is held */
-static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
-{
-       if (prev->sched_class->pre_schedule)
-               prev->sched_class->pre_schedule(rq, prev);
-}
-
-/* rq->lock is NOT held, but preemption is disabled */
-static inline void post_schedule(struct rq *rq)
-{
-       if (rq->post_schedule) {
-               unsigned long flags;
-
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               if (rq->curr->sched_class->post_schedule)
-                       rq->curr->sched_class->post_schedule(rq);
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-               rq->post_schedule = 0;
-       }
-}
-
-#else
-
-static inline void pre_schedule(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void post_schedule(struct rq *rq)
-{
-}
-
-#endif
-
-/**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
-asmlinkage void schedule_tail(struct task_struct *prev)
-       __releases(rq->lock)
-{
-       struct rq *rq = this_rq();
-
-       finish_task_switch(rq, prev);
-
-       /*
-        * FIXME: do we need to worry about rq being invalidated by the
-        * task_switch?
-        */
-       post_schedule(rq);
-
-#ifdef __ARCH_WANT_UNLOCKED_CTXSW
-       /* In this case, finish_task_switch does not reenable preemption */
-       preempt_enable();
-#endif
-       if (current->set_child_tid)
-               put_user(task_pid_vnr(current), current->set_child_tid);
-}
-
-/*
- * context_switch - switch to the new MM and the new
- * thread's register state.
- */
-static inline void
-context_switch(struct rq *rq, struct task_struct *prev,
-              struct task_struct *next)
-{
-       struct mm_struct *mm, *oldmm;
-
-       prepare_task_switch(rq, prev, next);
-
-       mm = next->mm;
-       oldmm = prev->active_mm;
-       /*
-        * For paravirt, this is coupled with an exit in switch_to to
-        * combine the page table reload and the switch backend into
-        * one hypercall.
-        */
-       arch_start_context_switch(prev);
-
-       if (!mm) {
-               next->active_mm = oldmm;
-               atomic_inc(&oldmm->mm_count);
-               enter_lazy_tlb(oldmm, next);
-       } else
-               switch_mm(oldmm, mm, next);
-
-       if (!prev->mm) {
-               prev->active_mm = NULL;
-               rq->prev_mm = oldmm;
-       }
-       /*
-        * Since the runqueue lock will be released by the next
-        * task (which is an invalid locking op but in the case
-        * of the scheduler it's an obvious special-case), so we
-        * do an early lockdep release here:
-        */
-#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-       spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-#endif
-
-       /* Here we just switch the register state and the stack. */
-       switch_to(prev, next, prev);
-
-       barrier();
-       /*
-        * this_rq must be evaluated again because prev may have moved
-        * CPUs since it called schedule(), thus the 'rq' on its stack
-        * frame will be invalid.
-        */
-       finish_task_switch(this_rq(), prev);
-}
-
-/*
- * nr_running, nr_uninterruptible and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, current number of uninterruptible-sleeping threads, total
- * number of context switches performed since bootup.
- */
-unsigned long nr_running(void)
-{
-       unsigned long i, sum = 0;
-
-       for_each_online_cpu(i)
-               sum += cpu_rq(i)->nr_running;
-
-       return sum;
-}
-
-unsigned long nr_uninterruptible(void)
-{
-       unsigned long i, sum = 0;
-
-       for_each_possible_cpu(i)
-               sum += cpu_rq(i)->nr_uninterruptible;
-
-       /*
-        * Since we read the counters lockless, it might be slightly
-        * inaccurate. Do not allow it to go below zero though:
-        */
-       if (unlikely((long)sum < 0))
-               sum = 0;
-
-       return sum;
-}
-
-unsigned long long nr_context_switches(void)
-{
-       int i;
-       unsigned long long sum = 0;
-
-       for_each_possible_cpu(i)
-               sum += cpu_rq(i)->nr_switches;
-
-       return sum;
-}
-
-unsigned long nr_iowait(void)
-{
-       unsigned long i, sum = 0;
-
-       for_each_possible_cpu(i)
-               sum += atomic_read(&cpu_rq(i)->nr_iowait);
-
-       return sum;
-}
-
-unsigned long nr_iowait_cpu(int cpu)
-{
-       struct rq *this = cpu_rq(cpu);
-       return atomic_read(&this->nr_iowait);
-}
-
-unsigned long this_cpu_load(void)
-{
-       struct rq *this = this_rq();
-       return this->cpu_load[0];
-}
-
-
-/* Variables and functions for calc_load */
-static atomic_long_t calc_load_tasks;
-static unsigned long calc_load_update;
-unsigned long avenrun[3];
-EXPORT_SYMBOL(avenrun);
-
-static long calc_load_fold_active(struct rq *this_rq)
-{
-       long nr_active, delta = 0;
-
-       nr_active = this_rq->nr_running;
-       nr_active += (long) this_rq->nr_uninterruptible;
-
-       if (nr_active != this_rq->calc_load_active) {
-               delta = nr_active - this_rq->calc_load_active;
-               this_rq->calc_load_active = nr_active;
-       }
-
-       return delta;
-}
-
-static unsigned long
-calc_load(unsigned long load, unsigned long exp, unsigned long active)
-{
-       load *= exp;
-       load += active * (FIXED_1 - exp);
-       load += 1UL << (FSHIFT - 1);
-       return load >> FSHIFT;
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
- *
- * When making the ILB scale, we should try to pull this in as well.
- */
-static atomic_long_t calc_load_tasks_idle;
-
-void calc_load_account_idle(struct rq *this_rq)
-{
-       long delta;
-
-       delta = calc_load_fold_active(this_rq);
-       if (delta)
-               atomic_long_add(delta, &calc_load_tasks_idle);
-}
-
-static long calc_load_fold_idle(void)
-{
-       long delta = 0;
-
-       /*
-        * Its got a race, we don't care...
-        */
-       if (atomic_long_read(&calc_load_tasks_idle))
-               delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
-
-       return delta;
-}
-
-/**
- * fixed_power_int - compute: x^n, in O(log n) time
- *
- * @x:         base of the power
- * @frac_bits: fractional bits of @x
- * @n:         power to raise @x to.
- *
- * By exploiting the relation between the definition of the natural power
- * function: x^n := x*x*...*x (x multiplied by itself for n times), and
- * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
- * (where: n_i \elem {0, 1}, the binary vector representing n),
- * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
- * of course trivially computable in O(log_2 n), the length of our binary
- * vector.
- */
-static unsigned long
-fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
-{
-       unsigned long result = 1UL << frac_bits;
-
-       if (n) for (;;) {
-               if (n & 1) {
-                       result *= x;
-                       result += 1UL << (frac_bits - 1);
-                       result >>= frac_bits;
-               }
-               n >>= 1;
-               if (!n)
-                       break;
-               x *= x;
-               x += 1UL << (frac_bits - 1);
-               x >>= frac_bits;
-       }
-
-       return result;
-}
-
-/*
- * a1 = a0 * e + a * (1 - e)
- *
- * a2 = a1 * e + a * (1 - e)
- *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
- *    = a0 * e^2 + a * (1 - e) * (1 + e)
- *
- * a3 = a2 * e + a * (1 - e)
- *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
- *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
- *
- *  ...
- *
- * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
- *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
- *    = a0 * e^n + a * (1 - e^n)
- *
- * [1] application of the geometric series:
- *
- *              n         1 - x^(n+1)
- *     S_n := \Sum x^i = -------------
- *             i=0          1 - x
- */
-static unsigned long
-calc_load_n(unsigned long load, unsigned long exp,
-           unsigned long active, unsigned int n)
-{
-
-       return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
-}
-
-/*
- * NO_HZ can leave us missing all per-cpu ticks calling
- * calc_load_account_active(), but since an idle CPU folds its delta into
- * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
- * in the pending idle delta if our idle period crossed a load cycle boundary.
- *
- * Once we've updated the global active value, we need to apply the exponential
- * weights adjusted to the number of cycles missed.
- */
-static void calc_global_nohz(unsigned long ticks)
-{
-       long delta, active, n;
-
-       if (time_before(jiffies, calc_load_update))
-               return;
-
-       /*
-        * If we crossed a calc_load_update boundary, make sure to fold
-        * any pending idle changes, the respective CPUs might have
-        * missed the tick driven calc_load_account_active() update
-        * due to NO_HZ.
-        */
-       delta = calc_load_fold_idle();
-       if (delta)
-               atomic_long_add(delta, &calc_load_tasks);
-
-       /*
-        * If we were idle for multiple load cycles, apply them.
-        */
-       if (ticks >= LOAD_FREQ) {
-               n = ticks / LOAD_FREQ;
-
-               active = atomic_long_read(&calc_load_tasks);
-               active = active > 0 ? active * FIXED_1 : 0;
-
-               avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
-               avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
-               avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
-
-               calc_load_update += n * LOAD_FREQ;
-       }
-
-       /*
-        * Its possible the remainder of the above division also crosses
-        * a LOAD_FREQ period, the regular check in calc_global_load()
-        * which comes after this will take care of that.
-        *
-        * Consider us being 11 ticks before a cycle completion, and us
-        * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
-        * age us 4 cycles, and the test in calc_global_load() will
-        * pick up the final one.
-        */
-}
-#else
-void calc_load_account_idle(struct rq *this_rq)
-{
-}
-
-static inline long calc_load_fold_idle(void)
-{
-       return 0;
-}
-
-static void calc_global_nohz(unsigned long ticks)
-{
-}
-#endif
-
-/**
- * get_avenrun - get the load average array
- * @loads:     pointer to dest load array
- * @offset:    offset to add
- * @shift:     shift count to shift the result left
- *
- * These values are estimates at best, so no need for locking.
- */
-void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
-{
-       loads[0] = (avenrun[0] + offset) << shift;
-       loads[1] = (avenrun[1] + offset) << shift;
-       loads[2] = (avenrun[2] + offset) << shift;
-}
-
-/*
- * calc_load - update the avenrun load estimates 10 ticks after the
- * CPUs have updated calc_load_tasks.
- */
-void calc_global_load(unsigned long ticks)
-{
-       long active;
-
-       calc_global_nohz(ticks);
-
-       if (time_before(jiffies, calc_load_update + 10))
-               return;
-
-       active = atomic_long_read(&calc_load_tasks);
-       active = active > 0 ? active * FIXED_1 : 0;
-
-       avenrun[0] = calc_load(avenrun[0], EXP_1, active);
-       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
-       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-
-       calc_load_update += LOAD_FREQ;
-}
-
-/*
- * Called from update_cpu_load() to periodically update this CPU's
- * active count.
- */
-static void calc_load_account_active(struct rq *this_rq)
-{
-       long delta;
-
-       if (time_before(jiffies, this_rq->calc_load_update))
-               return;
-
-       delta  = calc_load_fold_active(this_rq);
-       delta += calc_load_fold_idle();
-       if (delta)
-               atomic_long_add(delta, &calc_load_tasks);
-
-       this_rq->calc_load_update += LOAD_FREQ;
-}
-
-/*
- * The exact cpuload at various idx values, calculated at every tick would be
- * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
- *
- * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
- * on nth tick when cpu may be busy, then we have:
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
- *
- * decay_load_missed() below does efficient calculation of
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
- *
- * The calculation is approximated on a 128 point scale.
- * degrade_zero_ticks is the number of ticks after which load at any
- * particular idx is approximated to be zero.
- * degrade_factor is a precomputed table, a row for each load idx.
- * Each column corresponds to degradation factor for a power of two ticks,
- * based on 128 point scale.
- * Example:
- * row 2, col 3 (=12) says that the degradation at load idx 2 after
- * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
- *
- * With this power of 2 load factors, we can degrade the load n times
- * by looking at 1 bits in n and doing as many mult/shift instead of
- * n mult/shifts needed by the exact degradation.
- */
-#define DEGRADE_SHIFT          7
-static const unsigned char
-               degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
-static const unsigned char
-               degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
-                                       {0, 0, 0, 0, 0, 0, 0, 0},
-                                       {64, 32, 8, 0, 0, 0, 0, 0},
-                                       {96, 72, 40, 12, 1, 0, 0},
-                                       {112, 98, 75, 43, 15, 1, 0},
-                                       {120, 112, 98, 76, 45, 16, 2} };
-
-/*
- * Update cpu_load for any missed ticks, due to tickless idle. The backlog
- * would be when CPU is idle and so we just decay the old load without
- * adding any new load.
- */
-static unsigned long
-decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
-{
-       int j = 0;
-
-       if (!missed_updates)
-               return load;
-
-       if (missed_updates >= degrade_zero_ticks[idx])
-               return 0;
-
-       if (idx == 1)
-               return load >> missed_updates;
-
-       while (missed_updates) {
-               if (missed_updates % 2)
-                       load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
-
-               missed_updates >>= 1;
-               j++;
-       }
-       return load;
-}
-
-/*
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC). With tickless idle this will not be called
- * every tick. We fix it up based on jiffies.
- */
-void update_cpu_load(struct rq *this_rq)
-{
-       unsigned long this_load = this_rq->load.weight;
-       unsigned long curr_jiffies = jiffies;
-       unsigned long pending_updates;
-       int i, scale;
-
-       this_rq->nr_load_updates++;
-
-       /* Avoid repeated calls on same jiffy, when moving in and out of idle */
-       if (curr_jiffies == this_rq->last_load_update_tick)
-               return;
-
-       pending_updates = curr_jiffies - this_rq->last_load_update_tick;
-       this_rq->last_load_update_tick = curr_jiffies;
-
-       /* Update our load: */
-       this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
-       for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-               unsigned long old_load, new_load;
-
-               /* scale is effectively 1 << i now, and >> i divides by scale */
-
-               old_load = this_rq->cpu_load[i];
-               old_load = decay_load_missed(old_load, pending_updates - 1, i);
-               new_load = this_load;
-               /*
-                * Round up the averaging division if load is increasing. This
-                * prevents us from getting stuck on 9 if the load is 10, for
-                * example.
-                */
-               if (new_load > old_load)
-                       new_load += scale - 1;
-
-               this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
-       }
-
-       sched_avg_update(this_rq);
-}
-
-static void update_cpu_load_active(struct rq *this_rq)
-{
-       update_cpu_load(this_rq);
-
-       calc_load_account_active(this_rq);
-}
-
-#ifdef CONFIG_SMP
-
-/*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
-void sched_exec(void)
-{
-       struct task_struct *p = current;
-       unsigned long flags;
-       int dest_cpu;
-
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
-       if (dest_cpu == smp_processor_id())
-               goto unlock;
-
-       if (likely(cpu_active(dest_cpu))) {
-               struct migration_arg arg = { p, dest_cpu };
-
-               raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-               stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
-               return;
-       }
-unlock:
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-}
-
-#endif
-
-DEFINE_PER_CPU(struct kernel_stat, kstat);
-
-EXPORT_PER_CPU_SYMBOL(kstat);
-
-/*
- * Return any ns on the sched_clock that have not yet been accounted in
- * @p in case that task is currently running.
- *
- * Called with task_rq_lock() held on @rq.
- */
-static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
-{
-       u64 ns = 0;
-
-       if (task_current(rq, p)) {
-               update_rq_clock(rq);
-               ns = rq->clock_task - p->se.exec_start;
-               if ((s64)ns < 0)
-                       ns = 0;
-       }
-
-       return ns;
-}
-
-unsigned long long task_delta_exec(struct task_struct *p)
-{
-       unsigned long flags;
-       struct rq *rq;
-       u64 ns = 0;
-
-       rq = task_rq_lock(p, &flags);
-       ns = do_task_delta_exec(p, rq);
-       task_rq_unlock(rq, p, &flags);
-
-       return ns;
-}
-
-/*
- * Return accounted runtime for the task.
- * In case the task is currently running, return the runtime plus current's
- * pending runtime that have not been accounted yet.
- */
-unsigned long long task_sched_runtime(struct task_struct *p)
-{
-       unsigned long flags;
-       struct rq *rq;
-       u64 ns = 0;
-
-       rq = task_rq_lock(p, &flags);
-       ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
-       task_rq_unlock(rq, p, &flags);
-
-       return ns;
-}
-
-/*
- * Account user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in user space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-void account_user_time(struct task_struct *p, cputime_t cputime,
-                      cputime_t cputime_scaled)
-{
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       cputime64_t tmp;
-
-       /* Add user time to process. */
-       p->utime = cputime_add(p->utime, cputime);
-       p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
-       account_group_user_time(p, cputime);
-
-       /* Add user time to cpustat. */
-       tmp = cputime_to_cputime64(cputime);
-       if (TASK_NICE(p) > 0)
-               cpustat->nice = cputime64_add(cpustat->nice, tmp);
-       else
-               cpustat->user = cputime64_add(cpustat->user, tmp);
-
-       cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
-       /* Account for user time used */
-       acct_update_integrals(p);
-}
-
-/*
- * Account guest cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in virtual machine since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-static void account_guest_time(struct task_struct *p, cputime_t cputime,
-                              cputime_t cputime_scaled)
-{
-       cputime64_t tmp;
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-
-       tmp = cputime_to_cputime64(cputime);
-
-       /* Add guest time to process. */
-       p->utime = cputime_add(p->utime, cputime);
-       p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
-       account_group_user_time(p, cputime);
-       p->gtime = cputime_add(p->gtime, cputime);
-
-       /* Add guest time to cpustat. */
-       if (TASK_NICE(p) > 0) {
-               cpustat->nice = cputime64_add(cpustat->nice, tmp);
-               cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
-       } else {
-               cpustat->user = cputime64_add(cpustat->user, tmp);
-               cpustat->guest = cputime64_add(cpustat->guest, tmp);
-       }
-}
-
-/*
- * Account system cpu time to a process and desired cpustat field
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * @target_cputime64: pointer to cpustat field that has to be updated
- */
-static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime,
-                       cputime_t cputime_scaled, cputime64_t *target_cputime64)
-{
-       cputime64_t tmp = cputime_to_cputime64(cputime);
-
-       /* Add system time to process. */
-       p->stime = cputime_add(p->stime, cputime);
-       p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
-       account_group_system_time(p, cputime);
-
-       /* Add system time to cpustat. */
-       *target_cputime64 = cputime64_add(*target_cputime64, tmp);
-       cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
-
-       /* Account for system time used */
-       acct_update_integrals(p);
-}
-
-/*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-void account_system_time(struct task_struct *p, int hardirq_offset,
-                        cputime_t cputime, cputime_t cputime_scaled)
-{
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       cputime64_t *target_cputime64;
-
-       if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
-               account_guest_time(p, cputime, cputime_scaled);
-               return;
-       }
-
-       if (hardirq_count() - hardirq_offset)
-               target_cputime64 = &cpustat->irq;
-       else if (in_serving_softirq())
-               target_cputime64 = &cpustat->softirq;
-       else
-               target_cputime64 = &cpustat->system;
-
-       __account_system_time(p, cputime, cputime_scaled, target_cputime64);
-}
-
-/*
- * Account for involuntary wait time.
- * @cputime: the cpu time spent in involuntary wait
- */
-void account_steal_time(cputime_t cputime)
-{
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       cputime64_t cputime64 = cputime_to_cputime64(cputime);
-
-       cpustat->steal = cputime64_add(cpustat->steal, cputime64);
-}
-
-/*
- * Account for idle time.
- * @cputime: the cpu time spent in idle wait
- */
-void account_idle_time(cputime_t cputime)
-{
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-       cputime64_t cputime64 = cputime_to_cputime64(cputime);
-       struct rq *rq = this_rq();
-
-       if (atomic_read(&rq->nr_iowait) > 0)
-               cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
-       else
-               cpustat->idle = cputime64_add(cpustat->idle, cputime64);
-}
-
-static __always_inline bool steal_account_process_tick(void)
-{
-#ifdef CONFIG_PARAVIRT
-       if (static_branch(&paravirt_steal_enabled)) {
-               u64 steal, st = 0;
-
-               steal = paravirt_steal_clock(smp_processor_id());
-               steal -= this_rq()->prev_steal_time;
-
-               st = steal_ticks(steal);
-               this_rq()->prev_steal_time += st * TICK_NSEC;
-
-               account_steal_time(st);
-               return st;
-       }
-#endif
-       return false;
-}
-
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-/*
- * Account a tick to a process and cpustat
- * @p: the process that the cpu time gets accounted to
- * @user_tick: is the tick from userspace
- * @rq: the pointer to rq
- *
- * Tick demultiplexing follows the order
- * - pending hardirq update
- * - pending softirq update
- * - user_time
- * - idle_time
- * - system time
- *   - check for guest_time
- *   - else account as system_time
- *
- * Check for hardirq is done both for system and user time as there is
- * no timer going off while we are on hardirq and hence we may never get an
- * opportunity to update it solely in system time.
- * p->stime and friends are only updated on system time and not on irq
- * softirq as those do not count in task exec_runtime any more.
- */
-static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
-                                               struct rq *rq)
-{
-       cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-       cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
-       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-
-       if (steal_account_process_tick())
-               return;
-
-       if (irqtime_account_hi_update()) {
-               cpustat->irq = cputime64_add(cpustat->irq, tmp);
-       } else if (irqtime_account_si_update()) {
-               cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
-       } else if (this_cpu_ksoftirqd() == p) {
-               /*
-                * ksoftirqd time do not get accounted in cpu_softirq_time.
-                * So, we have to handle it separately here.
-                * Also, p->stime needs to be updated for ksoftirqd.
-                */
-               __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
-                                       &cpustat->softirq);
-       } else if (user_tick) {
-               account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
-       } else if (p == rq->idle) {
-               account_idle_time(cputime_one_jiffy);
-       } else if (p->flags & PF_VCPU) { /* System time or guest time */
-               account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
-       } else {
-               __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
-                                       &cpustat->system);
-       }
-}
-
-static void irqtime_account_idle_ticks(int ticks)
-{
-       int i;
-       struct rq *rq = this_rq();
-
-       for (i = 0; i < ticks; i++)
-               irqtime_account_process_tick(current, 0, rq);
-}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-static void irqtime_account_idle_ticks(int ticks) {}
-static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
-                                               struct rq *rq) {}
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-/*
- * Account a single tick of cpu time.
- * @p: the process that the cpu time gets accounted to
- * @user_tick: indicates if the tick is a user or a system tick
- */
-void account_process_tick(struct task_struct *p, int user_tick)
-{
-       cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-       struct rq *rq = this_rq();
-
-       if (sched_clock_irqtime) {
-               irqtime_account_process_tick(p, user_tick, rq);
-               return;
-       }
-
-       if (steal_account_process_tick())
-               return;
-
-       if (user_tick)
-               account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
-       else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
-               account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
-                                   one_jiffy_scaled);
-       else
-               account_idle_time(cputime_one_jiffy);
-}
-
-/*
- * Account multiple ticks of steal time.
- * @p: the process from which the cpu time has been stolen
- * @ticks: number of stolen ticks
- */
-void account_steal_ticks(unsigned long ticks)
-{
-       account_steal_time(jiffies_to_cputime(ticks));
-}
-
-/*
- * Account multiple ticks of idle time.
- * @ticks: number of stolen ticks
- */
-void account_idle_ticks(unsigned long ticks)
-{
-
-       if (sched_clock_irqtime) {
-               irqtime_account_idle_ticks(ticks);
-               return;
-       }
-
-       account_idle_time(jiffies_to_cputime(ticks));
-}
-
-#endif
-
-/*
- * Use precise platform statistics if available:
- */
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING
-void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       *ut = p->utime;
-       *st = p->stime;
-}
-
-void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       struct task_cputime cputime;
-
-       thread_group_cputime(p, &cputime);
-
-       *ut = cputime.utime;
-       *st = cputime.stime;
-}
-#else
-
-#ifndef nsecs_to_cputime
-# define nsecs_to_cputime(__nsecs)     nsecs_to_jiffies(__nsecs)
-#endif
-
-void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
-
-       /*
-        * Use CFS's precise accounting:
-        */
-       rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
-
-       if (total) {
-               u64 temp = rtime;
-
-               temp *= utime;
-               do_div(temp, total);
-               utime = (cputime_t)temp;
-       } else
-               utime = rtime;
-
-       /*
-        * Compare with previous values, to keep monotonicity:
-        */
-       p->prev_utime = max(p->prev_utime, utime);
-       p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
-
-       *ut = p->prev_utime;
-       *st = p->prev_stime;
-}
-
-/*
- * Must be called with siglock held.
- */
-void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       struct signal_struct *sig = p->signal;
-       struct task_cputime cputime;
-       cputime_t rtime, utime, total;
-
-       thread_group_cputime(p, &cputime);
-
-       total = cputime_add(cputime.utime, cputime.stime);
-       rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
-
-       if (total) {
-               u64 temp = rtime;
-
-               temp *= cputime.utime;
-               do_div(temp, total);
-               utime = (cputime_t)temp;
-       } else
-               utime = rtime;
-
-       sig->prev_utime = max(sig->prev_utime, utime);
-       sig->prev_stime = max(sig->prev_stime,
-                             cputime_sub(rtime, sig->prev_utime));
-
-       *ut = sig->prev_utime;
-       *st = sig->prev_stime;
-}
-#endif
-
-/*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
- */
-void scheduler_tick(void)
-{
-       int cpu = smp_processor_id();
-       struct rq *rq = cpu_rq(cpu);
-       struct task_struct *curr = rq->curr;
-
-       sched_clock_tick();
-
-       raw_spin_lock(&rq->lock);
-       update_rq_clock(rq);
-       update_cpu_load_active(rq);
-       curr->sched_class->task_tick(rq, curr, 0);
-       raw_spin_unlock(&rq->lock);
-
-       perf_event_task_tick();
-
-#ifdef CONFIG_SMP
-       rq->idle_balance = idle_cpu(cpu);
-       trigger_load_balance(rq, cpu);
-#endif
-}
-
-notrace unsigned long get_parent_ip(unsigned long addr)
-{
-       if (in_lock_functions(addr)) {
-               addr = CALLER_ADDR2;
-               if (in_lock_functions(addr))
-                       addr = CALLER_ADDR3;
-       }
-       return addr;
-}
-
-#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
-                               defined(CONFIG_PREEMPT_TRACER))
-
-void __kprobes add_preempt_count(int val)
-{
-#ifdef CONFIG_DEBUG_PREEMPT
-       /*
-        * Underflow?
-        */
-       if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
-               return;
-#endif
-       preempt_count() += val;
-#ifdef CONFIG_DEBUG_PREEMPT
-       /*
-        * Spinlock count overflowing soon?
-        */
-       DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
-                               PREEMPT_MASK - 10);
-#endif
-       if (preempt_count() == val)
-               trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-}
-EXPORT_SYMBOL(add_preempt_count);
-
-void __kprobes sub_preempt_count(int val)
-{
-#ifdef CONFIG_DEBUG_PREEMPT
-       /*
-        * Underflow?
-        */
-       if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
-               return;
-       /*
-        * Is the spinlock portion underflowing?
-        */
-       if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-                       !(preempt_count() & PREEMPT_MASK)))
-               return;
-#endif
-
-       if (preempt_count() == val)
-               trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-       preempt_count() -= val;
-}
-EXPORT_SYMBOL(sub_preempt_count);
-
-#endif
-
-/*
- * Print scheduling while atomic bug:
- */
-static noinline void __schedule_bug(struct task_struct *prev)
-{
-       struct pt_regs *regs = get_irq_regs();
-
-       printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
-               prev->comm, prev->pid, preempt_count());
-
-       debug_show_held_locks(prev);
-       print_modules();
-       if (irqs_disabled())
-               print_irqtrace_events(prev);
-
-       if (regs)
-               show_regs(regs);
-       else
-               dump_stack();
-}
-
-/*
- * Various schedule()-time debugging checks and statistics:
- */
-static inline void schedule_debug(struct task_struct *prev)
-{
-       /*
-        * Test if we are atomic. Since do_exit() needs to call into
-        * schedule() atomically, we ignore that path for now.
-        * Otherwise, whine if we are scheduling when we should not be.
-        */
-       if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
-               __schedule_bug(prev);
-       rcu_sleep_check();
-
-       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-
-       schedstat_inc(this_rq(), sched_count);
-}
-
-static void put_prev_task(struct rq *rq, struct task_struct *prev)
-{
-       if (prev->on_rq || rq->skip_clock_update < 0)
-               update_rq_clock(rq);
-       prev->sched_class->put_prev_task(rq, prev);
-}
-
-/*
- * Pick up the highest-prio task:
- */
-static inline struct task_struct *
-pick_next_task(struct rq *rq)
-{
-       const struct sched_class *class;
-       struct task_struct *p;
-
-       /*
-        * Optimization: we know that if all tasks are in
-        * the fair class we can call that function directly:
-        */
-       if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
-               p = fair_sched_class.pick_next_task(rq);
-               if (likely(p))
-                       return p;
-       }
-
-       for_each_class(class) {
-               p = class->pick_next_task(rq);
-               if (p)
-                       return p;
-       }
-
-       BUG(); /* the idle class will always have a runnable task */
-}
-
-/*
- * __schedule() is the main scheduler function.
- */
-static void __sched __schedule(void)
-{
-       struct task_struct *prev, *next;
-       unsigned long *switch_count;
-       struct rq *rq;
-       int cpu;
-
-need_resched:
-       preempt_disable();
-       cpu = smp_processor_id();
-       rq = cpu_rq(cpu);
-       rcu_note_context_switch(cpu);
-       prev = rq->curr;
-
-       schedule_debug(prev);
-
-       if (sched_feat(HRTICK))
-               hrtick_clear(rq);
-
-       raw_spin_lock_irq(&rq->lock);
-
-       switch_count = &prev->nivcsw;
-       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-               if (unlikely(signal_pending_state(prev->state, prev))) {
-                       prev->state = TASK_RUNNING;
-               } else {
-                       deactivate_task(rq, prev, DEQUEUE_SLEEP);
-                       prev->on_rq = 0;
-
-                       /*
-                        * If a worker went to sleep, notify and ask workqueue
-                        * whether it wants to wake up a task to maintain
-                        * concurrency.
-                        */
-                       if (prev->flags & PF_WQ_WORKER) {
-                               struct task_struct *to_wakeup;
-
-                               to_wakeup = wq_worker_sleeping(prev, cpu);
-                               if (to_wakeup)
-                                       try_to_wake_up_local(to_wakeup);
-                       }
-               }
-               switch_count = &prev->nvcsw;
-       }
-
-       pre_schedule(rq, prev);
-
-       if (unlikely(!rq->nr_running))
-               idle_balance(cpu, rq);
-
-       put_prev_task(rq, prev);
-       next = pick_next_task(rq);
-       clear_tsk_need_resched(prev);
-       rq->skip_clock_update = 0;
-
-       if (likely(prev != next)) {
-               rq->nr_switches++;
-               rq->curr = next;
-               ++*switch_count;
-
-               context_switch(rq, prev, next); /* unlocks the rq */
-               /*
-                * The context switch have flipped the stack from under us
-                * and restored the local variables which were saved when
-                * this task called schedule() in the past. prev == current
-                * is still correct, but it can be moved to another cpu/rq.
-                */
-               cpu = smp_processor_id();
-               rq = cpu_rq(cpu);
-       } else
-               raw_spin_unlock_irq(&rq->lock);
-
-       post_schedule(rq);
-
-       preempt_enable_no_resched();
-       if (need_resched())
-               goto need_resched;
-}
-
-static inline void sched_submit_work(struct task_struct *tsk)
-{
-       if (!tsk->state)
-               return;
-       /*
-        * If we are going to sleep and we have plugged IO queued,
-        * make sure to submit it to avoid deadlocks.
-        */
-       if (blk_needs_flush_plug(tsk))
-               blk_schedule_flush_plug(tsk);
-}
-
-asmlinkage void __sched schedule(void)
-{
-       struct task_struct *tsk = current;
-
-       sched_submit_work(tsk);
-       __schedule();
-}
-EXPORT_SYMBOL(schedule);
-
-#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
-
-static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
-{
-       if (lock->owner != owner)
-               return false;
-
-       /*
-        * Ensure we emit the owner->on_cpu, dereference _after_ checking
-        * lock->owner still matches owner, if that fails, owner might
-        * point to free()d memory, if it still matches, the rcu_read_lock()
-        * ensures the memory stays valid.
-        */
-       barrier();
-
-       return owner->on_cpu;
-}
-
-/*
- * Look out! "owner" is an entirely speculative pointer
- * access and not reliable.
- */
-int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
-{
-       if (!sched_feat(OWNER_SPIN))
-               return 0;
-
-       rcu_read_lock();
-       while (owner_running(lock, owner)) {
-               if (need_resched())
-                       break;
-
-               arch_mutex_cpu_relax();
-       }
-       rcu_read_unlock();
-
-       /*
-        * We break out the loop above on need_resched() and when the
-        * owner changed, which is a sign for heavy contention. Return
-        * success only when lock->owner is NULL.
-        */
-       return lock->owner == NULL;
-}
-#endif
-
-#ifdef CONFIG_PREEMPT
-/*
- * this is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable. Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
- */
-asmlinkage void __sched notrace preempt_schedule(void)
-{
-       struct thread_info *ti = current_thread_info();
-
-       /*
-        * If there is a non-zero preempt_count or interrupts are disabled,
-        * we do not want to preempt the current task. Just return..
-        */
-       if (likely(ti->preempt_count || irqs_disabled()))
-               return;
-
-       do {
-               add_preempt_count_notrace(PREEMPT_ACTIVE);
-               __schedule();
-               sub_preempt_count_notrace(PREEMPT_ACTIVE);
-
-               /*
-                * Check again in case we missed a preemption opportunity
-                * between schedule and now.
-                */
-               barrier();
-       } while (need_resched());
-}
-EXPORT_SYMBOL(preempt_schedule);
-
-/*
- * this is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
- */
-asmlinkage void __sched preempt_schedule_irq(void)
-{
-       struct thread_info *ti = current_thread_info();
-
-       /* Catch callers which need to be fixed */
-       BUG_ON(ti->preempt_count || !irqs_disabled());
-
-       do {
-               add_preempt_count(PREEMPT_ACTIVE);
-               local_irq_enable();
-               __schedule();
-               local_irq_disable();
-               sub_preempt_count(PREEMPT_ACTIVE);
-
-               /*
-                * Check again in case we missed a preemption opportunity
-                * between schedule and now.
-                */
-               barrier();
-       } while (need_resched());
-}
-
-#endif /* CONFIG_PREEMPT */
-
-int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
-                         void *key)
-{
-       return try_to_wake_up(curr->private, mode, wake_flags);
-}
-EXPORT_SYMBOL(default_wake_function);
-
-/*
- * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
- * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
- *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
- * zero in this (rare) case, and we handle it by continuing to scan the queue.
- */
-static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-                       int nr_exclusive, int wake_flags, void *key)
-{
-       wait_queue_t *curr, *next;
-
-       list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
-               unsigned flags = curr->flags;
-
-               if (curr->func(curr, mode, wake_flags, key) &&
-                               (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
-                       break;
-       }
-}
-
-/**
- * __wake_up - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- * @key: is directly passed to the wakeup function
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void __wake_up(wait_queue_head_t *q, unsigned int mode,
-                       int nr_exclusive, void *key)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, 0, key);
-       spin_unlock_irqrestore(&q->lock, flags);
-}
-EXPORT_SYMBOL(__wake_up);
-
-/*
- * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
- */
-void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
-{
-       __wake_up_common(q, mode, 1, 0, NULL);
-}
-EXPORT_SYMBOL_GPL(__wake_up_locked);
-
-void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
-{
-       __wake_up_common(q, mode, 1, 0, key);
-}
-EXPORT_SYMBOL_GPL(__wake_up_locked_key);
-
-/**
- * __wake_up_sync_key - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- * @key: opaque value to be passed to wakeup targets
- *
- * The sync wakeup differs that the waker knows that it will schedule
- * away soon, so while the target thread will be woken up, it will not
- * be migrated to another CPU - ie. the two threads are 'synchronized'
- * with each other. This can prevent needless bouncing between CPUs.
- *
- * On UP it can prevent extra preemption.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
-                       int nr_exclusive, void *key)
-{
-       unsigned long flags;
-       int wake_flags = WF_SYNC;
-
-       if (unlikely(!q))
-               return;
-
-       if (unlikely(!nr_exclusive))
-               wake_flags = 0;
-
-       spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
-       spin_unlock_irqrestore(&q->lock, flags);
-}
-EXPORT_SYMBOL_GPL(__wake_up_sync_key);
-
-/*
- * __wake_up_sync - see __wake_up_sync_key()
- */
-void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
-{
-       __wake_up_sync_key(q, mode, nr_exclusive, NULL);
-}
-EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
-
-/**
- * complete: - signals a single thread waiting on this completion
- * @x:  holds the state of this particular completion
- *
- * This will wake up a single thread waiting on this completion. Threads will be
- * awakened in the same order in which they were queued.
- *
- * See also complete_all(), wait_for_completion() and related routines.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void complete(struct completion *x)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done++;
-       __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-}
-EXPORT_SYMBOL(complete);
-
-/**
- * complete_all: - signals all threads waiting on this completion
- * @x:  holds the state of this particular completion
- *
- * This will wake up all threads waiting on this particular completion event.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void complete_all(struct completion *x)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done += UINT_MAX/2;
-       __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-}
-EXPORT_SYMBOL(complete_all);
-
-static inline long __sched
-do_wait_for_common(struct completion *x, long timeout, int state)
-{
-       if (!x->done) {
-               DECLARE_WAITQUEUE(wait, current);
-
-               __add_wait_queue_tail_exclusive(&x->wait, &wait);
-               do {
-                       if (signal_pending_state(state, current)) {
-                               timeout = -ERESTARTSYS;
-                               break;
-                       }
-                       __set_current_state(state);
-                       spin_unlock_irq(&x->wait.lock);
-                       timeout = schedule_timeout(timeout);
-                       spin_lock_irq(&x->wait.lock);
-               } while (!x->done && timeout);
-               __remove_wait_queue(&x->wait, &wait);
-               if (!x->done)
-                       return timeout;
-       }
-       x->done--;
-       return timeout ?: 1;
-}
-
-static long __sched
-wait_for_common(struct completion *x, long timeout, int state)
-{
-       might_sleep();
-
-       spin_lock_irq(&x->wait.lock);
-       timeout = do_wait_for_common(x, timeout, state);
-       spin_unlock_irq(&x->wait.lock);
-       return timeout;
-}
-
-/**
- * wait_for_completion: - waits for completion of a task
- * @x:  holds the state of this particular completion
- *
- * This waits to be signaled for completion of a specific task. It is NOT
- * interruptible and there is no timeout.
- *
- * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
- * and interrupt capability. Also see complete().
- */
-void __sched wait_for_completion(struct completion *x)
-{
-       wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion);
-
-/**
- * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be signaled or for a
- * specified timeout to expire. The timeout is in jiffies. It is not
- * interruptible.
- *
- * The return value is 0 if timed out, and positive (at least 1, or number of
- * jiffies left till timeout) if completed.
- */
-unsigned long __sched
-wait_for_completion_timeout(struct completion *x, unsigned long timeout)
-{
-       return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion_timeout);
-
-/**
- * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
- * @x:  holds the state of this particular completion
- *
- * This waits for completion of a specific task to be signaled. It is
- * interruptible.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if completed.
- */
-int __sched wait_for_completion_interruptible(struct completion *x)
-{
-       long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
-       if (t == -ERESTARTSYS)
-               return t;
-       return 0;
-}
-EXPORT_SYMBOL(wait_for_completion_interruptible);
-
-/**
- * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be signaled or for a
- * specified timeout to expire. It is interruptible. The timeout is in jiffies.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
- * positive (at least 1, or number of jiffies left till timeout) if completed.
- */
-long __sched
-wait_for_completion_interruptible_timeout(struct completion *x,
-                                         unsigned long timeout)
-{
-       return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
-
-/**
- * wait_for_completion_killable: - waits for completion of a task (killable)
- * @x:  holds the state of this particular completion
- *
- * This waits to be signaled for completion of a specific task. It can be
- * interrupted by a kill signal.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if completed.
- */
-int __sched wait_for_completion_killable(struct completion *x)
-{
-       long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
-       if (t == -ERESTARTSYS)
-               return t;
-       return 0;
-}
-EXPORT_SYMBOL(wait_for_completion_killable);
-
-/**
- * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be
- * signaled or for a specified timeout to expire. It can be
- * interrupted by a kill signal. The timeout is in jiffies.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
- * positive (at least 1, or number of jiffies left till timeout) if completed.
- */
-long __sched
-wait_for_completion_killable_timeout(struct completion *x,
-                                    unsigned long timeout)
-{
-       return wait_for_common(x, timeout, TASK_KILLABLE);
-}
-EXPORT_SYMBOL(wait_for_completion_killable_timeout);
-
-/**
- *     try_wait_for_completion - try to decrement a completion without blocking
- *     @x:     completion structure
- *
- *     Returns: 0 if a decrement cannot be done without blocking
- *              1 if a decrement succeeded.
- *
- *     If a completion is being used as a counting completion,
- *     attempt to decrement the counter without blocking. This
- *     enables us to avoid waiting if the resource the completion
- *     is protecting is not available.
- */
-bool try_wait_for_completion(struct completion *x)
-{
-       unsigned long flags;
-       int ret = 1;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       if (!x->done)
-               ret = 0;
-       else
-               x->done--;
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-       return ret;
-}
-EXPORT_SYMBOL(try_wait_for_completion);
-
-/**
- *     completion_done - Test to see if a completion has any waiters
- *     @x:     completion structure
- *
- *     Returns: 0 if there are waiters (wait_for_completion() in progress)
- *              1 if there are no waiters.
- *
- */
-bool completion_done(struct completion *x)
-{
-       unsigned long flags;
-       int ret = 1;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       if (!x->done)
-               ret = 0;
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-       return ret;
-}
-EXPORT_SYMBOL(completion_done);
-
-static long __sched
-sleep_on_common(wait_queue_head_t *q, int state, long timeout)
-{
-       unsigned long flags;
-       wait_queue_t wait;
-
-       init_waitqueue_entry(&wait, current);
-
-       __set_current_state(state);
-
-       spin_lock_irqsave(&q->lock, flags);
-       __add_wait_queue(q, &wait);
-       spin_unlock(&q->lock);
-       timeout = schedule_timeout(timeout);
-       spin_lock_irq(&q->lock);
-       __remove_wait_queue(q, &wait);
-       spin_unlock_irqrestore(&q->lock, flags);
-
-       return timeout;
-}
-
-void __sched interruptible_sleep_on(wait_queue_head_t *q)
-{
-       sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-}
-EXPORT_SYMBOL(interruptible_sleep_on);
-
-long __sched
-interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
-{
-       return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
-}
-EXPORT_SYMBOL(interruptible_sleep_on_timeout);
-
-void __sched sleep_on(wait_queue_head_t *q)
-{
-       sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-}
-EXPORT_SYMBOL(sleep_on);
-
-long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
-{
-       return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
-}
-EXPORT_SYMBOL(sleep_on_timeout);
-
-#ifdef CONFIG_RT_MUTEXES
-
-/*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task
- * @prio: prio value (kernel-internal form)
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance logic.
- */
-void rt_mutex_setprio(struct task_struct *p, int prio)
-{
-       int oldprio, on_rq, running;
-       struct rq *rq;
-       const struct sched_class *prev_class;
-
-       BUG_ON(prio < 0 || prio > MAX_PRIO);
-
-       rq = __task_rq_lock(p);
-
-       trace_sched_pi_setprio(p, prio);
-       oldprio = p->prio;
-       prev_class = p->sched_class;
-       on_rq = p->on_rq;
-       running = task_current(rq, p);
-       if (on_rq)
-               dequeue_task(rq, p, 0);
-       if (running)
-               p->sched_class->put_prev_task(rq, p);
-
-       if (rt_prio(prio))
-               p->sched_class = &rt_sched_class;
-       else
-               p->sched_class = &fair_sched_class;
-
-       p->prio = prio;
-
-       if (running)
-               p->sched_class->set_curr_task(rq);
-       if (on_rq)
-               enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
-
-       check_class_changed(rq, p, prev_class, oldprio);
-       __task_rq_unlock(rq);
-}
-
-#endif
-
-void set_user_nice(struct task_struct *p, long nice)
-{
-       int old_prio, delta, on_rq;
-       unsigned long flags;
-       struct rq *rq;
-
-       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
-               return;
-       /*
-        * We have to be careful, if called from sys_setpriority(),
-        * the task might be in the middle of scheduling on another CPU.
-        */
-       rq = task_rq_lock(p, &flags);
-       /*
-        * The RT priorities are set via sched_setscheduler(), but we still
-        * allow the 'normal' nice value to be set - but as expected
-        * it wont have any effect on scheduling until the task is
-        * SCHED_FIFO/SCHED_RR:
-        */
-       if (task_has_rt_policy(p)) {
-               p->static_prio = NICE_TO_PRIO(nice);
-               goto out_unlock;
-       }
-       on_rq = p->on_rq;
-       if (on_rq)
-               dequeue_task(rq, p, 0);
-
-       p->static_prio = NICE_TO_PRIO(nice);
-       set_load_weight(p);
-       old_prio = p->prio;
-       p->prio = effective_prio(p);
-       delta = p->prio - old_prio;
-
-       if (on_rq) {
-               enqueue_task(rq, p, 0);
-               /*
-                * If the task increased its priority or is running and
-                * lowered its priority, then reschedule its CPU:
-                */
-               if (delta < 0 || (delta > 0 && task_running(rq, p)))
-                       resched_task(rq->curr);
-       }
-out_unlock:
-       task_rq_unlock(rq, p, &flags);
-}
-EXPORT_SYMBOL(set_user_nice);
-
-/*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
-int can_nice(const struct task_struct *p, const int nice)
-{
-       /* convert nice value [19,-20] to rlimit style value [1,40] */
-       int nice_rlim = 20 - nice;
-
-       return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
-               capable(CAP_SYS_NICE));
-}
-
-#ifdef __ARCH_WANT_SYS_NICE
-
-/*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
-SYSCALL_DEFINE1(nice, int, increment)
-{
-       long nice, retval;
-
-       /*
-        * Setpriority might change our priority at the same moment.
-        * We don't have to worry. Conceptually one call occurs first
-        * and we have a single winner.
-        */
-       if (increment < -40)
-               increment = -40;
-       if (increment > 40)
-               increment = 40;
-
-       nice = TASK_NICE(current) + increment;
-       if (nice < -20)
-               nice = -20;
-       if (nice > 19)
-               nice = 19;
-
-       if (increment < 0 && !can_nice(current, nice))
-               return -EPERM;
-
-       retval = security_task_setnice(current, nice);
-       if (retval)
-               return retval;
-
-       set_user_nice(current, nice);
-       return 0;
-}
-
-#endif
-
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * This is the priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
-int task_prio(const struct task_struct *p)
-{
-       return p->prio - MAX_RT_PRIO;
-}
-
-/**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- */
-int task_nice(const struct task_struct *p)
-{
-       return TASK_NICE(p);
-}
-EXPORT_SYMBOL(task_nice);
-
-/**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- */
-int idle_cpu(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-       if (rq->curr != rq->idle)
-               return 0;
-
-       if (rq->nr_running)
-               return 0;
-
-#ifdef CONFIG_SMP
-       if (!llist_empty(&rq->wake_list))
-               return 0;
-#endif
-
-       return 1;
-}
-
-/**
- * idle_task - return the idle task for a given cpu.
- * @cpu: the processor in question.
- */
-struct task_struct *idle_task(int cpu)
-{
-       return cpu_rq(cpu)->idle;
-}
-
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- */
-static struct task_struct *find_process_by_pid(pid_t pid)
-{
-       return pid ? find_task_by_vpid(pid) : current;
-}
-
-/* Actually do priority change: must hold rq lock. */
-static void
-__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
-{
-       p->policy = policy;
-       p->rt_priority = prio;
-       p->normal_prio = normal_prio(p);
-       /* we are holding p->pi_lock already */
-       p->prio = rt_mutex_getprio(p);
-       if (rt_prio(p->prio))
-               p->sched_class = &rt_sched_class;
-       else
-               p->sched_class = &fair_sched_class;
-       set_load_weight(p);
-}
-
-/*
- * check the target process has a UID that matches the current process's
- */
-static bool check_same_owner(struct task_struct *p)
-{
-       const struct cred *cred = current_cred(), *pcred;
-       bool match;
-
-       rcu_read_lock();
-       pcred = __task_cred(p);
-       if (cred->user->user_ns == pcred->user->user_ns)
-               match = (cred->euid == pcred->euid ||
-                        cred->euid == pcred->uid);
-       else
-               match = false;
-       rcu_read_unlock();
-       return match;
-}
-
-static int __sched_setscheduler(struct task_struct *p, int policy,
-                               const struct sched_param *param, bool user)
-{
-       int retval, oldprio, oldpolicy = -1, on_rq, running;
-       unsigned long flags;
-       const struct sched_class *prev_class;
-       struct rq *rq;
-       int reset_on_fork;
-
-       /* may grab non-irq protected spin_locks */
-       BUG_ON(in_interrupt());
-recheck:
-       /* double check policy once rq lock held */
-       if (policy < 0) {
-               reset_on_fork = p->sched_reset_on_fork;
-               policy = oldpolicy = p->policy;
-       } else {
-               reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
-               policy &= ~SCHED_RESET_ON_FORK;
-
-               if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                               policy != SCHED_NORMAL && policy != SCHED_BATCH &&
-                               policy != SCHED_IDLE)
-                       return -EINVAL;
-       }
-
-       /*
-        * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
-        * SCHED_BATCH and SCHED_IDLE is 0.
-        */
-       if (param->sched_priority < 0 ||
-           (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
-           (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
-               return -EINVAL;
-       if (rt_policy(policy) != (param->sched_priority != 0))
-               return -EINVAL;
-
-       /*
-        * Allow unprivileged RT tasks to decrease priority:
-        */
-       if (user && !capable(CAP_SYS_NICE)) {
-               if (rt_policy(policy)) {
-                       unsigned long rlim_rtprio =
-                                       task_rlimit(p, RLIMIT_RTPRIO);
-
-                       /* can't set/change the rt policy */
-                       if (policy != p->policy && !rlim_rtprio)
-                               return -EPERM;
-
-                       /* can't increase priority */
-                       if (param->sched_priority > p->rt_priority &&
-                           param->sched_priority > rlim_rtprio)
-                               return -EPERM;
-               }
-
-               /*
-                * Treat SCHED_IDLE as nice 20. Only allow a switch to
-                * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
-                */
-               if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
-                       if (!can_nice(p, TASK_NICE(p)))
-                               return -EPERM;
-               }
-
-               /* can't change other user's priorities */
-               if (!check_same_owner(p))
-                       return -EPERM;
-
-               /* Normal users shall not reset the sched_reset_on_fork flag */
-               if (p->sched_reset_on_fork && !reset_on_fork)
-                       return -EPERM;
-       }
-
-       if (user) {
-               retval = security_task_setscheduler(p);
-               if (retval)
-                       return retval;
-       }
-
-       /*
-        * make sure no PI-waiters arrive (or leave) while we are
-        * changing the priority of the task:
-        *
-        * To be able to change p->policy safely, the appropriate
-        * runqueue lock must be held.
-        */
-       rq = task_rq_lock(p, &flags);
-
-       /*
-        * Changing the policy of the stop threads its a very bad idea
-        */
-       if (p == rq->stop) {
-               task_rq_unlock(rq, p, &flags);
-               return -EINVAL;
-       }
-
-       /*
-        * If not changing anything there's no need to proceed further:
-        */
-       if (unlikely(policy == p->policy && (!rt_policy(policy) ||
-                       param->sched_priority == p->rt_priority))) {
-
-               __task_rq_unlock(rq);
-               raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-               return 0;
-       }
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       if (user) {
-               /*
-                * Do not allow realtime tasks into groups that have no runtime
-                * assigned.
-                */
-               if (rt_bandwidth_enabled() && rt_policy(policy) &&
-                               task_group(p)->rt_bandwidth.rt_runtime == 0 &&
-                               !task_group_is_autogroup(task_group(p))) {
-                       task_rq_unlock(rq, p, &flags);
-                       return -EPERM;
-               }
-       }
-#endif
-
-       /* recheck policy now with rq lock held */
-       if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
-               policy = oldpolicy = -1;
-               task_rq_unlock(rq, p, &flags);
-               goto recheck;
-       }
-       on_rq = p->on_rq;
-       running = task_current(rq, p);
-       if (on_rq)
-               deactivate_task(rq, p, 0);
-       if (running)
-               p->sched_class->put_prev_task(rq, p);
-
-       p->sched_reset_on_fork = reset_on_fork;
-
-       oldprio = p->prio;
-       prev_class = p->sched_class;
-       __setscheduler(rq, p, policy, param->sched_priority);
-
-       if (running)
-               p->sched_class->set_curr_task(rq);
-       if (on_rq)
-               activate_task(rq, p, 0);
-
-       check_class_changed(rq, p, prev_class, oldprio);
-       task_rq_unlock(rq, p, &flags);
-
-       rt_mutex_adjust_pi(p);
-
-       return 0;
-}
-
-/**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * NOTE that the task may be already dead.
- */
-int sched_setscheduler(struct task_struct *p, int policy,
-                      const struct sched_param *param)
-{
-       return __sched_setscheduler(p, policy, param, true);
-}
-EXPORT_SYMBOL_GPL(sched_setscheduler);
-
-/**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission.  For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- */
-int sched_setscheduler_nocheck(struct task_struct *p, int policy,
-                              const struct sched_param *param)
-{
-       return __sched_setscheduler(p, policy, param, false);
-}
-
-static int
-do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-{
-       struct sched_param lparam;
-       struct task_struct *p;
-       int retval;
-
-       if (!param || pid < 0)
-               return -EINVAL;
-       if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
-               return -EFAULT;
-
-       rcu_read_lock();
-       retval = -ESRCH;
-       p = find_process_by_pid(pid);
-       if (p != NULL)
-               retval = sched_setscheduler(p, policy, &lparam);
-       rcu_read_unlock();
-
-       return retval;
-}
-
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- */
-SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
-               struct sched_param __user *, param)
-{
-       /* negative values for policy are not valid */
-       if (policy < 0)
-               return -EINVAL;
-
-       return do_sched_setscheduler(pid, policy, param);
-}
-
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- */
-SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-{
-       return do_sched_setscheduler(pid, -1, param);
-}
-
-/**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- */
-SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-{
-       struct task_struct *p;
-       int retval;
-
-       if (pid < 0)
-               return -EINVAL;
-
-       retval = -ESRCH;
-       rcu_read_lock();
-       p = find_process_by_pid(pid);
-       if (p) {
-               retval = security_task_getscheduler(p);
-               if (!retval)
-                       retval = p->policy
-                               | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
-       }
-       rcu_read_unlock();
-       return retval;
-}
-
-/**
- * sys_sched_getparam - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- */
-SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-{
-       struct sched_param lp;
-       struct task_struct *p;
-       int retval;
-
-       if (!param || pid < 0)
-               return -EINVAL;
-
-       rcu_read_lock();
-       p = find_process_by_pid(pid);
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock;
-
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       lp.sched_priority = p->rt_priority;
-       rcu_read_unlock();
-
-       /*
-        * This one might sleep, we cannot do it with a spinlock held ...
-        */
-       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-
-       return retval;
-
-out_unlock:
-       rcu_read_unlock();
-       return retval;
-}
-
-long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-{
-       cpumask_var_t cpus_allowed, new_mask;
-       struct task_struct *p;
-       int retval;
-
-       get_online_cpus();
-       rcu_read_lock();
-
-       p = find_process_by_pid(pid);
-       if (!p) {
-               rcu_read_unlock();
-               put_online_cpus();
-               return -ESRCH;
-       }
-
-       /* Prevent p going away */
-       get_task_struct(p);
-       rcu_read_unlock();
-
-       if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
-               retval = -ENOMEM;
-               goto out_put_task;
-       }
-       if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
-               retval = -ENOMEM;
-               goto out_free_cpus_allowed;
-       }
-       retval = -EPERM;
-       if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
-               goto out_unlock;
-
-       retval = security_task_setscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       cpuset_cpus_allowed(p, cpus_allowed);
-       cpumask_and(new_mask, in_mask, cpus_allowed);
-again:
-       retval = set_cpus_allowed_ptr(p, new_mask);
-
-       if (!retval) {
-               cpuset_cpus_allowed(p, cpus_allowed);
-               if (!cpumask_subset(new_mask, cpus_allowed)) {
-                       /*
-                        * We must have raced with a concurrent cpuset
-                        * update. Just reset the cpus_allowed to the
-                        * cpuset's cpus_allowed
-                        */
-                       cpumask_copy(new_mask, cpus_allowed);
-                       goto again;
-               }
-       }
-out_unlock:
-       free_cpumask_var(new_mask);
-out_free_cpus_allowed:
-       free_cpumask_var(cpus_allowed);
-out_put_task:
-       put_task_struct(p);
-       put_online_cpus();
-       return retval;
-}
-
-static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
-                            struct cpumask *new_mask)
-{
-       if (len < cpumask_size())
-               cpumask_clear(new_mask);
-       else if (len > cpumask_size())
-               len = cpumask_size();
-
-       return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-}
-
-/**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- */
-SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
-               unsigned long __user *, user_mask_ptr)
-{
-       cpumask_var_t new_mask;
-       int retval;
-
-       if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
-               return -ENOMEM;
-
-       retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
-       if (retval == 0)
-               retval = sched_setaffinity(pid, new_mask);
-       free_cpumask_var(new_mask);
-       return retval;
-}
-
-long sched_getaffinity(pid_t pid, struct cpumask *mask)
-{
-       struct task_struct *p;
-       unsigned long flags;
-       int retval;
-
-       get_online_cpus();
-       rcu_read_lock();
-
-       retval = -ESRCH;
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
-
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
-out_unlock:
-       rcu_read_unlock();
-       put_online_cpus();
-
-       return retval;
-}
-
-/**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- */
-SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
-               unsigned long __user *, user_mask_ptr)
-{
-       int ret;
-       cpumask_var_t mask;
-
-       if ((len * BITS_PER_BYTE) < nr_cpu_ids)
-               return -EINVAL;
-       if (len & (sizeof(unsigned long)-1))
-               return -EINVAL;
-
-       if (!alloc_cpumask_var(&mask, GFP_KERNEL))
-               return -ENOMEM;
-
-       ret = sched_getaffinity(pid, mask);
-       if (ret == 0) {
-               size_t retlen = min_t(size_t, len, cpumask_size());
-
-               if (copy_to_user(user_mask_ptr, mask, retlen))
-                       ret = -EFAULT;
-               else
-                       ret = retlen;
-       }
-       free_cpumask_var(mask);
-
-       return ret;
-}
-
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- */
-SYSCALL_DEFINE0(sched_yield)
-{
-       struct rq *rq = this_rq_lock();
-
-       schedstat_inc(rq, yld_count);
-       current->sched_class->yield_task(rq);
-
-       /*
-        * Since we are going to call schedule() anyway, there's
-        * no need to preempt or enable interrupts:
-        */
-       __release(rq->lock);
-       spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-       do_raw_spin_unlock(&rq->lock);
-       preempt_enable_no_resched();
-
-       schedule();
-
-       return 0;
-}
-
-static inline int should_resched(void)
-{
-       return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
-}
-
-static void __cond_resched(void)
-{
-       add_preempt_count(PREEMPT_ACTIVE);
-       __schedule();
-       sub_preempt_count(PREEMPT_ACTIVE);
-}
-
-int __sched _cond_resched(void)
-{
-       if (should_resched()) {
-               __cond_resched();
-               return 1;
-       }
-       return 0;
-}
-EXPORT_SYMBOL(_cond_resched);
-
-/*
- * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
-int __cond_resched_lock(spinlock_t *lock)
-{
-       int resched = should_resched();
-       int ret = 0;
-
-       lockdep_assert_held(lock);
-
-       if (spin_needbreak(lock) || resched) {
-               spin_unlock(lock);
-               if (resched)
-                       __cond_resched();
-               else
-                       cpu_relax();
-               ret = 1;
-               spin_lock(lock);
-       }
-       return ret;
-}
-EXPORT_SYMBOL(__cond_resched_lock);
-
-int __sched __cond_resched_softirq(void)
-{
-       BUG_ON(!in_softirq());
-
-       if (should_resched()) {
-               local_bh_enable();
-               __cond_resched();
-               local_bh_disable();
-               return 1;
-       }
-       return 0;
-}
-EXPORT_SYMBOL(__cond_resched_softirq);
-
-/**
- * yield - yield the current processor to other threads.
- *
- * This is a shortcut for kernel-space yielding - it marks the
- * thread runnable and calls sys_sched_yield().
- */
-void __sched yield(void)
-{
-       set_current_state(TASK_RUNNING);
-       sys_sched_yield();
-}
-EXPORT_SYMBOL(yield);
-
-/**
- * yield_to - yield the current processor to another thread in
- * your thread group, or accelerate that thread toward the
- * processor it's on.
- * @p: target task
- * @preempt: whether task preemption is allowed or not
- *
- * It's the caller's job to ensure that the target task struct
- * can't go away on us before we can do any checks.
- *
- * Returns true if we indeed boosted the target task.
- */
-bool __sched yield_to(struct task_struct *p, bool preempt)
-{
-       struct task_struct *curr = current;
-       struct rq *rq, *p_rq;
-       unsigned long flags;
-       bool yielded = 0;
-
-       local_irq_save(flags);
-       rq = this_rq();
-
-again:
-       p_rq = task_rq(p);
-       double_rq_lock(rq, p_rq);
-       while (task_rq(p) != p_rq) {
-               double_rq_unlock(rq, p_rq);
-               goto again;
-       }
-
-       if (!curr->sched_class->yield_to_task)
-               goto out;
-
-       if (curr->sched_class != p->sched_class)
-               goto out;
-
-       if (task_running(p_rq, p) || p->state)
-               goto out;
-
-       yielded = curr->sched_class->yield_to_task(rq, p, preempt);
-       if (yielded) {
-               schedstat_inc(rq, yld_count);
-               /*
-                * Make p's CPU reschedule; pick_next_entity takes care of
-                * fairness.
-                */
-               if (preempt && rq != p_rq)
-                       resched_task(p_rq->curr);
-       }
-
-out:
-       double_rq_unlock(rq, p_rq);
-       local_irq_restore(flags);
-
-       if (yielded)
-               schedule();
-
-       return yielded;
-}
-EXPORT_SYMBOL_GPL(yield_to);
-
-/*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- */
-void __sched io_schedule(void)
-{
-       struct rq *rq = raw_rq();
-
-       delayacct_blkio_start();
-       atomic_inc(&rq->nr_iowait);
-       blk_flush_plug(current);
-       current->in_iowait = 1;
-       schedule();
-       current->in_iowait = 0;
-       atomic_dec(&rq->nr_iowait);
-       delayacct_blkio_end();
-}
-EXPORT_SYMBOL(io_schedule);
-
-long __sched io_schedule_timeout(long timeout)
-{
-       struct rq *rq = raw_rq();
-       long ret;
-
-       delayacct_blkio_start();
-       atomic_inc(&rq->nr_iowait);
-       blk_flush_plug(current);
-       current->in_iowait = 1;
-       ret = schedule_timeout(timeout);
-       current->in_iowait = 0;
-       atomic_dec(&rq->nr_iowait);
-       delayacct_blkio_end();
-       return ret;
-}
-
-/**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the maximum rt_priority that can be used
- * by a given scheduling class.
- */
-SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-{
-       int ret = -EINVAL;
-
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = MAX_USER_RT_PRIO-1;
-               break;
-       case SCHED_NORMAL:
-       case SCHED_BATCH:
-       case SCHED_IDLE:
-               ret = 0;
-               break;
-       }
-       return ret;
-}
-
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the minimum rt_priority that can be used
- * by a given scheduling class.
- */
-SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-{
-       int ret = -EINVAL;
-
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = 1;
-               break;
-       case SCHED_NORMAL:
-       case SCHED_BATCH:
-       case SCHED_IDLE:
-               ret = 0;
-       }
-       return ret;
-}
-
-/**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- */
-SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
-               struct timespec __user *, interval)
-{
-       struct task_struct *p;
-       unsigned int time_slice;
-       unsigned long flags;
-       struct rq *rq;
-       int retval;
-       struct timespec t;
-
-       if (pid < 0)
-               return -EINVAL;
-
-       retval = -ESRCH;
-       rcu_read_lock();
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
-
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       rq = task_rq_lock(p, &flags);
-       time_slice = p->sched_class->get_rr_interval(rq, p);
-       task_rq_unlock(rq, p, &flags);
-
-       rcu_read_unlock();
-       jiffies_to_timespec(time_slice, &t);
-       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-       return retval;
-
-out_unlock:
-       rcu_read_unlock();
-       return retval;
-}
-
-static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
-
-void sched_show_task(struct task_struct *p)
-{
-       unsigned long free = 0;
-       unsigned state;
-
-       state = p->state ? __ffs(p->state) + 1 : 0;
-       printk(KERN_INFO "%-15.15s %c", p->comm,
-               state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-#if BITS_PER_LONG == 32
-       if (state == TASK_RUNNING)
-               printk(KERN_CONT " running  ");
-       else
-               printk(KERN_CONT " %08lx ", thread_saved_pc(p));
-#else
-       if (state == TASK_RUNNING)
-               printk(KERN_CONT "  running task    ");
-       else
-               printk(KERN_CONT " %016lx ", thread_saved_pc(p));
-#endif
-#ifdef CONFIG_DEBUG_STACK_USAGE
-       free = stack_not_used(p);
-#endif
-       printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
-               task_pid_nr(p), task_pid_nr(p->real_parent),
-               (unsigned long)task_thread_info(p)->flags);
-
-       show_stack(p, NULL);
-}
-
-void show_state_filter(unsigned long state_filter)
-{
-       struct task_struct *g, *p;
-
-#if BITS_PER_LONG == 32
-       printk(KERN_INFO
-               "  task                PC stack   pid father\n");
-#else
-       printk(KERN_INFO
-               "  task                        PC stack   pid father\n");
-#endif
-       rcu_read_lock();
-       do_each_thread(g, p) {
-               /*
-                * reset the NMI-timeout, listing all files on a slow
-                * console might take a lot of time:
-                */
-               touch_nmi_watchdog();
-               if (!state_filter || (p->state & state_filter))
-                       sched_show_task(p);
-       } while_each_thread(g, p);
-
-       touch_all_softlockup_watchdogs();
-
-#ifdef CONFIG_SCHED_DEBUG
-       sysrq_sched_debug_show();
-#endif
-       rcu_read_unlock();
-       /*
-        * Only show locks if all tasks are dumped:
-        */
-       if (!state_filter)
-               debug_show_all_locks();
-}
-
-void __cpuinit init_idle_bootup_task(struct task_struct *idle)
-{
-       idle->sched_class = &idle_sched_class;
-}
-
-/**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: cpu the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
-void __cpuinit init_idle(struct task_struct *idle, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       __sched_fork(idle);
-       idle->state = TASK_RUNNING;
-       idle->se.exec_start = sched_clock();
-
-       do_set_cpus_allowed(idle, cpumask_of(cpu));
-       /*
-        * We're having a chicken and egg problem, even though we are
-        * holding rq->lock, the cpu isn't yet set to this cpu so the
-        * lockdep check in task_group() will fail.
-        *
-        * Similar case to sched_fork(). / Alternatively we could
-        * use task_rq_lock() here and obtain the other rq->lock.
-        *
-        * Silence PROVE_RCU
-        */
-       rcu_read_lock();
-       __set_task_cpu(idle, cpu);
-       rcu_read_unlock();
-
-       rq->curr = rq->idle = idle;
-#if defined(CONFIG_SMP)
-       idle->on_cpu = 1;
-#endif
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-       /* Set the preempt count _outside_ the spinlocks! */
-       task_thread_info(idle)->preempt_count = 0;
-
-       /*
-        * The idle tasks have their own, simple scheduling class:
-        */
-       idle->sched_class = &idle_sched_class;
-       ftrace_graph_init_idle_task(idle, cpu);
-#if defined(CONFIG_SMP)
-       sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
-#endif
-}
-
-#ifdef CONFIG_SMP
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
-{
-       if (p->sched_class && p->sched_class->set_cpus_allowed)
-               p->sched_class->set_cpus_allowed(p, new_mask);
-
-       cpumask_copy(&p->cpus_allowed, new_mask);
-       p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
-}
-
-/*
- * This is how migration works:
- *
- * 1) we invoke migration_cpu_stop() on the target CPU using
- *    stop_one_cpu().
- * 2) stopper starts to run (implicitly forcing the migrated thread
- *    off the CPU)
- * 3) it checks whether the migrated task is still in the wrong runqueue.
- * 4) if it's in the wrong runqueue then the migration thread removes
- *    it and puts it into the right queue.
- * 5) stopper completes and stop_one_cpu() returns and the migration
- *    is done.
- */
-
-/*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
-int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
-{
-       unsigned long flags;
-       struct rq *rq;
-       unsigned int dest_cpu;
-       int ret = 0;
-
-       rq = task_rq_lock(p, &flags);
-
-       if (cpumask_equal(&p->cpus_allowed, new_mask))
-               goto out;
-
-       if (!cpumask_intersects(new_mask, cpu_active_mask)) {
-               ret = -EINVAL;
-               goto out;
-       }
-
-       if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
-               ret = -EINVAL;
-               goto out;
-       }
-
-       do_set_cpus_allowed(p, new_mask);
-
-       /* Can the task run on the task's current CPU? If so, we're done */
-       if (cpumask_test_cpu(task_cpu(p), new_mask))
-               goto out;
-
-       dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
-       if (p->on_rq) {
-               struct migration_arg arg = { p, dest_cpu };
-               /* Need help from migration thread: drop lock and wait. */
-               task_rq_unlock(rq, p, &flags);
-               stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
-               tlb_migrate_finish(p->mm);
-               return 0;
-       }
-out:
-       task_rq_unlock(rq, p, &flags);
-
-       return ret;
-}
-EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-
-/*
- * Move (not current) task off this cpu, onto dest cpu. We're doing
- * this because either it can't run here any more (set_cpus_allowed()
- * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_exec).
- *
- * So we race with normal scheduler movements, but that's OK, as long
- * as the task is no longer on this CPU.
- *
- * Returns non-zero if task was successfully migrated.
- */
-static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
-{
-       struct rq *rq_dest, *rq_src;
-       int ret = 0;
-
-       if (unlikely(!cpu_active(dest_cpu)))
-               return ret;
-
-       rq_src = cpu_rq(src_cpu);
-       rq_dest = cpu_rq(dest_cpu);
-
-       raw_spin_lock(&p->pi_lock);
-       double_rq_lock(rq_src, rq_dest);
-       /* Already moved. */
-       if (task_cpu(p) != src_cpu)
-               goto done;
-       /* Affinity changed (again). */
-       if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
-               goto fail;
-
-       /*
-        * If we're not on a rq, the next wake-up will ensure we're
-        * placed properly.
-        */
-       if (p->on_rq) {
-               deactivate_task(rq_src, p, 0);
-               set_task_cpu(p, dest_cpu);
-               activate_task(rq_dest, p, 0);
-               check_preempt_curr(rq_dest, p, 0);
-       }
-done:
-       ret = 1;
-fail:
-       double_rq_unlock(rq_src, rq_dest);
-       raw_spin_unlock(&p->pi_lock);
-       return ret;
-}
-
-/*
- * migration_cpu_stop - this will be executed by a highprio stopper thread
- * and performs thread migration by bumping thread off CPU then
- * 'pushing' onto another runqueue.
- */
-static int migration_cpu_stop(void *data)
-{
-       struct migration_arg *arg = data;
-
-       /*
-        * The original target cpu might have gone down and we might
-        * be on another cpu but it doesn't matter.
-        */
-       local_irq_disable();
-       __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
-       local_irq_enable();
-       return 0;
-}
-
-#ifdef CONFIG_HOTPLUG_CPU
-
-/*
- * Ensures that the idle task is using init_mm right before its cpu goes
- * offline.
- */
-void idle_task_exit(void)
-{
-       struct mm_struct *mm = current->active_mm;
-
-       BUG_ON(cpu_online(smp_processor_id()));
-
-       if (mm != &init_mm)
-               switch_mm(mm, &init_mm, current);
-       mmdrop(mm);
-}
-
-/*
- * While a dead CPU has no uninterruptible tasks queued at this point,
- * it might still have a nonzero ->nr_uninterruptible counter, because
- * for performance reasons the counter is not stricly tracking tasks to
- * their home CPUs. So we just add the counter to another CPU's counter,
- * to keep the global sum constant after CPU-down:
- */
-static void migrate_nr_uninterruptible(struct rq *rq_src)
-{
-       struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
-
-       rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
-       rq_src->nr_uninterruptible = 0;
-}
-
-/*
- * remove the tasks which were accounted by rq from calc_load_tasks.
- */
-static void calc_global_load_remove(struct rq *rq)
-{
-       atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
-       rq->calc_load_active = 0;
-}
-
-/*
- * Migrate all tasks from the rq, sleeping tasks will be migrated by
- * try_to_wake_up()->select_task_rq().
- *
- * Called with rq->lock held even though we'er in stop_machine() and
- * there's no concurrency possible, we hold the required locks anyway
- * because of lock validation efforts.
- */
-static void migrate_tasks(unsigned int dead_cpu)
-{
-       struct rq *rq = cpu_rq(dead_cpu);
-       struct task_struct *next, *stop = rq->stop;
-       int dest_cpu;
-
-       /*
-        * Fudge the rq selection such that the below task selection loop
-        * doesn't get stuck on the currently eligible stop task.
-        *
-        * We're currently inside stop_machine() and the rq is either stuck
-        * in the stop_machine_cpu_stop() loop, or we're executing this code,
-        * either way we should never end up calling schedule() until we're
-        * done here.
-        */
-       rq->stop = NULL;
-
-       /* Ensure any throttled groups are reachable by pick_next_task */
-       unthrottle_offline_cfs_rqs(rq);
-
-       for ( ; ; ) {
-               /*
-                * There's this thread running, bail when that's the only
-                * remaining thread.
-                */
-               if (rq->nr_running == 1)
-                       break;
-
-               next = pick_next_task(rq);
-               BUG_ON(!next);
-               next->sched_class->put_prev_task(rq, next);
-
-               /* Find suitable destination for @next, with force if needed. */
-               dest_cpu = select_fallback_rq(dead_cpu, next);
-               raw_spin_unlock(&rq->lock);
-
-               __migrate_task(next, dead_cpu, dest_cpu);
-
-               raw_spin_lock(&rq->lock);
-       }
-
-       rq->stop = stop;
-}
-
-#endif /* CONFIG_HOTPLUG_CPU */
-
-#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-
-static struct ctl_table sd_ctl_dir[] = {
-       {
-               .procname       = "sched_domain",
-               .mode           = 0555,
-       },
-       {}
-};
-
-static struct ctl_table sd_ctl_root[] = {
-       {
-               .procname       = "kernel",
-               .mode           = 0555,
-               .child          = sd_ctl_dir,
-       },
-       {}
-};
-
-static struct ctl_table *sd_alloc_ctl_entry(int n)
-{
-       struct ctl_table *entry =
-               kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
-
-       return entry;
-}
-
-static void sd_free_ctl_entry(struct ctl_table **tablep)
-{
-       struct ctl_table *entry;
-
-       /*
-        * In the intermediate directories, both the child directory and
-        * procname are dynamically allocated and could fail but the mode
-        * will always be set. In the lowest directory the names are
-        * static strings and all have proc handlers.
-        */
-       for (entry = *tablep; entry->mode; entry++) {
-               if (entry->child)
-                       sd_free_ctl_entry(&entry->child);
-               if (entry->proc_handler == NULL)
-                       kfree(entry->procname);
-       }
-
-       kfree(*tablep);
-       *tablep = NULL;
-}
-
-static void
-set_table_entry(struct ctl_table *entry,
-               const char *procname, void *data, int maxlen,
-               mode_t mode, proc_handler *proc_handler)
-{
-       entry->procname = procname;
-       entry->data = data;
-       entry->maxlen = maxlen;
-       entry->mode = mode;
-       entry->proc_handler = proc_handler;
-}
-
-static struct ctl_table *
-sd_alloc_ctl_domain_table(struct sched_domain *sd)
-{
-       struct ctl_table *table = sd_alloc_ctl_entry(13);
-
-       if (table == NULL)
-               return NULL;
-
-       set_table_entry(&table[0], "min_interval", &sd->min_interval,
-               sizeof(long), 0644, proc_doulongvec_minmax);
-       set_table_entry(&table[1], "max_interval", &sd->max_interval,
-               sizeof(long), 0644, proc_doulongvec_minmax);
-       set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[9], "cache_nice_tries",
-               &sd->cache_nice_tries,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[10], "flags", &sd->flags,
-               sizeof(int), 0644, proc_dointvec_minmax);
-       set_table_entry(&table[11], "name", sd->name,
-               CORENAME_MAX_SIZE, 0444, proc_dostring);
-       /* &table[12] is terminator */
-
-       return table;
-}
-
-static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
-{
-       struct ctl_table *entry, *table;
-       struct sched_domain *sd;
-       int domain_num = 0, i;
-       char buf[32];
-
-       for_each_domain(cpu, sd)
-               domain_num++;
-       entry = table = sd_alloc_ctl_entry(domain_num + 1);
-       if (table == NULL)
-               return NULL;
-
-       i = 0;
-       for_each_domain(cpu, sd) {
-               snprintf(buf, 32, "domain%d", i);
-               entry->procname = kstrdup(buf, GFP_KERNEL);
-               entry->mode = 0555;
-               entry->child = sd_alloc_ctl_domain_table(sd);
-               entry++;
-               i++;
-       }
-       return table;
-}
-
-static struct ctl_table_header *sd_sysctl_header;
-static void register_sched_domain_sysctl(void)
-{
-       int i, cpu_num = num_possible_cpus();
-       struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
-       char buf[32];
-
-       WARN_ON(sd_ctl_dir[0].child);
-       sd_ctl_dir[0].child = entry;
-
-       if (entry == NULL)
-               return;
-
-       for_each_possible_cpu(i) {
-               snprintf(buf, 32, "cpu%d", i);
-               entry->procname = kstrdup(buf, GFP_KERNEL);
-               entry->mode = 0555;
-               entry->child = sd_alloc_ctl_cpu_table(i);
-               entry++;
-       }
-
-       WARN_ON(sd_sysctl_header);
-       sd_sysctl_header = register_sysctl_table(sd_ctl_root);
-}
-
-/* may be called multiple times per register */
-static void unregister_sched_domain_sysctl(void)
-{
-       if (sd_sysctl_header)
-               unregister_sysctl_table(sd_sysctl_header);
-       sd_sysctl_header = NULL;
-       if (sd_ctl_dir[0].child)
-               sd_free_ctl_entry(&sd_ctl_dir[0].child);
-}
-#else
-static void register_sched_domain_sysctl(void)
-{
-}
-static void unregister_sched_domain_sysctl(void)
-{
-}
-#endif
-
-static void set_rq_online(struct rq *rq)
-{
-       if (!rq->online) {
-               const struct sched_class *class;
-
-               cpumask_set_cpu(rq->cpu, rq->rd->online);
-               rq->online = 1;
-
-               for_each_class(class) {
-                       if (class->rq_online)
-                               class->rq_online(rq);
-               }
-       }
-}
-
-static void set_rq_offline(struct rq *rq)
-{
-       if (rq->online) {
-               const struct sched_class *class;
-
-               for_each_class(class) {
-                       if (class->rq_offline)
-                               class->rq_offline(rq);
-               }
-
-               cpumask_clear_cpu(rq->cpu, rq->rd->online);
-               rq->online = 0;
-       }
-}
-
-/*
- * migration_call - callback that gets triggered when a CPU is added.
- * Here we can start up the necessary migration thread for the new CPU.
- */
-static int __cpuinit
-migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
-       int cpu = (long)hcpu;
-       unsigned long flags;
-       struct rq *rq = cpu_rq(cpu);
-
-       switch (action & ~CPU_TASKS_FROZEN) {
-
-       case CPU_UP_PREPARE:
-               rq->calc_load_update = calc_load_update;
-               break;
-
-       case CPU_ONLINE:
-               /* Update our root-domain */
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               if (rq->rd) {
-                       BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-
-                       set_rq_online(rq);
-               }
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-               break;
-
-#ifdef CONFIG_HOTPLUG_CPU
-       case CPU_DYING:
-               sched_ttwu_pending();
-               /* Update our root-domain */
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               if (rq->rd) {
-                       BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-                       set_rq_offline(rq);
-               }
-               migrate_tasks(cpu);
-               BUG_ON(rq->nr_running != 1); /* the migration thread */
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-               migrate_nr_uninterruptible(rq);
-               calc_global_load_remove(rq);
-               break;
-#endif
-       }
-
-       update_max_interval();
-
-       return NOTIFY_OK;
-}
-
-/*
- * Register at high priority so that task migration (migrate_all_tasks)
- * happens before everything else.  This has to be lower priority than
- * the notifier in the perf_event subsystem, though.
- */
-static struct notifier_block __cpuinitdata migration_notifier = {
-       .notifier_call = migration_call,
-       .priority = CPU_PRI_MIGRATION,
-};
-
-static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
-                                     unsigned long action, void *hcpu)
-{
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_ONLINE:
-       case CPU_DOWN_FAILED:
-               set_cpu_active((long)hcpu, true);
-               return NOTIFY_OK;
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
-                                       unsigned long action, void *hcpu)
-{
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_DOWN_PREPARE:
-               set_cpu_active((long)hcpu, false);
-               return NOTIFY_OK;
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-static int __init migration_init(void)
-{
-       void *cpu = (void *)(long)smp_processor_id();
-       int err;
-
-       /* Initialize migration for the boot CPU */
-       err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-       BUG_ON(err == NOTIFY_BAD);
-       migration_call(&migration_notifier, CPU_ONLINE, cpu);
-       register_cpu_notifier(&migration_notifier);
-
-       /* Register cpu active notifiers */
-       cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
-       cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
-
-       return 0;
-}
-early_initcall(migration_init);
-#endif
-
-#ifdef CONFIG_SMP
-
-static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
-
-#ifdef CONFIG_SCHED_DEBUG
-
-static __read_mostly int sched_domain_debug_enabled;
-
-static int __init sched_domain_debug_setup(char *str)
-{
-       sched_domain_debug_enabled = 1;
-
-       return 0;
-}
-early_param("sched_debug", sched_domain_debug_setup);
-
-static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-                                 struct cpumask *groupmask)
-{
-       struct sched_group *group = sd->groups;
-       char str[256];
-
-       cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
-       cpumask_clear(groupmask);
-
-       printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-
-       if (!(sd->flags & SD_LOAD_BALANCE)) {
-               printk("does not load-balance\n");
-               if (sd->parent)
-                       printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-                                       " has parent");
-               return -1;
-       }
-
-       printk(KERN_CONT "span %s level %s\n", str, sd->name);
-
-       if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-               printk(KERN_ERR "ERROR: domain->span does not contain "
-                               "CPU%d\n", cpu);
-       }
-       if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
-               printk(KERN_ERR "ERROR: domain->groups does not contain"
-                               " CPU%d\n", cpu);
-       }
-
-       printk(KERN_DEBUG "%*s groups:", level + 1, "");
-       do {
-               if (!group) {
-                       printk("\n");
-                       printk(KERN_ERR "ERROR: group is NULL\n");
-                       break;
-               }
-
-               if (!group->sgp->power) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: domain->cpu_power not "
-                                       "set\n");
-                       break;
-               }
-
-               if (!cpumask_weight(sched_group_cpus(group))) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: empty group\n");
-                       break;
-               }
-
-               if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: repeated CPUs\n");
-                       break;
-               }
-
-               cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-
-               cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
-
-               printk(KERN_CONT " %s", str);
-               if (group->sgp->power != SCHED_POWER_SCALE) {
-                       printk(KERN_CONT " (cpu_power = %d)",
-                               group->sgp->power);
-               }
-
-               group = group->next;
-       } while (group != sd->groups);
-       printk(KERN_CONT "\n");
-
-       if (!cpumask_equal(sched_domain_span(sd), groupmask))
-               printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-
-       if (sd->parent &&
-           !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-               printk(KERN_ERR "ERROR: parent span is not a superset "
-                       "of domain->span\n");
-       return 0;
-}
-
-static void sched_domain_debug(struct sched_domain *sd, int cpu)
-{
-       int level = 0;
-
-       if (!sched_domain_debug_enabled)
-               return;
-
-       if (!sd) {
-               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-               return;
-       }
-
-       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-
-       for (;;) {
-               if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
-                       break;
-               level++;
-               sd = sd->parent;
-               if (!sd)
-                       break;
-       }
-}
-#else /* !CONFIG_SCHED_DEBUG */
-# define sched_domain_debug(sd, cpu) do { } while (0)
-#endif /* CONFIG_SCHED_DEBUG */
-
-static int sd_degenerate(struct sched_domain *sd)
-{
-       if (cpumask_weight(sched_domain_span(sd)) == 1)
-               return 1;
-
-       /* Following flags need at least 2 groups */
-       if (sd->flags & (SD_LOAD_BALANCE |
-                        SD_BALANCE_NEWIDLE |
-                        SD_BALANCE_FORK |
-                        SD_BALANCE_EXEC |
-                        SD_SHARE_CPUPOWER |
-                        SD_SHARE_PKG_RESOURCES)) {
-               if (sd->groups != sd->groups->next)
-                       return 0;
-       }
-
-       /* Following flags don't use groups */
-       if (sd->flags & (SD_WAKE_AFFINE))
-               return 0;
-
-       return 1;
-}
-
-static int
-sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-{
-       unsigned long cflags = sd->flags, pflags = parent->flags;
-
-       if (sd_degenerate(parent))
-               return 1;
-
-       if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
-               return 0;
-
-       /* Flags needing groups don't count if only 1 group in parent */
-       if (parent->groups == parent->groups->next) {
-               pflags &= ~(SD_LOAD_BALANCE |
-                               SD_BALANCE_NEWIDLE |
-                               SD_BALANCE_FORK |
-                               SD_BALANCE_EXEC |
-                               SD_SHARE_CPUPOWER |
-                               SD_SHARE_PKG_RESOURCES);
-               if (nr_node_ids == 1)
-                       pflags &= ~SD_SERIALIZE;
-       }
-       if (~cflags & pflags)
-               return 0;
-
-       return 1;
-}
-
-static void free_rootdomain(struct rcu_head *rcu)
-{
-       struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
-
-       cpupri_cleanup(&rd->cpupri);
-       free_cpumask_var(rd->rto_mask);
-       free_cpumask_var(rd->online);
-       free_cpumask_var(rd->span);
-       kfree(rd);
-}
-
-static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-{
-       struct root_domain *old_rd = NULL;
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       if (rq->rd) {
-               old_rd = rq->rd;
-
-               if (cpumask_test_cpu(rq->cpu, old_rd->online))
-                       set_rq_offline(rq);
-
-               cpumask_clear_cpu(rq->cpu, old_rd->span);
-
-               /*
-                * If we dont want to free the old_rt yet then
-                * set old_rd to NULL to skip the freeing later
-                * in this function:
-                */
-               if (!atomic_dec_and_test(&old_rd->refcount))
-                       old_rd = NULL;
-       }
-
-       atomic_inc(&rd->refcount);
-       rq->rd = rd;
-
-       cpumask_set_cpu(rq->cpu, rd->span);
-       if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
-               set_rq_online(rq);
-
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-       if (old_rd)
-               call_rcu_sched(&old_rd->rcu, free_rootdomain);
-}
-
-static int init_rootdomain(struct root_domain *rd)
-{
-       memset(rd, 0, sizeof(*rd));
-
-       if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
-               goto out;
-       if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
-               goto free_span;
-       if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
-               goto free_online;
-
-       if (cpupri_init(&rd->cpupri) != 0)
-               goto free_rto_mask;
-       return 0;
-
-free_rto_mask:
-       free_cpumask_var(rd->rto_mask);
-free_online:
-       free_cpumask_var(rd->online);
-free_span:
-       free_cpumask_var(rd->span);
-out:
-       return -ENOMEM;
-}
-
-/*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
-struct root_domain def_root_domain;
-
-static void init_defrootdomain(void)
-{
-       init_rootdomain(&def_root_domain);
-
-       atomic_set(&def_root_domain.refcount, 1);
-}
-
-static struct root_domain *alloc_rootdomain(void)
-{
-       struct root_domain *rd;
-
-       rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-       if (!rd)
-               return NULL;
-
-       if (init_rootdomain(rd) != 0) {
-               kfree(rd);
-               return NULL;
-       }
-
-       return rd;
-}
-
-static void free_sched_groups(struct sched_group *sg, int free_sgp)
-{
-       struct sched_group *tmp, *first;
-
-       if (!sg)
-               return;
-
-       first = sg;
-       do {
-               tmp = sg->next;
-
-               if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
-                       kfree(sg->sgp);
-
-               kfree(sg);
-               sg = tmp;
-       } while (sg != first);
-}
-
-static void free_sched_domain(struct rcu_head *rcu)
-{
-       struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
-
-       /*
-        * If its an overlapping domain it has private groups, iterate and
-        * nuke them all.
-        */
-       if (sd->flags & SD_OVERLAP) {
-               free_sched_groups(sd->groups, 1);
-       } else if (atomic_dec_and_test(&sd->groups->ref)) {
-               kfree(sd->groups->sgp);
-               kfree(sd->groups);
-       }
-       kfree(sd);
-}
-
-static void destroy_sched_domain(struct sched_domain *sd, int cpu)
-{
-       call_rcu(&sd->rcu, free_sched_domain);
-}
-
-static void destroy_sched_domains(struct sched_domain *sd, int cpu)
-{
-       for (; sd; sd = sd->parent)
-               destroy_sched_domain(sd, cpu);
-}
-
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
-static void
-cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       struct sched_domain *tmp;
-
-       /* Remove the sched domains which do not contribute to scheduling. */
-       for (tmp = sd; tmp; ) {
-               struct sched_domain *parent = tmp->parent;
-               if (!parent)
-                       break;
-
-               if (sd_parent_degenerate(tmp, parent)) {
-                       tmp->parent = parent->parent;
-                       if (parent->parent)
-                               parent->parent->child = tmp;
-                       destroy_sched_domain(parent, cpu);
-               } else
-                       tmp = tmp->parent;
-       }
-
-       if (sd && sd_degenerate(sd)) {
-               tmp = sd;
-               sd = sd->parent;
-               destroy_sched_domain(tmp, cpu);
-               if (sd)
-                       sd->child = NULL;
-       }
-
-       sched_domain_debug(sd, cpu);
-
-       rq_attach_root(rq, rd);
-       tmp = rq->sd;
-       rcu_assign_pointer(rq->sd, sd);
-       destroy_sched_domains(tmp, cpu);
-}
-
-/* cpus with isolated domains */
-static cpumask_var_t cpu_isolated_map;
-
-/* Setup the mask of cpus configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
-       alloc_bootmem_cpumask_var(&cpu_isolated_map);
-       cpulist_parse(str, cpu_isolated_map);
-       return 1;
-}
-
-__setup("isolcpus=", isolated_cpu_setup);
-
-#ifdef CONFIG_NUMA
-
-/**
- * find_next_best_node - find the next node to include in a sched_domain
- * @node: node whose sched_domain we're building
- * @used_nodes: nodes already in the sched_domain
- *
- * Find the next node to include in a given scheduling domain. Simply
- * finds the closest node not already in the @used_nodes map.
- *
- * Should use nodemask_t.
- */
-static int find_next_best_node(int node, nodemask_t *used_nodes)
-{
-       int i, n, val, min_val, best_node = -1;
-
-       min_val = INT_MAX;
-
-       for (i = 0; i < nr_node_ids; i++) {
-               /* Start at @node */
-               n = (node + i) % nr_node_ids;
-
-               if (!nr_cpus_node(n))
-                       continue;
-
-               /* Skip already used nodes */
-               if (node_isset(n, *used_nodes))
-                       continue;
-
-               /* Simple min distance search */
-               val = node_distance(node, n);
-
-               if (val < min_val) {
-                       min_val = val;
-                       best_node = n;
-               }
-       }
-
-       if (best_node != -1)
-               node_set(best_node, *used_nodes);
-       return best_node;
-}
-
-/**
- * sched_domain_node_span - get a cpumask for a node's sched_domain
- * @node: node whose cpumask we're constructing
- * @span: resulting cpumask
- *
- * Given a node, construct a good cpumask for its sched_domain to span. It
- * should be one that prevents unnecessary balancing, but also spreads tasks
- * out optimally.
- */
-static void sched_domain_node_span(int node, struct cpumask *span)
-{
-       nodemask_t used_nodes;
-       int i;
-
-       cpumask_clear(span);
-       nodes_clear(used_nodes);
-
-       cpumask_or(span, span, cpumask_of_node(node));
-       node_set(node, used_nodes);
-
-       for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
-               int next_node = find_next_best_node(node, &used_nodes);
-               if (next_node < 0)
-                       break;
-               cpumask_or(span, span, cpumask_of_node(next_node));
-       }
-}
-
-static const struct cpumask *cpu_node_mask(int cpu)
-{
-       lockdep_assert_held(&sched_domains_mutex);
-
-       sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
-
-       return sched_domains_tmpmask;
-}
-
-static const struct cpumask *cpu_allnodes_mask(int cpu)
-{
-       return cpu_possible_mask;
-}
-#endif /* CONFIG_NUMA */
-
-static const struct cpumask *cpu_cpu_mask(int cpu)
-{
-       return cpumask_of_node(cpu_to_node(cpu));
-}
-
-int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
-
-struct sd_data {
-       struct sched_domain **__percpu sd;
-       struct sched_group **__percpu sg;
-       struct sched_group_power **__percpu sgp;
-};
-
-struct s_data {
-       struct sched_domain ** __percpu sd;
-       struct root_domain      *rd;
-};
-
-enum s_alloc {
-       sa_rootdomain,
-       sa_sd,
-       sa_sd_storage,
-       sa_none,
-};
-
-struct sched_domain_topology_level;
-
-typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
-typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
-
-#define SDTL_OVERLAP   0x01
-
-struct sched_domain_topology_level {
-       sched_domain_init_f init;
-       sched_domain_mask_f mask;
-       int                 flags;
-       struct sd_data      data;
-};
-
-static int
-build_overlap_sched_groups(struct sched_domain *sd, int cpu)
-{
-       struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
-       const struct cpumask *span = sched_domain_span(sd);
-       struct cpumask *covered = sched_domains_tmpmask;
-       struct sd_data *sdd = sd->private;
-       struct sched_domain *child;
-       int i;
-
-       cpumask_clear(covered);
-
-       for_each_cpu(i, span) {
-               struct cpumask *sg_span;
-
-               if (cpumask_test_cpu(i, covered))
-                       continue;
-
-               sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-                               GFP_KERNEL, cpu_to_node(i));
-
-               if (!sg)
-                       goto fail;
-
-               sg_span = sched_group_cpus(sg);
-
-               child = *per_cpu_ptr(sdd->sd, i);
-               if (child->child) {
-                       child = child->child;
-                       cpumask_copy(sg_span, sched_domain_span(child));
-               } else
-                       cpumask_set_cpu(i, sg_span);
-
-               cpumask_or(covered, covered, sg_span);
-
-               sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
-               atomic_inc(&sg->sgp->ref);
-
-               if (cpumask_test_cpu(cpu, sg_span))
-                       groups = sg;
-
-               if (!first)
-                       first = sg;
-               if (last)
-                       last->next = sg;
-               last = sg;
-               last->next = first;
-       }
-       sd->groups = groups;
-
-       return 0;
-
-fail:
-       free_sched_groups(first, 0);
-
-       return -ENOMEM;
-}
-
-static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
-{
-       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
-       struct sched_domain *child = sd->child;
-
-       if (child)
-               cpu = cpumask_first(sched_domain_span(child));
-
-       if (sg) {
-               *sg = *per_cpu_ptr(sdd->sg, cpu);
-               (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
-               atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
-       }
-
-       return cpu;
-}
-
-/*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_power to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
-static int
-build_sched_groups(struct sched_domain *sd, int cpu)
-{
-       struct sched_group *first = NULL, *last = NULL;
-       struct sd_data *sdd = sd->private;
-       const struct cpumask *span = sched_domain_span(sd);
-       struct cpumask *covered;
-       int i;
-
-       get_group(cpu, sdd, &sd->groups);
-       atomic_inc(&sd->groups->ref);
-
-       if (cpu != cpumask_first(sched_domain_span(sd)))
-               return 0;
-
-       lockdep_assert_held(&sched_domains_mutex);
-       covered = sched_domains_tmpmask;
-
-       cpumask_clear(covered);
-
-       for_each_cpu(i, span) {
-               struct sched_group *sg;
-               int group = get_group(i, sdd, &sg);
-               int j;
-
-               if (cpumask_test_cpu(i, covered))
-                       continue;
-
-               cpumask_clear(sched_group_cpus(sg));
-               sg->sgp->power = 0;
-
-               for_each_cpu(j, span) {
-                       if (get_group(j, sdd, NULL) != group)
-                               continue;
-
-                       cpumask_set_cpu(j, covered);
-                       cpumask_set_cpu(j, sched_group_cpus(sg));
-               }
-
-               if (!first)
-                       first = sg;
-               if (last)
-                       last->next = sg;
-               last = sg;
-       }
-       last->next = first;
-
-       return 0;
-}
-
-/*
- * Initialize sched groups cpu_power.
- *
- * cpu_power indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_power for all the groups in a sched domain will be same unless
- * there are asymmetries in the topology. If there are asymmetries, group
- * having more cpu_power will pickup more load compared to the group having
- * less cpu_power.
- */
-static void init_sched_groups_power(int cpu, struct sched_domain *sd)
-{
-       struct sched_group *sg = sd->groups;
-
-       WARN_ON(!sd || !sg);
-
-       do {
-               sg->group_weight = cpumask_weight(sched_group_cpus(sg));
-               sg = sg->next;
-       } while (sg != sd->groups);
-
-       if (cpu != group_first_cpu(sg))
-               return;
-
-       update_group_power(sd, cpu);
-}
-
-int __weak arch_sd_sibling_asym_packing(void)
-{
-       return 0*SD_ASYM_PACKING;
-}
-
-/*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
-
-#ifdef CONFIG_SCHED_DEBUG
-# define SD_INIT_NAME(sd, type)                sd->name = #type
-#else
-# define SD_INIT_NAME(sd, type)                do { } while (0)
-#endif
-
-#define SD_INIT_FUNC(type)                                             \
-static noinline struct sched_domain *                                  \
-sd_init_##type(struct sched_domain_topology_level *tl, int cpu)        \
-{                                                                      \
-       struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
-       *sd = SD_##type##_INIT;                                         \
-       SD_INIT_NAME(sd, type);                                         \
-       sd->private = &tl->data;                                        \
-       return sd;                                                      \
-}
-
-SD_INIT_FUNC(CPU)
-#ifdef CONFIG_NUMA
- SD_INIT_FUNC(ALLNODES)
- SD_INIT_FUNC(NODE)
-#endif
-#ifdef CONFIG_SCHED_SMT
- SD_INIT_FUNC(SIBLING)
-#endif
-#ifdef CONFIG_SCHED_MC
- SD_INIT_FUNC(MC)
-#endif
-#ifdef CONFIG_SCHED_BOOK
- SD_INIT_FUNC(BOOK)
-#endif
-
-static int default_relax_domain_level = -1;
-int sched_domain_level_max;
-
-static int __init setup_relax_domain_level(char *str)
-{
-       unsigned long val;
-
-       val = simple_strtoul(str, NULL, 0);
-       if (val < sched_domain_level_max)
-               default_relax_domain_level = val;
-
-       return 1;
-}
-__setup("relax_domain_level=", setup_relax_domain_level);
-
-static void set_domain_attribute(struct sched_domain *sd,
-                                struct sched_domain_attr *attr)
-{
-       int request;
-
-       if (!attr || attr->relax_domain_level < 0) {
-               if (default_relax_domain_level < 0)
-                       return;
-               else
-                       request = default_relax_domain_level;
-       } else
-               request = attr->relax_domain_level;
-       if (request < sd->level) {
-               /* turn off idle balance on this domain */
-               sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-       } else {
-               /* turn on idle balance on this domain */
-               sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-       }
-}
-
-static void __sdt_free(const struct cpumask *cpu_map);
-static int __sdt_alloc(const struct cpumask *cpu_map);
-
-static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
-                                const struct cpumask *cpu_map)
-{
-       switch (what) {
-       case sa_rootdomain:
-               if (!atomic_read(&d->rd->refcount))
-                       free_rootdomain(&d->rd->rcu); /* fall through */
-       case sa_sd:
-               free_percpu(d->sd); /* fall through */
-       case sa_sd_storage:
-               __sdt_free(cpu_map); /* fall through */
-       case sa_none:
-               break;
-       }
-}
-
-static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
-                                                  const struct cpumask *cpu_map)
-{
-       memset(d, 0, sizeof(*d));
-
-       if (__sdt_alloc(cpu_map))
-               return sa_sd_storage;
-       d->sd = alloc_percpu(struct sched_domain *);
-       if (!d->sd)
-               return sa_sd_storage;
-       d->rd = alloc_rootdomain();
-       if (!d->rd)
-               return sa_sd;
-       return sa_rootdomain;
-}
-
-/*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
-static void claim_allocations(int cpu, struct sched_domain *sd)
-{
-       struct sd_data *sdd = sd->private;
-
-       WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
-       *per_cpu_ptr(sdd->sd, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
-               *per_cpu_ptr(sdd->sg, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
-               *per_cpu_ptr(sdd->sgp, cpu) = NULL;
-}
-
-#ifdef CONFIG_SCHED_SMT
-static const struct cpumask *cpu_smt_mask(int cpu)
-{
-       return topology_thread_cpumask(cpu);
-}
-#endif
-
-/*
- * Topology list, bottom-up.
- */
-static struct sched_domain_topology_level default_topology[] = {
-#ifdef CONFIG_SCHED_SMT
-       { sd_init_SIBLING, cpu_smt_mask, },
-#endif
-#ifdef CONFIG_SCHED_MC
-       { sd_init_MC, cpu_coregroup_mask, },
-#endif
-#ifdef CONFIG_SCHED_BOOK
-       { sd_init_BOOK, cpu_book_mask, },
-#endif
-       { sd_init_CPU, cpu_cpu_mask, },
-#ifdef CONFIG_NUMA
-       { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
-       { sd_init_ALLNODES, cpu_allnodes_mask, },
-#endif
-       { NULL, },
-};
-
-static struct sched_domain_topology_level *sched_domain_topology = default_topology;
-
-static int __sdt_alloc(const struct cpumask *cpu_map)
-{
-       struct sched_domain_topology_level *tl;
-       int j;
-
-       for (tl = sched_domain_topology; tl->init; tl++) {
-               struct sd_data *sdd = &tl->data;
-
-               sdd->sd = alloc_percpu(struct sched_domain *);
-               if (!sdd->sd)
-                       return -ENOMEM;
-
-               sdd->sg = alloc_percpu(struct sched_group *);
-               if (!sdd->sg)
-                       return -ENOMEM;
-
-               sdd->sgp = alloc_percpu(struct sched_group_power *);
-               if (!sdd->sgp)
-                       return -ENOMEM;
-
-               for_each_cpu(j, cpu_map) {
-                       struct sched_domain *sd;
-                       struct sched_group *sg;
-                       struct sched_group_power *sgp;
-
-                       sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sd)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sd, j) = sd;
-
-                       sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sg)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sg, j) = sg;
-
-                       sgp = kzalloc_node(sizeof(struct sched_group_power),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sgp)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sgp, j) = sgp;
-               }
-       }
-
-       return 0;
-}
-
-static void __sdt_free(const struct cpumask *cpu_map)
-{
-       struct sched_domain_topology_level *tl;
-       int j;
-
-       for (tl = sched_domain_topology; tl->init; tl++) {
-               struct sd_data *sdd = &tl->data;
-
-               for_each_cpu(j, cpu_map) {
-                       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
-                       if (sd && (sd->flags & SD_OVERLAP))
-                               free_sched_groups(sd->groups, 0);
-                       kfree(*per_cpu_ptr(sdd->sd, j));
-                       kfree(*per_cpu_ptr(sdd->sg, j));
-                       kfree(*per_cpu_ptr(sdd->sgp, j));
-               }
-               free_percpu(sdd->sd);
-               free_percpu(sdd->sg);
-               free_percpu(sdd->sgp);
-       }
-}
-
-struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
-               struct s_data *d, const struct cpumask *cpu_map,
-               struct sched_domain_attr *attr, struct sched_domain *child,
-               int cpu)
-{
-       struct sched_domain *sd = tl->init(tl, cpu);
-       if (!sd)
-               return child;
-
-       set_domain_attribute(sd, attr);
-       cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
-       if (child) {
-               sd->level = child->level + 1;
-               sched_domain_level_max = max(sched_domain_level_max, sd->level);
-               child->parent = sd;
-       }
-       sd->child = child;
-
-       return sd;
-}
-
-/*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
- */
-static int build_sched_domains(const struct cpumask *cpu_map,
-                              struct sched_domain_attr *attr)
-{
-       enum s_alloc alloc_state = sa_none;
-       struct sched_domain *sd;
-       struct s_data d;
-       int i, ret = -ENOMEM;
-
-       alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
-       if (alloc_state != sa_rootdomain)
-               goto error;
-
-       /* Set up domains for cpus specified by the cpu_map. */
-       for_each_cpu(i, cpu_map) {
-               struct sched_domain_topology_level *tl;
-
-               sd = NULL;
-               for (tl = sched_domain_topology; tl->init; tl++) {
-                       sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
-                       if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
-                               sd->flags |= SD_OVERLAP;
-                       if (cpumask_equal(cpu_map, sched_domain_span(sd)))
-                               break;
-               }
-
-               while (sd->child)
-                       sd = sd->child;
-
-               *per_cpu_ptr(d.sd, i) = sd;
-       }
-
-       /* Build the groups for the domains */
-       for_each_cpu(i, cpu_map) {
-               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-                       sd->span_weight = cpumask_weight(sched_domain_span(sd));
-                       if (sd->flags & SD_OVERLAP) {
-                               if (build_overlap_sched_groups(sd, i))
-                                       goto error;
-                       } else {
-                               if (build_sched_groups(sd, i))
-                                       goto error;
-                       }
-               }
-       }
-
-       /* Calculate CPU power for physical packages and nodes */
-       for (i = nr_cpumask_bits-1; i >= 0; i--) {
-               if (!cpumask_test_cpu(i, cpu_map))
-                       continue;
-
-               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-                       claim_allocations(i, sd);
-                       init_sched_groups_power(i, sd);
-               }
-       }
-
-       /* Attach the domains */
-       rcu_read_lock();
-       for_each_cpu(i, cpu_map) {
-               sd = *per_cpu_ptr(d.sd, i);
-               cpu_attach_domain(sd, d.rd, i);
-       }
-       rcu_read_unlock();
-
-       ret = 0;
-error:
-       __free_domain_allocs(&d, alloc_state, cpu_map);
-       return ret;
-}
-
-static cpumask_var_t *doms_cur;        /* current sched domains */
-static int ndoms_cur;          /* number of sched domains in 'doms_cur' */
-static struct sched_domain_attr *dattr_cur;
-                               /* attribues of custom domains in 'doms_cur' */
-
-/*
- * Special case: If a kmalloc of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
-static cpumask_var_t fallback_doms;
-
-/*
- * arch_update_cpu_topology lets virtualized architectures update the
- * cpu core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
-int __attribute__((weak)) arch_update_cpu_topology(void)
-{
-       return 0;
-}
-
-cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-{
-       int i;
-       cpumask_var_t *doms;
-
-       doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
-       if (!doms)
-               return NULL;
-       for (i = 0; i < ndoms; i++) {
-               if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
-                       free_sched_domains(doms, i);
-                       return NULL;
-               }
-       }
-       return doms;
-}
-
-void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-{
-       unsigned int i;
-       for (i = 0; i < ndoms; i++)
-               free_cpumask_var(doms[i]);
-       kfree(doms);
-}
-
-/*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
-static int init_sched_domains(const struct cpumask *cpu_map)
-{
-       int err;
-
-       arch_update_cpu_topology();
-       ndoms_cur = 1;
-       doms_cur = alloc_sched_domains(ndoms_cur);
-       if (!doms_cur)
-               doms_cur = &fallback_doms;
-       cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
-       dattr_cur = NULL;
-       err = build_sched_domains(doms_cur[0], NULL);
-       register_sched_domain_sysctl();
-
-       return err;
-}
-
-/*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
-static void detach_destroy_domains(const struct cpumask *cpu_map)
-{
-       int i;
-
-       rcu_read_lock();
-       for_each_cpu(i, cpu_map)
-               cpu_attach_domain(NULL, &def_root_domain, i);
-       rcu_read_unlock();
-}
-
-/* handle null as "default" */
-static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-                       struct sched_domain_attr *new, int idx_new)
-{
-       struct sched_domain_attr tmp;
-
-       /* fast path */
-       if (!new && !cur)
-               return 1;
-
-       tmp = SD_ATTR_INIT;
-       return !memcmp(cur ? (cur + idx_cur) : &tmp,
-                       new ? (new + idx_new) : &tmp,
-                       sizeof(struct sched_domain_attr));
-}
-
-/*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains.  This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
-void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
-                            struct sched_domain_attr *dattr_new)
-{
-       int i, j, n;
-       int new_topology;
-
-       mutex_lock(&sched_domains_mutex);
-
-       /* always unregister in case we don't destroy any domains */
-       unregister_sched_domain_sysctl();
-
-       /* Let architecture update cpu core mappings. */
-       new_topology = arch_update_cpu_topology();
-
-       n = doms_new ? ndoms_new : 0;
-
-       /* Destroy deleted domains */
-       for (i = 0; i < ndoms_cur; i++) {
-               for (j = 0; j < n && !new_topology; j++) {
-                       if (cpumask_equal(doms_cur[i], doms_new[j])
-                           && dattrs_equal(dattr_cur, i, dattr_new, j))
-                               goto match1;
-               }
-               /* no match - a current sched domain not in new doms_new[] */
-               detach_destroy_domains(doms_cur[i]);
-match1:
-               ;
-       }
-
-       if (doms_new == NULL) {
-               ndoms_cur = 0;
-               doms_new = &fallback_doms;
-               cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
-               WARN_ON_ONCE(dattr_new);
-       }
-
-       /* Build new domains */
-       for (i = 0; i < ndoms_new; i++) {
-               for (j = 0; j < ndoms_cur && !new_topology; j++) {
-                       if (cpumask_equal(doms_new[i], doms_cur[j])
-                           && dattrs_equal(dattr_new, i, dattr_cur, j))
-                               goto match2;
-               }
-               /* no match - add a new doms_new */
-               build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
-match2:
-               ;
-       }
-
-       /* Remember the new sched domains */
-       if (doms_cur != &fallback_doms)
-               free_sched_domains(doms_cur, ndoms_cur);
-       kfree(dattr_cur);       /* kfree(NULL) is safe */
-       doms_cur = doms_new;
-       dattr_cur = dattr_new;
-       ndoms_cur = ndoms_new;
-
-       register_sched_domain_sysctl();
-
-       mutex_unlock(&sched_domains_mutex);
-}
-
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-static void reinit_sched_domains(void)
-{
-       get_online_cpus();
-
-       /* Destroy domains first to force the rebuild */
-       partition_sched_domains(0, NULL, NULL);
-
-       rebuild_sched_domains();
-       put_online_cpus();
-}
-
-static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
-{
-       unsigned int level = 0;
-
-       if (sscanf(buf, "%u", &level) != 1)
-               return -EINVAL;
-
-       /*
-        * level is always be positive so don't check for
-        * level < POWERSAVINGS_BALANCE_NONE which is 0
-        * What happens on 0 or 1 byte write,
-        * need to check for count as well?
-        */
-
-       if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
-               return -EINVAL;
-
-       if (smt)
-               sched_smt_power_savings = level;
-       else
-               sched_mc_power_savings = level;
-
-       reinit_sched_domains();
-
-       return count;
-}
-
-#ifdef CONFIG_SCHED_MC
-static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
-                                          struct sysdev_class_attribute *attr,
-                                          char *page)
-{
-       return sprintf(page, "%u\n", sched_mc_power_savings);
-}
-static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
-                                           struct sysdev_class_attribute *attr,
-                                           const char *buf, size_t count)
-{
-       return sched_power_savings_store(buf, count, 0);
-}
-static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
-                        sched_mc_power_savings_show,
-                        sched_mc_power_savings_store);
-#endif
-
-#ifdef CONFIG_SCHED_SMT
-static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
-                                           struct sysdev_class_attribute *attr,
-                                           char *page)
-{
-       return sprintf(page, "%u\n", sched_smt_power_savings);
-}
-static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
-                                            struct sysdev_class_attribute *attr,
-                                            const char *buf, size_t count)
-{
-       return sched_power_savings_store(buf, count, 1);
-}
-static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
-                  sched_smt_power_savings_show,
-                  sched_smt_power_savings_store);
-#endif
-
-int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
-{
-       int err = 0;
-
-#ifdef CONFIG_SCHED_SMT
-       if (smt_capable())
-               err = sysfs_create_file(&cls->kset.kobj,
-                                       &attr_sched_smt_power_savings.attr);
-#endif
-#ifdef CONFIG_SCHED_MC
-       if (!err && mc_capable())
-               err = sysfs_create_file(&cls->kset.kobj,
-                                       &attr_sched_mc_power_savings.attr);
-#endif
-       return err;
-}
-#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-
-/*
- * Update cpusets according to cpu_active mask.  If cpusets are
- * disabled, cpuset_update_active_cpus() becomes a simple wrapper
- * around partition_sched_domains().
- */
-static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
-                            void *hcpu)
-{
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_ONLINE:
-       case CPU_DOWN_FAILED:
-               cpuset_update_active_cpus();
-               return NOTIFY_OK;
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
-                              void *hcpu)
-{
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_DOWN_PREPARE:
-               cpuset_update_active_cpus();
-               return NOTIFY_OK;
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-void __init sched_init_smp(void)
-{
-       cpumask_var_t non_isolated_cpus;
-
-       alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
-       alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
-
-       get_online_cpus();
-       mutex_lock(&sched_domains_mutex);
-       init_sched_domains(cpu_active_mask);
-       cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-       if (cpumask_empty(non_isolated_cpus))
-               cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
-       mutex_unlock(&sched_domains_mutex);
-       put_online_cpus();
-
-       hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
-       hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
-
-       /* RT runtime code needs to handle some hotplug events */
-       hotcpu_notifier(update_runtime, 0);
-
-       init_hrtick();
-
-       /* Move init over to a non-isolated CPU */
-       if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
-               BUG();
-       sched_init_granularity();
-       free_cpumask_var(non_isolated_cpus);
-
-       init_sched_rt_class();
-}
-#else
-void __init sched_init_smp(void)
-{
-       sched_init_granularity();
-}
-#endif /* CONFIG_SMP */
-
-const_debug unsigned int sysctl_timer_migration = 1;
-
-int in_sched_functions(unsigned long addr)
-{
-       return in_lock_functions(addr) ||
-               (addr >= (unsigned long)__sched_text_start
-               && addr < (unsigned long)__sched_text_end);
-}
-
-#ifdef CONFIG_CGROUP_SCHED
-struct task_group root_task_group;
-#endif
-
-DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
-
-void __init sched_init(void)
-{
-       int i, j;
-       unsigned long alloc_size = 0, ptr;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       alloc_size += 2 * nr_cpu_ids * sizeof(void **);
-#endif
-#ifdef CONFIG_RT_GROUP_SCHED
-       alloc_size += 2 * nr_cpu_ids * sizeof(void **);
-#endif
-#ifdef CONFIG_CPUMASK_OFFSTACK
-       alloc_size += num_possible_cpus() * cpumask_size();
-#endif
-       if (alloc_size) {
-               ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-               root_task_group.se = (struct sched_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-               root_task_group.cfs_rq = (struct cfs_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-#ifdef CONFIG_RT_GROUP_SCHED
-               root_task_group.rt_se = (struct sched_rt_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-               root_task_group.rt_rq = (struct rt_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-#ifdef CONFIG_CPUMASK_OFFSTACK
-               for_each_possible_cpu(i) {
-                       per_cpu(load_balance_tmpmask, i) = (void *)ptr;
-                       ptr += cpumask_size();
-               }
-#endif /* CONFIG_CPUMASK_OFFSTACK */
-       }
-
-#ifdef CONFIG_SMP
-       init_defrootdomain();
-#endif
-
-       init_rt_bandwidth(&def_rt_bandwidth,
-                       global_rt_period(), global_rt_runtime());
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       init_rt_bandwidth(&root_task_group.rt_bandwidth,
-                       global_rt_period(), global_rt_runtime());
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_CGROUP_SCHED
-       list_add(&root_task_group.list, &task_groups);
-       INIT_LIST_HEAD(&root_task_group.children);
-       INIT_LIST_HEAD(&root_task_group.siblings);
-       autogroup_init(&init_task);
-#endif /* CONFIG_CGROUP_SCHED */
-
-       for_each_possible_cpu(i) {
-               struct rq *rq;
-
-               rq = cpu_rq(i);
-               raw_spin_lock_init(&rq->lock);
-               rq->nr_running = 0;
-               rq->calc_load_active = 0;
-               rq->calc_load_update = jiffies + LOAD_FREQ;
-               init_cfs_rq(&rq->cfs);
-               init_rt_rq(&rq->rt, rq);
-#ifdef CONFIG_FAIR_GROUP_SCHED
-               root_task_group.shares = ROOT_TASK_GROUP_LOAD;
-               INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
-               /*
-                * How much cpu bandwidth does root_task_group get?
-                *
-                * In case of task-groups formed thr' the cgroup filesystem, it
-                * gets 100% of the cpu resources in the system. This overall
-                * system cpu resource is divided among the tasks of
-                * root_task_group and its child task-groups in a fair manner,
-                * based on each entity's (task or task-group's) weight
-                * (se->load.weight).
-                *
-                * In other words, if root_task_group has 10 tasks of weight
-                * 1024) and two child groups A0 and A1 (of weight 1024 each),
-                * then A0's share of the cpu resource is:
-                *
-                *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
-                *
-                * We achieve this by letting root_task_group's tasks sit
-                * directly in rq->cfs (i.e root_task_group->se[] = NULL).
-                */
-               init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
-               init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-               rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
-#ifdef CONFIG_RT_GROUP_SCHED
-               INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
-               init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
-#endif
-
-               for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
-                       rq->cpu_load[j] = 0;
-
-               rq->last_load_update_tick = jiffies;
-
-#ifdef CONFIG_SMP
-               rq->sd = NULL;
-               rq->rd = NULL;
-               rq->cpu_power = SCHED_POWER_SCALE;
-               rq->post_schedule = 0;
-               rq->active_balance = 0;
-               rq->next_balance = jiffies;
-               rq->push_cpu = 0;
-               rq->cpu = i;
-               rq->online = 0;
-               rq->idle_stamp = 0;
-               rq->avg_idle = 2*sysctl_sched_migration_cost;
-               rq_attach_root(rq, &def_root_domain);
-#ifdef CONFIG_NO_HZ
-               rq->nohz_balance_kick = 0;
-#endif
-#endif
-               init_rq_hrtick(rq);
-               atomic_set(&rq->nr_iowait, 0);
-       }
-
-       set_load_weight(&init_task);
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-       INIT_HLIST_HEAD(&init_task.preempt_notifiers);
-#endif
-
-#ifdef CONFIG_RT_MUTEXES
-       plist_head_init(&init_task.pi_waiters);
-#endif
-
-       /*
-        * The boot idle thread does lazy MMU switching as well:
-        */
-       atomic_inc(&init_mm.mm_count);
-       enter_lazy_tlb(&init_mm, current);
-
-       /*
-        * Make us the idle thread. Technically, schedule() should not be
-        * called from this thread, however somewhere below it might be,
-        * but because we are the idle thread, we just pick up running again
-        * when this runqueue becomes "idle".
-        */
-       init_idle(current, smp_processor_id());
-
-       calc_load_update = jiffies + LOAD_FREQ;
-
-       /*
-        * During early bootup we pretend to be a normal task:
-        */
-       current->sched_class = &fair_sched_class;
-
-#ifdef CONFIG_SMP
-       zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
-       /* May be allocated at isolcpus cmdline parse time */
-       if (cpu_isolated_map == NULL)
-               zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
-#endif
-       init_sched_fair_class();
-
-       scheduler_running = 1;
-}
-
-#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
-static inline int preempt_count_equals(int preempt_offset)
-{
-       int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
-
-       return (nested == preempt_offset);
-}
-
-void __might_sleep(const char *file, int line, int preempt_offset)
-{
-       static unsigned long prev_jiffy;        /* ratelimiting */
-
-       rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
-       if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
-           system_state != SYSTEM_RUNNING || oops_in_progress)
-               return;
-       if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-               return;
-       prev_jiffy = jiffies;
-
-       printk(KERN_ERR
-               "BUG: sleeping function called from invalid context at %s:%d\n",
-                       file, line);
-       printk(KERN_ERR
-               "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
-                       in_atomic(), irqs_disabled(),
-                       current->pid, current->comm);
-
-       debug_show_held_locks(current);
-       if (irqs_disabled())
-               print_irqtrace_events(current);
-       dump_stack();
-}
-EXPORT_SYMBOL(__might_sleep);
-#endif
-
-#ifdef CONFIG_MAGIC_SYSRQ
-static void normalize_task(struct rq *rq, struct task_struct *p)
-{
-       const struct sched_class *prev_class = p->sched_class;
-       int old_prio = p->prio;
-       int on_rq;
-
-       on_rq = p->on_rq;
-       if (on_rq)
-               deactivate_task(rq, p, 0);
-       __setscheduler(rq, p, SCHED_NORMAL, 0);
-       if (on_rq) {
-               activate_task(rq, p, 0);
-               resched_task(rq->curr);
-       }
-
-       check_class_changed(rq, p, prev_class, old_prio);
-}
-
-void normalize_rt_tasks(void)
-{
-       struct task_struct *g, *p;
-       unsigned long flags;
-       struct rq *rq;
-
-       read_lock_irqsave(&tasklist_lock, flags);
-       do_each_thread(g, p) {
-               /*
-                * Only normalize user tasks:
-                */
-               if (!p->mm)
-                       continue;
-
-               p->se.exec_start                = 0;
-#ifdef CONFIG_SCHEDSTATS
-               p->se.statistics.wait_start     = 0;
-               p->se.statistics.sleep_start    = 0;
-               p->se.statistics.block_start    = 0;
-#endif
-
-               if (!rt_task(p)) {
-                       /*
-                        * Renice negative nice level userspace
-                        * tasks back to 0:
-                        */
-                       if (TASK_NICE(p) < 0 && p->mm)
-                               set_user_nice(p, 0);
-                       continue;
-               }
-
-               raw_spin_lock(&p->pi_lock);
-               rq = __task_rq_lock(p);
-
-               normalize_task(rq, p);
-
-               __task_rq_unlock(rq);
-               raw_spin_unlock(&p->pi_lock);
-       } while_each_thread(g, p);
-
-       read_unlock_irqrestore(&tasklist_lock, flags);
-}
-
-#endif /* CONFIG_MAGIC_SYSRQ */
-
-#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
-/*
- * These functions are only useful for the IA64 MCA handling, or kdb.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
-
-/**
- * curr_task - return the current task for a given cpu.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
-struct task_struct *curr_task(int cpu)
-{
-       return cpu_curr(cpu);
-}
-
-#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
-
-#ifdef CONFIG_IA64
-/**
- * set_curr_task - set the current task for a given cpu.
- * @cpu: the processor in question.
- * @p: the task pointer to set.
- *
- * Description: This function must only be used when non-maskable interrupts
- * are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
- * must be called with all CPU's synchronized, and interrupts disabled, the
- * and caller must save the original value of the current task (see
- * curr_task() above) and restore that value before reenabling interrupts and
- * re-starting the system.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
-void set_curr_task(int cpu, struct task_struct *p)
-{
-       cpu_curr(cpu) = p;
-}
-
-#endif
-
-#ifdef CONFIG_RT_GROUP_SCHED
-#else /* !CONFIG_RT_GROUP_SCHED */
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_CGROUP_SCHED
-/* task_group_lock serializes the addition/removal of task groups */
-static DEFINE_SPINLOCK(task_group_lock);
-
-static void free_sched_group(struct task_group *tg)
-{
-       free_fair_sched_group(tg);
-       free_rt_sched_group(tg);
-       autogroup_free(tg);
-       kfree(tg);
-}
-
-/* allocate runqueue etc for a new task group */
-struct task_group *sched_create_group(struct task_group *parent)
-{
-       struct task_group *tg;
-       unsigned long flags;
-
-       tg = kzalloc(sizeof(*tg), GFP_KERNEL);
-       if (!tg)
-               return ERR_PTR(-ENOMEM);
-
-       if (!alloc_fair_sched_group(tg, parent))
-               goto err;
-
-       if (!alloc_rt_sched_group(tg, parent))
-               goto err;
-
-       spin_lock_irqsave(&task_group_lock, flags);
-       list_add_rcu(&tg->list, &task_groups);
-
-       WARN_ON(!parent); /* root should already exist */
-
-       tg->parent = parent;
-       INIT_LIST_HEAD(&tg->children);
-       list_add_rcu(&tg->siblings, &parent->children);
-       spin_unlock_irqrestore(&task_group_lock, flags);
-
-       return tg;
-
-err:
-       free_sched_group(tg);
-       return ERR_PTR(-ENOMEM);
-}
-
-/* rcu callback to free various structures associated with a task group */
-static void free_sched_group_rcu(struct rcu_head *rhp)
-{
-       /* now it should be safe to free those cfs_rqs */
-       free_sched_group(container_of(rhp, struct task_group, rcu));
-}
-
-/* Destroy runqueue etc associated with a task group */
-void sched_destroy_group(struct task_group *tg)
-{
-       unsigned long flags;
-       int i;
-
-       /* end participation in shares distribution */
-       for_each_possible_cpu(i)
-               unregister_fair_sched_group(tg, i);
-
-       spin_lock_irqsave(&task_group_lock, flags);
-       list_del_rcu(&tg->list);
-       list_del_rcu(&tg->siblings);
-       spin_unlock_irqrestore(&task_group_lock, flags);
-
-       /* wait for possible concurrent references to cfs_rqs complete */
-       call_rcu(&tg->rcu, free_sched_group_rcu);
-}
-
-/* change task's runqueue when it moves between groups.
- *     The caller of this function should have put the task in its new group
- *     by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
- *     reflect its new group.
- */
-void sched_move_task(struct task_struct *tsk)
-{
-       int on_rq, running;
-       unsigned long flags;
-       struct rq *rq;
-
-       rq = task_rq_lock(tsk, &flags);
-
-       running = task_current(rq, tsk);
-       on_rq = tsk->on_rq;
-
-       if (on_rq)
-               dequeue_task(rq, tsk, 0);
-       if (unlikely(running))
-               tsk->sched_class->put_prev_task(rq, tsk);
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       if (tsk->sched_class->task_move_group)
-               tsk->sched_class->task_move_group(tsk, on_rq);
-       else
-#endif
-               set_task_rq(tsk, task_cpu(tsk));
-
-       if (unlikely(running))
-               tsk->sched_class->set_curr_task(rq);
-       if (on_rq)
-               enqueue_task(rq, tsk, 0);
-
-       task_rq_unlock(rq, tsk, &flags);
-}
-#endif /* CONFIG_CGROUP_SCHED */
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-#endif
-
-#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
-static unsigned long to_ratio(u64 period, u64 runtime)
-{
-       if (runtime == RUNTIME_INF)
-               return 1ULL << 20;
-
-       return div64_u64(runtime << 20, period);
-}
-#endif
-
-#ifdef CONFIG_RT_GROUP_SCHED
-/*
- * Ensure that the real time constraints are schedulable.
- */
-static DEFINE_MUTEX(rt_constraints_mutex);
-
-/* Must be called with tasklist_lock held */
-static inline int tg_has_rt_tasks(struct task_group *tg)
-{
-       struct task_struct *g, *p;
-
-       do_each_thread(g, p) {
-               if (rt_task(p) && task_rq(p)->rt.tg == tg)
-                       return 1;
-       } while_each_thread(g, p);
-
-       return 0;
-}
-
-struct rt_schedulable_data {
-       struct task_group *tg;
-       u64 rt_period;
-       u64 rt_runtime;
-};
-
-static int tg_rt_schedulable(struct task_group *tg, void *data)
-{
-       struct rt_schedulable_data *d = data;
-       struct task_group *child;
-       unsigned long total, sum = 0;
-       u64 period, runtime;
-
-       period = ktime_to_ns(tg->rt_bandwidth.rt_period);
-       runtime = tg->rt_bandwidth.rt_runtime;
-
-       if (tg == d->tg) {
-               period = d->rt_period;
-               runtime = d->rt_runtime;
-       }
-
-       /*
-        * Cannot have more runtime than the period.
-        */
-       if (runtime > period && runtime != RUNTIME_INF)
-               return -EINVAL;
-
-       /*
-        * Ensure we don't starve existing RT tasks.
-        */
-       if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
-               return -EBUSY;
-
-       total = to_ratio(period, runtime);
-
-       /*
-        * Nobody can have more than the global setting allows.
-        */
-       if (total > to_ratio(global_rt_period(), global_rt_runtime()))
-               return -EINVAL;
-
-       /*
-        * The sum of our children's runtime should not exceed our own.
-        */
-       list_for_each_entry_rcu(child, &tg->children, siblings) {
-               period = ktime_to_ns(child->rt_bandwidth.rt_period);
-               runtime = child->rt_bandwidth.rt_runtime;
-
-               if (child == d->tg) {
-                       period = d->rt_period;
-                       runtime = d->rt_runtime;
-               }
-
-               sum += to_ratio(period, runtime);
-       }
-
-       if (sum > total)
-               return -EINVAL;
-
-       return 0;
-}
-
-static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
-{
-       int ret;
-
-       struct rt_schedulable_data data = {
-               .tg = tg,
-               .rt_period = period,
-               .rt_runtime = runtime,
-       };
-
-       rcu_read_lock();
-       ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
-       rcu_read_unlock();
-
-       return ret;
-}
-
-static int tg_set_rt_bandwidth(struct task_group *tg,
-               u64 rt_period, u64 rt_runtime)
-{
-       int i, err = 0;
-
-       mutex_lock(&rt_constraints_mutex);
-       read_lock(&tasklist_lock);
-       err = __rt_schedulable(tg, rt_period, rt_runtime);
-       if (err)
-               goto unlock;
-
-       raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
-       tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
-       tg->rt_bandwidth.rt_runtime = rt_runtime;
-
-       for_each_possible_cpu(i) {
-               struct rt_rq *rt_rq = tg->rt_rq[i];
-
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               rt_rq->rt_runtime = rt_runtime;
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-       }
-       raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
-unlock:
-       read_unlock(&tasklist_lock);
-       mutex_unlock(&rt_constraints_mutex);
-
-       return err;
-}
-
-int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
-{
-       u64 rt_runtime, rt_period;
-
-       rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
-       rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
-       if (rt_runtime_us < 0)
-               rt_runtime = RUNTIME_INF;
-
-       return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
-}
-
-long sched_group_rt_runtime(struct task_group *tg)
-{
-       u64 rt_runtime_us;
-
-       if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
-               return -1;
-
-       rt_runtime_us = tg->rt_bandwidth.rt_runtime;
-       do_div(rt_runtime_us, NSEC_PER_USEC);
-       return rt_runtime_us;
-}
-
-int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
-{
-       u64 rt_runtime, rt_period;
-
-       rt_period = (u64)rt_period_us * NSEC_PER_USEC;
-       rt_runtime = tg->rt_bandwidth.rt_runtime;
-
-       if (rt_period == 0)
-               return -EINVAL;
-
-       return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
-}
-
-long sched_group_rt_period(struct task_group *tg)
-{
-       u64 rt_period_us;
-
-       rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
-       do_div(rt_period_us, NSEC_PER_USEC);
-       return rt_period_us;
-}
-
-static int sched_rt_global_constraints(void)
-{
-       u64 runtime, period;
-       int ret = 0;
-
-       if (sysctl_sched_rt_period <= 0)
-               return -EINVAL;
-
-       runtime = global_rt_runtime();
-       period = global_rt_period();
-
-       /*
-        * Sanity check on the sysctl variables.
-        */
-       if (runtime > period && runtime != RUNTIME_INF)
-               return -EINVAL;
-
-       mutex_lock(&rt_constraints_mutex);
-       read_lock(&tasklist_lock);
-       ret = __rt_schedulable(NULL, 0, 0);
-       read_unlock(&tasklist_lock);
-       mutex_unlock(&rt_constraints_mutex);
-
-       return ret;
-}
-
-int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
-{
-       /* Don't accept realtime tasks when there is no way for them to run */
-       if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
-               return 0;
-
-       return 1;
-}
-
-#else /* !CONFIG_RT_GROUP_SCHED */
-static int sched_rt_global_constraints(void)
-{
-       unsigned long flags;
-       int i;
-
-       if (sysctl_sched_rt_period <= 0)
-               return -EINVAL;
-
-       /*
-        * There's always some RT tasks in the root group
-        * -- migration, kstopmachine etc..
-        */
-       if (sysctl_sched_rt_runtime == 0)
-               return -EBUSY;
-
-       raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
-       for_each_possible_cpu(i) {
-               struct rt_rq *rt_rq = &cpu_rq(i)->rt;
-
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               rt_rq->rt_runtime = global_rt_runtime();
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-       }
-       raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
-
-       return 0;
-}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-int sched_rt_handler(struct ctl_table *table, int write,
-               void __user *buffer, size_t *lenp,
-               loff_t *ppos)
-{
-       int ret;
-       int old_period, old_runtime;
-       static DEFINE_MUTEX(mutex);
-
-       mutex_lock(&mutex);
-       old_period = sysctl_sched_rt_period;
-       old_runtime = sysctl_sched_rt_runtime;
-
-       ret = proc_dointvec(table, write, buffer, lenp, ppos);
-
-       if (!ret && write) {
-               ret = sched_rt_global_constraints();
-               if (ret) {
-                       sysctl_sched_rt_period = old_period;
-                       sysctl_sched_rt_runtime = old_runtime;
-               } else {
-                       def_rt_bandwidth.rt_runtime = global_rt_runtime();
-                       def_rt_bandwidth.rt_period =
-                               ns_to_ktime(global_rt_period());
-               }
-       }
-       mutex_unlock(&mutex);
-
-       return ret;
-}
-
-#ifdef CONFIG_CGROUP_SCHED
-
-/* return corresponding task_group object of a cgroup */
-static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
-{
-       return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
-                           struct task_group, css);
-}
-
-static struct cgroup_subsys_state *
-cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
-{
-       struct task_group *tg, *parent;
-
-       if (!cgrp->parent) {
-               /* This is early initialization for the top cgroup */
-               return &root_task_group.css;
-       }
-
-       parent = cgroup_tg(cgrp->parent);
-       tg = sched_create_group(parent);
-       if (IS_ERR(tg))
-               return ERR_PTR(-ENOMEM);
-
-       return &tg->css;
-}
-
-static void
-cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-
-       sched_destroy_group(tg);
-}
-
-static int
-cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
-{
-#ifdef CONFIG_RT_GROUP_SCHED
-       if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
-               return -EINVAL;
-#else
-       /* We don't support RT-tasks being in separate groups */
-       if (tsk->sched_class != &fair_sched_class)
-               return -EINVAL;
-#endif
-       return 0;
-}
-
-static void
-cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
-{
-       sched_move_task(tsk);
-}
-
-static void
-cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
-               struct cgroup *old_cgrp, struct task_struct *task)
-{
-       /*
-        * cgroup_exit() is called in the copy_process() failure path.
-        * Ignore this case since the task hasn't ran yet, this avoids
-        * trying to poke a half freed task state from generic code.
-        */
-       if (!(task->flags & PF_EXITING))
-               return;
-
-       sched_move_task(task);
-}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
-                               u64 shareval)
-{
-       return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
-}
-
-static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-
-       return (u64) scale_load_down(tg->shares);
-}
-
-#ifdef CONFIG_CFS_BANDWIDTH
-static DEFINE_MUTEX(cfs_constraints_mutex);
-
-const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
-const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
-
-static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
-
-static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
-{
-       int i, ret = 0, runtime_enabled, runtime_was_enabled;
-       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
-
-       if (tg == &root_task_group)
-               return -EINVAL;
-
-       /*
-        * Ensure we have at some amount of bandwidth every period.  This is
-        * to prevent reaching a state of large arrears when throttled via
-        * entity_tick() resulting in prolonged exit starvation.
-        */
-       if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
-               return -EINVAL;
-
-       /*
-        * Likewise, bound things on the otherside by preventing insane quota
-        * periods.  This also allows us to normalize in computing quota
-        * feasibility.
-        */
-       if (period > max_cfs_quota_period)
-               return -EINVAL;
-
-       mutex_lock(&cfs_constraints_mutex);
-       ret = __cfs_schedulable(tg, period, quota);
-       if (ret)
-               goto out_unlock;
-
-       runtime_enabled = quota != RUNTIME_INF;
-       runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
-       account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
-       raw_spin_lock_irq(&cfs_b->lock);
-       cfs_b->period = ns_to_ktime(period);
-       cfs_b->quota = quota;
-
-       __refill_cfs_bandwidth_runtime(cfs_b);
-       /* restart the period timer (if active) to handle new period expiry */
-       if (runtime_enabled && cfs_b->timer_active) {
-               /* force a reprogram */
-               cfs_b->timer_active = 0;
-               __start_cfs_bandwidth(cfs_b);
-       }
-       raw_spin_unlock_irq(&cfs_b->lock);
-
-       for_each_possible_cpu(i) {
-               struct cfs_rq *cfs_rq = tg->cfs_rq[i];
-               struct rq *rq = cfs_rq->rq;
-
-               raw_spin_lock_irq(&rq->lock);
-               cfs_rq->runtime_enabled = runtime_enabled;
-               cfs_rq->runtime_remaining = 0;
-
-               if (cfs_rq->throttled)
-                       unthrottle_cfs_rq(cfs_rq);
-               raw_spin_unlock_irq(&rq->lock);
-       }
-out_unlock:
-       mutex_unlock(&cfs_constraints_mutex);
-
-       return ret;
-}
-
-int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
-{
-       u64 quota, period;
-
-       period = ktime_to_ns(tg->cfs_bandwidth.period);
-       if (cfs_quota_us < 0)
-               quota = RUNTIME_INF;
-       else
-               quota = (u64)cfs_quota_us * NSEC_PER_USEC;
-
-       return tg_set_cfs_bandwidth(tg, period, quota);
-}
-
-long tg_get_cfs_quota(struct task_group *tg)
-{
-       u64 quota_us;
-
-       if (tg->cfs_bandwidth.quota == RUNTIME_INF)
-               return -1;
-
-       quota_us = tg->cfs_bandwidth.quota;
-       do_div(quota_us, NSEC_PER_USEC);
-
-       return quota_us;
-}
-
-int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
-{
-       u64 quota, period;
-
-       period = (u64)cfs_period_us * NSEC_PER_USEC;
-       quota = tg->cfs_bandwidth.quota;
-
-       if (period <= 0)
-               return -EINVAL;
-
-       return tg_set_cfs_bandwidth(tg, period, quota);
-}
-
-long tg_get_cfs_period(struct task_group *tg)
-{
-       u64 cfs_period_us;
-
-       cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
-       do_div(cfs_period_us, NSEC_PER_USEC);
-
-       return cfs_period_us;
-}
-
-static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
-{
-       return tg_get_cfs_quota(cgroup_tg(cgrp));
-}
-
-static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
-                               s64 cfs_quota_us)
-{
-       return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
-}
-
-static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
-{
-       return tg_get_cfs_period(cgroup_tg(cgrp));
-}
-
-static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
-                               u64 cfs_period_us)
-{
-       return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
-}
-
-struct cfs_schedulable_data {
-       struct task_group *tg;
-       u64 period, quota;
-};
-
-/*
- * normalize group quota/period to be quota/max_period
- * note: units are usecs
- */
-static u64 normalize_cfs_quota(struct task_group *tg,
-                              struct cfs_schedulable_data *d)
-{
-       u64 quota, period;
-
-       if (tg == d->tg) {
-               period = d->period;
-               quota = d->quota;
-       } else {
-               period = tg_get_cfs_period(tg);
-               quota = tg_get_cfs_quota(tg);
-       }
-
-       /* note: these should typically be equivalent */
-       if (quota == RUNTIME_INF || quota == -1)
-               return RUNTIME_INF;
-
-       return to_ratio(period, quota);
-}
-
-static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
-{
-       struct cfs_schedulable_data *d = data;
-       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
-       s64 quota = 0, parent_quota = -1;
-
-       if (!tg->parent) {
-               quota = RUNTIME_INF;
-       } else {
-               struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
-
-               quota = normalize_cfs_quota(tg, d);
-               parent_quota = parent_b->hierarchal_quota;
-
-               /*
-                * ensure max(child_quota) <= parent_quota, inherit when no
-                * limit is set
-                */
-               if (quota == RUNTIME_INF)
-                       quota = parent_quota;
-               else if (parent_quota != RUNTIME_INF && quota > parent_quota)
-                       return -EINVAL;
-       }
-       cfs_b->hierarchal_quota = quota;
-
-       return 0;
-}
-
-static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
-{
-       int ret;
-       struct cfs_schedulable_data data = {
-               .tg = tg,
-               .period = period,
-               .quota = quota,
-       };
-
-       if (quota != RUNTIME_INF) {
-               do_div(data.period, NSEC_PER_USEC);
-               do_div(data.quota, NSEC_PER_USEC);
-       }
-
-       rcu_read_lock();
-       ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
-       rcu_read_unlock();
-
-       return ret;
-}
-
-static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
-               struct cgroup_map_cb *cb)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
-
-       cb->fill(cb, "nr_periods", cfs_b->nr_periods);
-       cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
-       cb->fill(cb, "throttled_time", cfs_b->throttled_time);
-
-       return 0;
-}
-#endif /* CONFIG_CFS_BANDWIDTH */
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-#ifdef CONFIG_RT_GROUP_SCHED
-static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
-                               s64 val)
-{
-       return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
-}
-
-static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
-{
-       return sched_group_rt_runtime(cgroup_tg(cgrp));
-}
-
-static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
-               u64 rt_period_us)
-{
-       return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
-}
-
-static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
-{
-       return sched_group_rt_period(cgroup_tg(cgrp));
-}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-static struct cftype cpu_files[] = {
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       {
-               .name = "shares",
-               .read_u64 = cpu_shares_read_u64,
-               .write_u64 = cpu_shares_write_u64,
-       },
-#endif
-#ifdef CONFIG_CFS_BANDWIDTH
-       {
-               .name = "cfs_quota_us",
-               .read_s64 = cpu_cfs_quota_read_s64,
-               .write_s64 = cpu_cfs_quota_write_s64,
-       },
-       {
-               .name = "cfs_period_us",
-               .read_u64 = cpu_cfs_period_read_u64,
-               .write_u64 = cpu_cfs_period_write_u64,
-       },
-       {
-               .name = "stat",
-               .read_map = cpu_stats_show,
-       },
-#endif
-#ifdef CONFIG_RT_GROUP_SCHED
-       {
-               .name = "rt_runtime_us",
-               .read_s64 = cpu_rt_runtime_read,
-               .write_s64 = cpu_rt_runtime_write,
-       },
-       {
-               .name = "rt_period_us",
-               .read_u64 = cpu_rt_period_read_uint,
-               .write_u64 = cpu_rt_period_write_uint,
-       },
-#endif
-};
-
-static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
-{
-       return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
-}
-
-struct cgroup_subsys cpu_cgroup_subsys = {
-       .name           = "cpu",
-       .create         = cpu_cgroup_create,
-       .destroy        = cpu_cgroup_destroy,
-       .can_attach_task = cpu_cgroup_can_attach_task,
-       .attach_task    = cpu_cgroup_attach_task,
-       .exit           = cpu_cgroup_exit,
-       .populate       = cpu_cgroup_populate,
-       .subsys_id      = cpu_cgroup_subsys_id,
-       .early_init     = 1,
-};
-
-#endif /* CONFIG_CGROUP_SCHED */
-
-#ifdef CONFIG_CGROUP_CPUACCT
-
-/*
- * CPU accounting code for task groups.
- *
- * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
- * (balbir@in.ibm.com).
- */
-
-/* track cpu usage of a group of tasks and its child groups */
-struct cpuacct {
-       struct cgroup_subsys_state css;
-       /* cpuusage holds pointer to a u64-type object on every cpu */
-       u64 __percpu *cpuusage;
-       struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
-       struct cpuacct *parent;
-};
-
-struct cgroup_subsys cpuacct_subsys;
-
-/* return cpu accounting group corresponding to this container */
-static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
-{
-       return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
-                           struct cpuacct, css);
-}
-
-/* return cpu accounting group to which this task belongs */
-static inline struct cpuacct *task_ca(struct task_struct *tsk)
-{
-       return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
-                           struct cpuacct, css);
-}
-
-/* create a new cpu accounting group */
-static struct cgroup_subsys_state *cpuacct_create(
-       struct cgroup_subsys *ss, struct cgroup *cgrp)
-{
-       struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
-       int i;
-
-       if (!ca)
-               goto out;
-
-       ca->cpuusage = alloc_percpu(u64);
-       if (!ca->cpuusage)
-               goto out_free_ca;
-
-       for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
-               if (percpu_counter_init(&ca->cpustat[i], 0))
-                       goto out_free_counters;
-
-       if (cgrp->parent)
-               ca->parent = cgroup_ca(cgrp->parent);
-
-       return &ca->css;
-
-out_free_counters:
-       while (--i >= 0)
-               percpu_counter_destroy(&ca->cpustat[i]);
-       free_percpu(ca->cpuusage);
-out_free_ca:
-       kfree(ca);
-out:
-       return ERR_PTR(-ENOMEM);
-}
-
-/* destroy an existing cpu accounting group */
-static void
-cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       int i;
-
-       for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
-               percpu_counter_destroy(&ca->cpustat[i]);
-       free_percpu(ca->cpuusage);
-       kfree(ca);
-}
-
-static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
-{
-       u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
-       u64 data;
-
-#ifndef CONFIG_64BIT
-       /*
-        * Take rq->lock to make 64-bit read safe on 32-bit platforms.
-        */
-       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
-       data = *cpuusage;
-       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
-#else
-       data = *cpuusage;
-#endif
-
-       return data;
-}
-
-static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
-{
-       u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
-
-#ifndef CONFIG_64BIT
-       /*
-        * Take rq->lock to make 64-bit write safe on 32-bit platforms.
-        */
-       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
-       *cpuusage = val;
-       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
-#else
-       *cpuusage = val;
-#endif
-}
-
-/* return total cpu usage (in nanoseconds) of a group */
-static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       u64 totalcpuusage = 0;
-       int i;
-
-       for_each_present_cpu(i)
-               totalcpuusage += cpuacct_cpuusage_read(ca, i);
-
-       return totalcpuusage;
-}
-
-static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
-                                                               u64 reset)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       int err = 0;
-       int i;
-
-       if (reset) {
-               err = -EINVAL;
-               goto out;
-       }
-
-       for_each_present_cpu(i)
-               cpuacct_cpuusage_write(ca, i, 0);
-
-out:
-       return err;
-}
-
-static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
-                                  struct seq_file *m)
-{
-       struct cpuacct *ca = cgroup_ca(cgroup);
-       u64 percpu;
-       int i;
-
-       for_each_present_cpu(i) {
-               percpu = cpuacct_cpuusage_read(ca, i);
-               seq_printf(m, "%llu ", (unsigned long long) percpu);
-       }
-       seq_printf(m, "\n");
-       return 0;
-}
-
-static const char *cpuacct_stat_desc[] = {
-       [CPUACCT_STAT_USER] = "user",
-       [CPUACCT_STAT_SYSTEM] = "system",
-};
-
-static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
-               struct cgroup_map_cb *cb)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       int i;
-
-       for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
-               s64 val = percpu_counter_read(&ca->cpustat[i]);
-               val = cputime64_to_clock_t(val);
-               cb->fill(cb, cpuacct_stat_desc[i], val);
-       }
-       return 0;
-}
-
-static struct cftype files[] = {
-       {
-               .name = "usage",
-               .read_u64 = cpuusage_read,
-               .write_u64 = cpuusage_write,
-       },
-       {
-               .name = "usage_percpu",
-               .read_seq_string = cpuacct_percpu_seq_read,
-       },
-       {
-               .name = "stat",
-               .read_map = cpuacct_stats_show,
-       },
-};
-
-static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
-{
-       return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
-}
-
-/*
- * charge this task's execution time to its accounting group.
- *
- * called with rq->lock held.
- */
-void cpuacct_charge(struct task_struct *tsk, u64 cputime)
-{
-       struct cpuacct *ca;
-       int cpu;
-
-       if (unlikely(!cpuacct_subsys.active))
-               return;
-
-       cpu = task_cpu(tsk);
-
-       rcu_read_lock();
-
-       ca = task_ca(tsk);
-
-       for (; ca; ca = ca->parent) {
-               u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
-               *cpuusage += cputime;
-       }
-
-       rcu_read_unlock();
-}
-
-/*
- * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
- * in cputime_t units. As a result, cpuacct_update_stats calls
- * percpu_counter_add with values large enough to always overflow the
- * per cpu batch limit causing bad SMP scalability.
- *
- * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
- * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
- * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
- */
-#ifdef CONFIG_SMP
-#define CPUACCT_BATCH  \
-       min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
-#else
-#define CPUACCT_BATCH  0
-#endif
-
-/*
- * Charge the system/user time to the task's accounting group.
- */
-void cpuacct_update_stats(struct task_struct *tsk,
-               enum cpuacct_stat_index idx, cputime_t val)
-{
-       struct cpuacct *ca;
-       int batch = CPUACCT_BATCH;
-
-       if (unlikely(!cpuacct_subsys.active))
-               return;
-
-       rcu_read_lock();
-       ca = task_ca(tsk);
-
-       do {
-               __percpu_counter_add(&ca->cpustat[idx], val, batch);
-               ca = ca->parent;
-       } while (ca);
-       rcu_read_unlock();
-}
-
-struct cgroup_subsys cpuacct_subsys = {
-       .name = "cpuacct",
-       .create = cpuacct_create,
-       .destroy = cpuacct_destroy,
-       .populate = cpuacct_populate,
-       .subsys_id = cpuacct_subsys_id,
-};
-#endif /* CONFIG_CGROUP_CPUACCT */
diff --git a/kernel/sched.h b/kernel/sched.h
deleted file mode 100644 (file)
index 675261c..0000000
+++ /dev/null
@@ -1,1064 +0,0 @@
-
-#include <linux/sched.h>
-#include <linux/mutex.h>
-#include <linux/spinlock.h>
-#include <linux/stop_machine.h>
-
-#include "sched_cpupri.h"
-
-extern __read_mostly int scheduler_running;
-
-/*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
- * and back.
- */
-#define NICE_TO_PRIO(nice)     (MAX_RT_PRIO + (nice) + 20)
-#define PRIO_TO_NICE(prio)     ((prio) - MAX_RT_PRIO - 20)
-#define TASK_NICE(p)           PRIO_TO_NICE((p)->static_prio)
-
-/*
- * 'User priority' is the nice value converted to something we
- * can work with better when scaling various scheduler parameters,
- * it's a [ 0 ... 39 ] range.
- */
-#define USER_PRIO(p)           ((p)-MAX_RT_PRIO)
-#define TASK_USER_PRIO(p)      USER_PRIO((p)->static_prio)
-#define MAX_USER_PRIO          (USER_PRIO(MAX_PRIO))
-
-/*
- * Helpers for converting nanosecond timing to jiffy resolution
- */
-#define NS_TO_JIFFIES(TIME)    ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
-
-#define NICE_0_LOAD            SCHED_LOAD_SCALE
-#define NICE_0_SHIFT           SCHED_LOAD_SHIFT
-
-/*
- * These are the 'tuning knobs' of the scheduler:
- *
- * default timeslice is 100 msecs (used only for SCHED_RR tasks).
- * Timeslices get refilled after they expire.
- */
-#define DEF_TIMESLICE          (100 * HZ / 1000)
-
-/*
- * single value that denotes runtime == period, ie unlimited time.
- */
-#define RUNTIME_INF    ((u64)~0ULL)
-
-static inline int rt_policy(int policy)
-{
-       if (policy == SCHED_FIFO || policy == SCHED_RR)
-               return 1;
-       return 0;
-}
-
-static inline int task_has_rt_policy(struct task_struct *p)
-{
-       return rt_policy(p->policy);
-}
-
-/*
- * This is the priority-queue data structure of the RT scheduling class:
- */
-struct rt_prio_array {
-       DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
-       struct list_head queue[MAX_RT_PRIO];
-};
-
-struct rt_bandwidth {
-       /* nests inside the rq lock: */
-       raw_spinlock_t          rt_runtime_lock;
-       ktime_t                 rt_period;
-       u64                     rt_runtime;
-       struct hrtimer          rt_period_timer;
-};
-
-extern struct mutex sched_domains_mutex;
-
-#ifdef CONFIG_CGROUP_SCHED
-
-#include <linux/cgroup.h>
-
-struct cfs_rq;
-struct rt_rq;
-
-static LIST_HEAD(task_groups);
-
-struct cfs_bandwidth {
-#ifdef CONFIG_CFS_BANDWIDTH
-       raw_spinlock_t lock;
-       ktime_t period;
-       u64 quota, runtime;
-       s64 hierarchal_quota;
-       u64 runtime_expires;
-
-       int idle, timer_active;
-       struct hrtimer period_timer, slack_timer;
-       struct list_head throttled_cfs_rq;
-
-       /* statistics */
-       int nr_periods, nr_throttled;
-       u64 throttled_time;
-#endif
-};
-
-/* task group related information */
-struct task_group {
-       struct cgroup_subsys_state css;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       /* schedulable entities of this group on each cpu */
-       struct sched_entity **se;
-       /* runqueue "owned" by this group on each cpu */
-       struct cfs_rq **cfs_rq;
-       unsigned long shares;
-
-       atomic_t load_weight;
-#endif
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       struct sched_rt_entity **rt_se;
-       struct rt_rq **rt_rq;
-
-       struct rt_bandwidth rt_bandwidth;
-#endif
-
-       struct rcu_head rcu;
-       struct list_head list;
-
-       struct task_group *parent;
-       struct list_head siblings;
-       struct list_head children;
-
-#ifdef CONFIG_SCHED_AUTOGROUP
-       struct autogroup *autogroup;
-#endif
-
-       struct cfs_bandwidth cfs_bandwidth;
-};
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-#define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
-
-/*
- * A weight of 0 or 1 can cause arithmetics problems.
- * A weight of a cfs_rq is the sum of weights of which entities
- * are queued on this cfs_rq, so a weight of a entity should not be
- * too large, so as the shares value of a task group.
- * (The default weight is 1024 - so there's no practical
- *  limitation from this.)
- */
-#define MIN_SHARES     (1UL <<  1)
-#define MAX_SHARES     (1UL << 18)
-#endif
-
-/* Default task group.
- *     Every task in system belong to this group at bootup.
- */
-extern struct task_group root_task_group;
-
-typedef int (*tg_visitor)(struct task_group *, void *);
-
-extern int walk_tg_tree_from(struct task_group *from,
-                            tg_visitor down, tg_visitor up, void *data);
-
-/*
- * Iterate the full tree, calling @down when first entering a node and @up when
- * leaving it for the final time.
- *
- * Caller must hold rcu_lock or sufficient equivalent.
- */
-static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
-{
-       return walk_tg_tree_from(&root_task_group, down, up, data);
-}
-
-extern int tg_nop(struct task_group *tg, void *data);
-
-extern void free_fair_sched_group(struct task_group *tg);
-extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
-extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
-extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
-                       struct sched_entity *se, int cpu,
-                       struct sched_entity *parent);
-extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
-extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
-
-extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
-extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
-extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
-
-extern void free_rt_sched_group(struct task_group *tg);
-extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
-extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
-               struct sched_rt_entity *rt_se, int cpu,
-               struct sched_rt_entity *parent);
-
-#else /* CONFIG_CGROUP_SCHED */
-
-struct cfs_bandwidth { };
-
-#endif /* CONFIG_CGROUP_SCHED */
-
-/* CFS-related fields in a runqueue */
-struct cfs_rq {
-       struct load_weight load;
-       unsigned long nr_running, h_nr_running;
-
-       u64 exec_clock;
-       u64 min_vruntime;
-#ifndef CONFIG_64BIT
-       u64 min_vruntime_copy;
-#endif
-
-       struct rb_root tasks_timeline;
-       struct rb_node *rb_leftmost;
-
-       struct list_head tasks;
-       struct list_head *balance_iterator;
-
-       /*
-        * 'curr' points to currently running entity on this cfs_rq.
-        * It is set to NULL otherwise (i.e when none are currently running).
-        */
-       struct sched_entity *curr, *next, *last, *skip;
-
-#ifdef CONFIG_SCHED_DEBUG
-       unsigned int nr_spread_over;
-#endif
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
-
-       /*
-        * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
-        * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
-        * (like users, containers etc.)
-        *
-        * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
-        * list is used during load balance.
-        */
-       int on_list;
-       struct list_head leaf_cfs_rq_list;
-       struct task_group *tg;  /* group that "owns" this runqueue */
-
-#ifdef CONFIG_SMP
-       /*
-        * the part of load.weight contributed by tasks
-        */
-       unsigned long task_weight;
-
-       /*
-        *   h_load = weight * f(tg)
-        *
-        * Where f(tg) is the recursive weight fraction assigned to
-        * this group.
-        */
-       unsigned long h_load;
-
-       /*
-        * Maintaining per-cpu shares distribution for group scheduling
-        *
-        * load_stamp is the last time we updated the load average
-        * load_last is the last time we updated the load average and saw load
-        * load_unacc_exec_time is currently unaccounted execution time
-        */
-       u64 load_avg;
-       u64 load_period;
-       u64 load_stamp, load_last, load_unacc_exec_time;
-
-       unsigned long load_contribution;
-#endif /* CONFIG_SMP */
-#ifdef CONFIG_CFS_BANDWIDTH
-       int runtime_enabled;
-       u64 runtime_expires;
-       s64 runtime_remaining;
-
-       u64 throttled_timestamp;
-       int throttled, throttle_count;
-       struct list_head throttled_list;
-#endif /* CONFIG_CFS_BANDWIDTH */
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-};
-
-static inline int rt_bandwidth_enabled(void)
-{
-       return sysctl_sched_rt_runtime >= 0;
-}
-
-/* Real-Time classes' related field in a runqueue: */
-struct rt_rq {
-       struct rt_prio_array active;
-       unsigned long rt_nr_running;
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-       struct {
-               int curr; /* highest queued rt task prio */
-#ifdef CONFIG_SMP
-               int next; /* next highest */
-#endif
-       } highest_prio;
-#endif
-#ifdef CONFIG_SMP
-       unsigned long rt_nr_migratory;
-       unsigned long rt_nr_total;
-       int overloaded;
-       struct plist_head pushable_tasks;
-#endif
-       int rt_throttled;
-       u64 rt_time;
-       u64 rt_runtime;
-       /* Nests inside the rq lock: */
-       raw_spinlock_t rt_runtime_lock;
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       unsigned long rt_nr_boosted;
-
-       struct rq *rq;
-       struct list_head leaf_rt_rq_list;
-       struct task_group *tg;
-#endif
-};
-
-#ifdef CONFIG_SMP
-
-/*
- * We add the notion of a root-domain which will be used to define per-domain
- * variables. Each exclusive cpuset essentially defines an island domain by
- * fully partitioning the member cpus from any other cpuset. Whenever a new
- * exclusive cpuset is created, we also create and attach a new root-domain
- * object.
- *
- */
-struct root_domain {
-       atomic_t refcount;
-       atomic_t rto_count;
-       struct rcu_head rcu;
-       cpumask_var_t span;
-       cpumask_var_t online;
-
-       /*
-        * The "RT overload" flag: it gets set if a CPU has more than
-        * one runnable RT task.
-        */
-       cpumask_var_t rto_mask;
-       struct cpupri cpupri;
-};
-
-extern struct root_domain def_root_domain;
-
-#endif /* CONFIG_SMP */
-
-/*
- * This is the main, per-CPU runqueue data structure.
- *
- * Locking rule: those places that want to lock multiple runqueues
- * (such as the load balancing or the thread migration code), lock
- * acquire operations must be ordered by ascending &runqueue.
- */
-struct rq {
-       /* runqueue lock: */
-       raw_spinlock_t lock;
-
-       /*
-        * nr_running and cpu_load should be in the same cacheline because
-        * remote CPUs use both these fields when doing load calculation.
-        */
-       unsigned long nr_running;
-       #define CPU_LOAD_IDX_MAX 5
-       unsigned long cpu_load[CPU_LOAD_IDX_MAX];
-       unsigned long last_load_update_tick;
-#ifdef CONFIG_NO_HZ
-       u64 nohz_stamp;
-       unsigned char nohz_balance_kick;
-#endif
-       int skip_clock_update;
-
-       /* capture load from *all* tasks on this cpu: */
-       struct load_weight load;
-       unsigned long nr_load_updates;
-       u64 nr_switches;
-
-       struct cfs_rq cfs;
-       struct rt_rq rt;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       /* list of leaf cfs_rq on this cpu: */
-       struct list_head leaf_cfs_rq_list;
-#endif
-#ifdef CONFIG_RT_GROUP_SCHED
-       struct list_head leaf_rt_rq_list;
-#endif
-
-       /*
-        * This is part of a global counter where only the total sum
-        * over all CPUs matters. A task can increase this counter on
-        * one CPU and if it got migrated afterwards it may decrease
-        * it on another CPU. Always updated under the runqueue lock:
-        */
-       unsigned long nr_uninterruptible;
-
-       struct task_struct *curr, *idle, *stop;
-       unsigned long next_balance;
-       struct mm_struct *prev_mm;
-
-       u64 clock;
-       u64 clock_task;
-
-       atomic_t nr_iowait;
-
-#ifdef CONFIG_SMP
-       struct root_domain *rd;
-       struct sched_domain *sd;
-
-       unsigned long cpu_power;
-
-       unsigned char idle_balance;
-       /* For active balancing */
-       int post_schedule;
-       int active_balance;
-       int push_cpu;
-       struct cpu_stop_work active_balance_work;
-       /* cpu of this runqueue: */
-       int cpu;
-       int online;
-
-       u64 rt_avg;
-       u64 age_stamp;
-       u64 idle_stamp;
-       u64 avg_idle;
-#endif
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-       u64 prev_irq_time;
-#endif
-#ifdef CONFIG_PARAVIRT
-       u64 prev_steal_time;
-#endif
-#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
-       u64 prev_steal_time_rq;
-#endif
-
-       /* calc_load related fields */
-       unsigned long calc_load_update;
-       long calc_load_active;
-
-#ifdef CONFIG_SCHED_HRTICK
-#ifdef CONFIG_SMP
-       int hrtick_csd_pending;
-       struct call_single_data hrtick_csd;
-#endif
-       struct hrtimer hrtick_timer;
-#endif
-
-#ifdef CONFIG_SCHEDSTATS
-       /* latency stats */
-       struct sched_info rq_sched_info;
-       unsigned long long rq_cpu_time;
-       /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
-
-       /* sys_sched_yield() stats */
-       unsigned int yld_count;
-
-       /* schedule() stats */
-       unsigned int sched_switch;
-       unsigned int sched_count;
-       unsigned int sched_goidle;
-
-       /* try_to_wake_up() stats */
-       unsigned int ttwu_count;
-       unsigned int ttwu_local;
-#endif
-
-#ifdef CONFIG_SMP
-       struct llist_head wake_list;
-#endif
-};
-
-static inline int cpu_of(struct rq *rq)
-{
-#ifdef CONFIG_SMP
-       return rq->cpu;
-#else
-       return 0;
-#endif
-}
-
-DECLARE_PER_CPU(struct rq, runqueues);
-
-#define rcu_dereference_check_sched_domain(p) \
-       rcu_dereference_check((p), \
-                             lockdep_is_held(&sched_domains_mutex))
-
-/*
- * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
- * See detach_destroy_domains: synchronize_sched for details.
- *
- * The domain tree of any CPU may only be accessed from within
- * preempt-disabled sections.
- */
-#define for_each_domain(cpu, __sd) \
-       for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
-
-#define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
-#define this_rq()              (&__get_cpu_var(runqueues))
-#define task_rq(p)             cpu_rq(task_cpu(p))
-#define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
-#define raw_rq()               (&__raw_get_cpu_var(runqueues))
-
-#include "sched_stats.h"
-#include "sched_autogroup.h"
-
-#ifdef CONFIG_CGROUP_SCHED
-
-/*
- * Return the group to which this tasks belongs.
- *
- * We use task_subsys_state_check() and extend the RCU verification with
- * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
- * task it moves into the cgroup. Therefore by holding either of those locks,
- * we pin the task to the current cgroup.
- */
-static inline struct task_group *task_group(struct task_struct *p)
-{
-       struct task_group *tg;
-       struct cgroup_subsys_state *css;
-
-       css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
-                       lockdep_is_held(&p->pi_lock) ||
-                       lockdep_is_held(&task_rq(p)->lock));
-       tg = container_of(css, struct task_group, css);
-
-       return autogroup_task_group(p, tg);
-}
-
-/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
-static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
-{
-#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
-       struct task_group *tg = task_group(p);
-#endif
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       p->se.cfs_rq = tg->cfs_rq[cpu];
-       p->se.parent = tg->se[cpu];
-#endif
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       p->rt.rt_rq  = tg->rt_rq[cpu];
-       p->rt.parent = tg->rt_se[cpu];
-#endif
-}
-
-#else /* CONFIG_CGROUP_SCHED */
-
-static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
-static inline struct task_group *task_group(struct task_struct *p)
-{
-       return NULL;
-}
-
-#endif /* CONFIG_CGROUP_SCHED */
-
-static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
-{
-       set_task_rq(p, cpu);
-#ifdef CONFIG_SMP
-       /*
-        * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
-        * successfuly executed on another CPU. We must ensure that updates of
-        * per-task data have been completed by this moment.
-        */
-       smp_wmb();
-       task_thread_info(p)->cpu = cpu;
-#endif
-}
-
-/*
- * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
- */
-#ifdef CONFIG_SCHED_DEBUG
-# define const_debug __read_mostly
-#else
-# define const_debug const
-#endif
-
-extern const_debug unsigned int sysctl_sched_features;
-
-#define SCHED_FEAT(name, enabled)      \
-       __SCHED_FEAT_##name ,
-
-enum {
-#include "sched_features.h"
-};
-
-#undef SCHED_FEAT
-
-#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
-
-static inline u64 global_rt_period(void)
-{
-       return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
-}
-
-static inline u64 global_rt_runtime(void)
-{
-       if (sysctl_sched_rt_runtime < 0)
-               return RUNTIME_INF;
-
-       return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
-}
-
-
-
-static inline int task_current(struct rq *rq, struct task_struct *p)
-{
-       return rq->curr == p;
-}
-
-static inline int task_running(struct rq *rq, struct task_struct *p)
-{
-#ifdef CONFIG_SMP
-       return p->on_cpu;
-#else
-       return task_current(rq, p);
-#endif
-}
-
-
-#ifndef prepare_arch_switch
-# define prepare_arch_switch(next)     do { } while (0)
-#endif
-#ifndef finish_arch_switch
-# define finish_arch_switch(prev)      do { } while (0)
-#endif
-
-#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-{
-#ifdef CONFIG_SMP
-       /*
-        * We can optimise this out completely for !SMP, because the
-        * SMP rebalancing from interrupt is the only thing that cares
-        * here.
-        */
-       next->on_cpu = 1;
-#endif
-}
-
-static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-{
-#ifdef CONFIG_SMP
-       /*
-        * After ->on_cpu is cleared, the task can be moved to a different CPU.
-        * We must ensure this doesn't happen until the switch is completely
-        * finished.
-        */
-       smp_wmb();
-       prev->on_cpu = 0;
-#endif
-#ifdef CONFIG_DEBUG_SPINLOCK
-       /* this is a valid case when another task releases the spinlock */
-       rq->lock.owner = current;
-#endif
-       /*
-        * If we are tracking spinlock dependencies then we have to
-        * fix up the runqueue lock - which gets 'carried over' from
-        * prev into current:
-        */
-       spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
-
-       raw_spin_unlock_irq(&rq->lock);
-}
-
-#else /* __ARCH_WANT_UNLOCKED_CTXSW */
-static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-{
-#ifdef CONFIG_SMP
-       /*
-        * We can optimise this out completely for !SMP, because the
-        * SMP rebalancing from interrupt is the only thing that cares
-        * here.
-        */
-       next->on_cpu = 1;
-#endif
-#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-       raw_spin_unlock_irq(&rq->lock);
-#else
-       raw_spin_unlock(&rq->lock);
-#endif
-}
-
-static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-{
-#ifdef CONFIG_SMP
-       /*
-        * After ->on_cpu is cleared, the task can be moved to a different CPU.
-        * We must ensure this doesn't happen until the switch is completely
-        * finished.
-        */
-       smp_wmb();
-       prev->on_cpu = 0;
-#endif
-#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-       local_irq_enable();
-#endif
-}
-#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
-
-
-static inline void update_load_add(struct load_weight *lw, unsigned long inc)
-{
-       lw->weight += inc;
-       lw->inv_weight = 0;
-}
-
-static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
-{
-       lw->weight -= dec;
-       lw->inv_weight = 0;
-}
-
-static inline void update_load_set(struct load_weight *lw, unsigned long w)
-{
-       lw->weight = w;
-       lw->inv_weight = 0;
-}
-
-/*
- * To aid in avoiding the subversion of "niceness" due to uneven distribution
- * of tasks with abnormal "nice" values across CPUs the contribution that
- * each task makes to its run queue's load is weighted according to its
- * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
- * scaled version of the new time slice allocation that they receive on time
- * slice expiry etc.
- */
-
-#define WEIGHT_IDLEPRIO                3
-#define WMULT_IDLEPRIO         1431655765
-
-/*
- * Nice levels are multiplicative, with a gentle 10% change for every
- * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
- * nice 1, it will get ~10% less CPU time than another CPU-bound task
- * that remained on nice 0.
- *
- * The "10% effect" is relative and cumulative: from _any_ nice level,
- * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
- * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
- * If a task goes up by ~10% and another task goes down by ~10% then
- * the relative distance between them is ~25%.)
- */
-static const int prio_to_weight[40] = {
- /* -20 */     88761,     71755,     56483,     46273,     36291,
- /* -15 */     29154,     23254,     18705,     14949,     11916,
- /* -10 */      9548,      7620,      6100,      4904,      3906,
- /*  -5 */      3121,      2501,      1991,      1586,      1277,
- /*   0 */      1024,       820,       655,       526,       423,
- /*   5 */       335,       272,       215,       172,       137,
- /*  10 */       110,        87,        70,        56,        45,
- /*  15 */        36,        29,        23,        18,        15,
-};
-
-/*
- * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
- *
- * In cases where the weight does not change often, we can use the
- * precalculated inverse to speed up arithmetics by turning divisions
- * into multiplications:
- */
-static const u32 prio_to_wmult[40] = {
- /* -20 */     48388,     59856,     76040,     92818,    118348,
- /* -15 */    147320,    184698,    229616,    287308,    360437,
- /* -10 */    449829,    563644,    704093,    875809,   1099582,
- /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
- /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
- /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
- /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
- /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
-};
-
-/* Time spent by the tasks of the cpu accounting group executing in ... */
-enum cpuacct_stat_index {
-       CPUACCT_STAT_USER,      /* ... user mode */
-       CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
-
-       CPUACCT_STAT_NSTATS,
-};
-
-
-#define sched_class_highest (&stop_sched_class)
-#define for_each_class(class) \
-   for (class = sched_class_highest; class; class = class->next)
-
-extern const struct sched_class stop_sched_class;
-extern const struct sched_class rt_sched_class;
-extern const struct sched_class fair_sched_class;
-extern const struct sched_class idle_sched_class;
-
-
-#ifdef CONFIG_SMP
-
-extern void trigger_load_balance(struct rq *rq, int cpu);
-extern void idle_balance(int this_cpu, struct rq *this_rq);
-
-#else  /* CONFIG_SMP */
-
-static inline void idle_balance(int cpu, struct rq *rq)
-{
-}
-
-#endif
-
-extern void sysrq_sched_debug_show(void);
-extern void sched_init_granularity(void);
-extern void update_max_interval(void);
-extern void update_group_power(struct sched_domain *sd, int cpu);
-extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
-extern void init_sched_rt_class(void);
-extern void init_sched_fair_class(void);
-
-extern void resched_task(struct task_struct *p);
-extern void resched_cpu(int cpu);
-
-extern struct rt_bandwidth def_rt_bandwidth;
-extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
-
-extern void update_cpu_load(struct rq *this_rq);
-
-#ifdef CONFIG_CGROUP_CPUACCT
-extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
-extern void cpuacct_update_stats(struct task_struct *tsk,
-               enum cpuacct_stat_index idx, cputime_t val);
-#else
-static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
-static inline void cpuacct_update_stats(struct task_struct *tsk,
-               enum cpuacct_stat_index idx, cputime_t val) {}
-#endif
-
-static inline void inc_nr_running(struct rq *rq)
-{
-       rq->nr_running++;
-}
-
-static inline void dec_nr_running(struct rq *rq)
-{
-       rq->nr_running--;
-}
-
-extern void update_rq_clock(struct rq *rq);
-
-extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
-extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
-
-extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
-
-extern const_debug unsigned int sysctl_sched_time_avg;
-extern const_debug unsigned int sysctl_sched_nr_migrate;
-extern const_debug unsigned int sysctl_sched_migration_cost;
-
-static inline u64 sched_avg_period(void)
-{
-       return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
-}
-
-void calc_load_account_idle(struct rq *this_rq);
-
-#ifdef CONFIG_SCHED_HRTICK
-
-/*
- * Use hrtick when:
- *  - enabled by features
- *  - hrtimer is actually high res
- */
-static inline int hrtick_enabled(struct rq *rq)
-{
-       if (!sched_feat(HRTICK))
-               return 0;
-       if (!cpu_active(cpu_of(rq)))
-               return 0;
-       return hrtimer_is_hres_active(&rq->hrtick_timer);
-}
-
-void hrtick_start(struct rq *rq, u64 delay);
-
-#endif /* CONFIG_SCHED_HRTICK */
-
-#ifdef CONFIG_SMP
-extern void sched_avg_update(struct rq *rq);
-static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
-{
-       rq->rt_avg += rt_delta;
-       sched_avg_update(rq);
-}
-#else
-static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
-static inline void sched_avg_update(struct rq *rq) { }
-#endif
-
-extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
-
-#ifdef CONFIG_SMP
-#ifdef CONFIG_PREEMPT
-
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
-
-/*
- * fair double_lock_balance: Safely acquires both rq->locks in a fair
- * way at the expense of forcing extra atomic operations in all
- * invocations.  This assures that the double_lock is acquired using the
- * same underlying policy as the spinlock_t on this architecture, which
- * reduces latency compared to the unfair variant below.  However, it
- * also adds more overhead and therefore may reduce throughput.
- */
-static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
-       __releases(this_rq->lock)
-       __acquires(busiest->lock)
-       __acquires(this_rq->lock)
-{
-       raw_spin_unlock(&this_rq->lock);
-       double_rq_lock(this_rq, busiest);
-
-       return 1;
-}
-
-#else
-/*
- * Unfair double_lock_balance: Optimizes throughput at the expense of
- * latency by eliminating extra atomic operations when the locks are
- * already in proper order on entry.  This favors lower cpu-ids and will
- * grant the double lock to lower cpus over higher ids under contention,
- * regardless of entry order into the function.
- */
-static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
-       __releases(this_rq->lock)
-       __acquires(busiest->lock)
-       __acquires(this_rq->lock)
-{
-       int ret = 0;
-
-       if (unlikely(!raw_spin_trylock(&busiest->lock))) {
-               if (busiest < this_rq) {
-                       raw_spin_unlock(&this_rq->lock);
-                       raw_spin_lock(&busiest->lock);
-                       raw_spin_lock_nested(&this_rq->lock,
-                                             SINGLE_DEPTH_NESTING);
-                       ret = 1;
-               } else
-                       raw_spin_lock_nested(&busiest->lock,
-                                             SINGLE_DEPTH_NESTING);
-       }
-       return ret;
-}
-
-#endif /* CONFIG_PREEMPT */
-
-/*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
- */
-static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
-{
-       if (unlikely(!irqs_disabled())) {
-               /* printk() doesn't work good under rq->lock */
-               raw_spin_unlock(&this_rq->lock);
-               BUG_ON(1);
-       }
-
-       return _double_lock_balance(this_rq, busiest);
-}
-
-static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
-       __releases(busiest->lock)
-{
-       raw_spin_unlock(&busiest->lock);
-       lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
-}
-
-/*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
-       __acquires(rq1->lock)
-       __acquires(rq2->lock)
-{
-       BUG_ON(!irqs_disabled());
-       if (rq1 == rq2) {
-               raw_spin_lock(&rq1->lock);
-               __acquire(rq2->lock);   /* Fake it out ;) */
-       } else {
-               if (rq1 < rq2) {
-                       raw_spin_lock(&rq1->lock);
-                       raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
-               } else {
-                       raw_spin_lock(&rq2->lock);
-                       raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
-               }
-       }
-}
-
-/*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
-static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
-       __releases(rq1->lock)
-       __releases(rq2->lock)
-{
-       raw_spin_unlock(&rq1->lock);
-       if (rq1 != rq2)
-               raw_spin_unlock(&rq2->lock);
-       else
-               __release(rq2->lock);
-}
-
-#else /* CONFIG_SMP */
-
-/*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
-       __acquires(rq1->lock)
-       __acquires(rq2->lock)
-{
-       BUG_ON(!irqs_disabled());
-       BUG_ON(rq1 != rq2);
-       raw_spin_lock(&rq1->lock);
-       __acquire(rq2->lock);   /* Fake it out ;) */
-}
-
-/*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
-static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
-       __releases(rq1->lock)
-       __releases(rq2->lock)
-{
-       BUG_ON(rq1 != rq2);
-       raw_spin_unlock(&rq1->lock);
-       __release(rq2->lock);
-}
-
-#endif
-
-extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
-extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
-extern void print_cfs_stats(struct seq_file *m, int cpu);
-extern void print_rt_stats(struct seq_file *m, int cpu);
-
-extern void init_cfs_rq(struct cfs_rq *cfs_rq);
-extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
-extern void unthrottle_offline_cfs_rqs(struct rq *rq);
-
-extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
new file mode 100644 (file)
index 0000000..9a7dd35
--- /dev/null
@@ -0,0 +1,20 @@
+ifdef CONFIG_FUNCTION_TRACER
+CFLAGS_REMOVE_clock.o = -pg
+endif
+
+ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
+# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
+# needed for x86 only.  Why this used to be enabled for all architectures is beyond
+# me.  I suspect most platforms don't need this, but until we know that for sure
+# I turn this off for IA-64 only.  Andreas Schwab says it's also needed on m68k
+# to get a correct value for the wait-channel (WCHAN in ps). --davidm
+CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
+endif
+
+obj-y += core.o clock.o idle_task.o fair.o rt.o stop_task.o
+obj-$(CONFIG_SMP) += cpupri.o
+obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
+obj-$(CONFIG_SCHEDSTATS) += stats.o
+obj-$(CONFIG_SCHED_DEBUG) += debug.o
+
+
diff --git a/kernel/sched/auto_group.c b/kernel/sched/auto_group.c
new file mode 100644 (file)
index 0000000..e8a1f83
--- /dev/null
@@ -0,0 +1,258 @@
+#ifdef CONFIG_SCHED_AUTOGROUP
+
+#include "sched.h"
+
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/kallsyms.h>
+#include <linux/utsname.h>
+#include <linux/security.h>
+#include <linux/export.h>
+
+unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1;
+static struct autogroup autogroup_default;
+static atomic_t autogroup_seq_nr;
+
+void __init autogroup_init(struct task_struct *init_task)
+{
+       autogroup_default.tg = &root_task_group;
+       kref_init(&autogroup_default.kref);
+       init_rwsem(&autogroup_default.lock);
+       init_task->signal->autogroup = &autogroup_default;
+}
+
+void autogroup_free(struct task_group *tg)
+{
+       kfree(tg->autogroup);
+}
+
+static inline void autogroup_destroy(struct kref *kref)
+{
+       struct autogroup *ag = container_of(kref, struct autogroup, kref);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       /* We've redirected RT tasks to the root task group... */
+       ag->tg->rt_se = NULL;
+       ag->tg->rt_rq = NULL;
+#endif
+       sched_destroy_group(ag->tg);
+}
+
+static inline void autogroup_kref_put(struct autogroup *ag)
+{
+       kref_put(&ag->kref, autogroup_destroy);
+}
+
+static inline struct autogroup *autogroup_kref_get(struct autogroup *ag)
+{
+       kref_get(&ag->kref);
+       return ag;
+}
+
+static inline struct autogroup *autogroup_task_get(struct task_struct *p)
+{
+       struct autogroup *ag;
+       unsigned long flags;
+
+       if (!lock_task_sighand(p, &flags))
+               return autogroup_kref_get(&autogroup_default);
+
+       ag = autogroup_kref_get(p->signal->autogroup);
+       unlock_task_sighand(p, &flags);
+
+       return ag;
+}
+
+static inline struct autogroup *autogroup_create(void)
+{
+       struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL);
+       struct task_group *tg;
+
+       if (!ag)
+               goto out_fail;
+
+       tg = sched_create_group(&root_task_group);
+
+       if (IS_ERR(tg))
+               goto out_free;
+
+       kref_init(&ag->kref);
+       init_rwsem(&ag->lock);
+       ag->id = atomic_inc_return(&autogroup_seq_nr);
+       ag->tg = tg;
+#ifdef CONFIG_RT_GROUP_SCHED
+       /*
+        * Autogroup RT tasks are redirected to the root task group
+        * so we don't have to move tasks around upon policy change,
+        * or flail around trying to allocate bandwidth on the fly.
+        * A bandwidth exception in __sched_setscheduler() allows
+        * the policy change to proceed.  Thereafter, task_group()
+        * returns &root_task_group, so zero bandwidth is required.
+        */
+       free_rt_sched_group(tg);
+       tg->rt_se = root_task_group.rt_se;
+       tg->rt_rq = root_task_group.rt_rq;
+#endif
+       tg->autogroup = ag;
+
+       return ag;
+
+out_free:
+       kfree(ag);
+out_fail:
+       if (printk_ratelimit()) {
+               printk(KERN_WARNING "autogroup_create: %s failure.\n",
+                       ag ? "sched_create_group()" : "kmalloc()");
+       }
+
+       return autogroup_kref_get(&autogroup_default);
+}
+
+bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
+{
+       if (tg != &root_task_group)
+               return false;
+
+       if (p->sched_class != &fair_sched_class)
+               return false;
+
+       /*
+        * We can only assume the task group can't go away on us if
+        * autogroup_move_group() can see us on ->thread_group list.
+        */
+       if (p->flags & PF_EXITING)
+               return false;
+
+       return true;
+}
+
+static void
+autogroup_move_group(struct task_struct *p, struct autogroup *ag)
+{
+       struct autogroup *prev;
+       struct task_struct *t;
+       unsigned long flags;
+
+       BUG_ON(!lock_task_sighand(p, &flags));
+
+       prev = p->signal->autogroup;
+       if (prev == ag) {
+               unlock_task_sighand(p, &flags);
+               return;
+       }
+
+       p->signal->autogroup = autogroup_kref_get(ag);
+
+       if (!ACCESS_ONCE(sysctl_sched_autogroup_enabled))
+               goto out;
+
+       t = p;
+       do {
+               sched_move_task(t);
+       } while_each_thread(p, t);
+
+out:
+       unlock_task_sighand(p, &flags);
+       autogroup_kref_put(prev);
+}
+
+/* Allocates GFP_KERNEL, cannot be called under any spinlock */
+void sched_autogroup_create_attach(struct task_struct *p)
+{
+       struct autogroup *ag = autogroup_create();
+
+       autogroup_move_group(p, ag);
+       /* drop extra reference added by autogroup_create() */
+       autogroup_kref_put(ag);
+}
+EXPORT_SYMBOL(sched_autogroup_create_attach);
+
+/* Cannot be called under siglock.  Currently has no users */
+void sched_autogroup_detach(struct task_struct *p)
+{
+       autogroup_move_group(p, &autogroup_default);
+}
+EXPORT_SYMBOL(sched_autogroup_detach);
+
+void sched_autogroup_fork(struct signal_struct *sig)
+{
+       sig->autogroup = autogroup_task_get(current);
+}
+
+void sched_autogroup_exit(struct signal_struct *sig)
+{
+       autogroup_kref_put(sig->autogroup);
+}
+
+static int __init setup_autogroup(char *str)
+{
+       sysctl_sched_autogroup_enabled = 0;
+
+       return 1;
+}
+
+__setup("noautogroup", setup_autogroup);
+
+#ifdef CONFIG_PROC_FS
+
+int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice)
+{
+       static unsigned long next = INITIAL_JIFFIES;
+       struct autogroup *ag;
+       int err;
+
+       if (*nice < -20 || *nice > 19)
+               return -EINVAL;
+
+       err = security_task_setnice(current, *nice);
+       if (err)
+               return err;
+
+       if (*nice < 0 && !can_nice(current, *nice))
+               return -EPERM;
+
+       /* this is a heavy operation taking global locks.. */
+       if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next))
+               return -EAGAIN;
+
+       next = HZ / 10 + jiffies;
+       ag = autogroup_task_get(p);
+
+       down_write(&ag->lock);
+       err = sched_group_set_shares(ag->tg, prio_to_weight[*nice + 20]);
+       if (!err)
+               ag->nice = *nice;
+       up_write(&ag->lock);
+
+       autogroup_kref_put(ag);
+
+       return err;
+}
+
+void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
+{
+       struct autogroup *ag = autogroup_task_get(p);
+
+       if (!task_group_is_autogroup(ag->tg))
+               goto out;
+
+       down_read(&ag->lock);
+       seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice);
+       up_read(&ag->lock);
+
+out:
+       autogroup_kref_put(ag);
+}
+#endif /* CONFIG_PROC_FS */
+
+#ifdef CONFIG_SCHED_DEBUG
+int autogroup_path(struct task_group *tg, char *buf, int buflen)
+{
+       if (!task_group_is_autogroup(tg))
+               return 0;
+
+       return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
+}
+#endif /* CONFIG_SCHED_DEBUG */
+
+#endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched/auto_group.h b/kernel/sched/auto_group.h
new file mode 100644 (file)
index 0000000..8bd0471
--- /dev/null
@@ -0,0 +1,64 @@
+#ifdef CONFIG_SCHED_AUTOGROUP
+
+#include <linux/kref.h>
+#include <linux/rwsem.h>
+
+struct autogroup {
+       /*
+        * reference doesn't mean how many thread attach to this
+        * autogroup now. It just stands for the number of task
+        * could use this autogroup.
+        */
+       struct kref             kref;
+       struct task_group       *tg;
+       struct rw_semaphore     lock;
+       unsigned long           id;
+       int                     nice;
+};
+
+extern void autogroup_init(struct task_struct *init_task);
+extern void autogroup_free(struct task_group *tg);
+
+static inline bool task_group_is_autogroup(struct task_group *tg)
+{
+       return !!tg->autogroup;
+}
+
+extern bool task_wants_autogroup(struct task_struct *p, struct task_group *tg);
+
+static inline struct task_group *
+autogroup_task_group(struct task_struct *p, struct task_group *tg)
+{
+       int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled);
+
+       if (enabled && task_wants_autogroup(p, tg))
+               return p->signal->autogroup->tg;
+
+       return tg;
+}
+
+extern int autogroup_path(struct task_group *tg, char *buf, int buflen);
+
+#else /* !CONFIG_SCHED_AUTOGROUP */
+
+static inline void autogroup_init(struct task_struct *init_task) {  }
+static inline void autogroup_free(struct task_group *tg) { }
+static inline bool task_group_is_autogroup(struct task_group *tg)
+{
+       return 0;
+}
+
+static inline struct task_group *
+autogroup_task_group(struct task_struct *p, struct task_group *tg)
+{
+       return tg;
+}
+
+#ifdef CONFIG_SCHED_DEBUG
+static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
+{
+       return 0;
+}
+#endif
+
+#endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c
new file mode 100644 (file)
index 0000000..c685e31
--- /dev/null
@@ -0,0 +1,350 @@
+/*
+ * sched_clock for unstable cpu clocks
+ *
+ *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ *
+ *  Updates and enhancements:
+ *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
+ *
+ * Based on code by:
+ *   Ingo Molnar <mingo@redhat.com>
+ *   Guillaume Chazarain <guichaz@gmail.com>
+ *
+ *
+ * What:
+ *
+ * cpu_clock(i) provides a fast (execution time) high resolution
+ * clock with bounded drift between CPUs. The value of cpu_clock(i)
+ * is monotonic for constant i. The timestamp returned is in nanoseconds.
+ *
+ * ######################### BIG FAT WARNING ##########################
+ * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
+ * # go backwards !!                                                  #
+ * ####################################################################
+ *
+ * There is no strict promise about the base, although it tends to start
+ * at 0 on boot (but people really shouldn't rely on that).
+ *
+ * cpu_clock(i)       -- can be used from any context, including NMI.
+ * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
+ * local_clock()      -- is cpu_clock() on the current cpu.
+ *
+ * How:
+ *
+ * The implementation either uses sched_clock() when
+ * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
+ * sched_clock() is assumed to provide these properties (mostly it means
+ * the architecture provides a globally synchronized highres time source).
+ *
+ * Otherwise it tries to create a semi stable clock from a mixture of other
+ * clocks, including:
+ *
+ *  - GTOD (clock monotomic)
+ *  - sched_clock()
+ *  - explicit idle events
+ *
+ * We use GTOD as base and use sched_clock() deltas to improve resolution. The
+ * deltas are filtered to provide monotonicity and keeping it within an
+ * expected window.
+ *
+ * Furthermore, explicit sleep and wakeup hooks allow us to account for time
+ * that is otherwise invisible (TSC gets stopped).
+ *
+ *
+ * Notes:
+ *
+ * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
+ * like cpufreq interrupts that can change the base clock (TSC) multiplier
+ * and cause funny jumps in time -- although the filtering provided by
+ * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
+ * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
+ * sched_clock().
+ */
+#include <linux/spinlock.h>
+#include <linux/hardirq.h>
+#include <linux/export.h>
+#include <linux/percpu.h>
+#include <linux/ktime.h>
+#include <linux/sched.h>
+
+/*
+ * Scheduler clock - returns current time in nanosec units.
+ * This is default implementation.
+ * Architectures and sub-architectures can override this.
+ */
+unsigned long long __attribute__((weak)) sched_clock(void)
+{
+       return (unsigned long long)(jiffies - INITIAL_JIFFIES)
+                                       * (NSEC_PER_SEC / HZ);
+}
+EXPORT_SYMBOL_GPL(sched_clock);
+
+__read_mostly int sched_clock_running;
+
+#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
+__read_mostly int sched_clock_stable;
+
+struct sched_clock_data {
+       u64                     tick_raw;
+       u64                     tick_gtod;
+       u64                     clock;
+};
+
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
+
+static inline struct sched_clock_data *this_scd(void)
+{
+       return &__get_cpu_var(sched_clock_data);
+}
+
+static inline struct sched_clock_data *cpu_sdc(int cpu)
+{
+       return &per_cpu(sched_clock_data, cpu);
+}
+
+void sched_clock_init(void)
+{
+       u64 ktime_now = ktime_to_ns(ktime_get());
+       int cpu;
+
+       for_each_possible_cpu(cpu) {
+               struct sched_clock_data *scd = cpu_sdc(cpu);
+
+               scd->tick_raw = 0;
+               scd->tick_gtod = ktime_now;
+               scd->clock = ktime_now;
+       }
+
+       sched_clock_running = 1;
+}
+
+/*
+ * min, max except they take wrapping into account
+ */
+
+static inline u64 wrap_min(u64 x, u64 y)
+{
+       return (s64)(x - y) < 0 ? x : y;
+}
+
+static inline u64 wrap_max(u64 x, u64 y)
+{
+       return (s64)(x - y) > 0 ? x : y;
+}
+
+/*
+ * update the percpu scd from the raw @now value
+ *
+ *  - filter out backward motion
+ *  - use the GTOD tick value to create a window to filter crazy TSC values
+ */
+static u64 sched_clock_local(struct sched_clock_data *scd)
+{
+       u64 now, clock, old_clock, min_clock, max_clock;
+       s64 delta;
+
+again:
+       now = sched_clock();
+       delta = now - scd->tick_raw;
+       if (unlikely(delta < 0))
+               delta = 0;
+
+       old_clock = scd->clock;
+
+       /*
+        * scd->clock = clamp(scd->tick_gtod + delta,
+        *                    max(scd->tick_gtod, scd->clock),
+        *                    scd->tick_gtod + TICK_NSEC);
+        */
+
+       clock = scd->tick_gtod + delta;
+       min_clock = wrap_max(scd->tick_gtod, old_clock);
+       max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
+
+       clock = wrap_max(clock, min_clock);
+       clock = wrap_min(clock, max_clock);
+
+       if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
+               goto again;
+
+       return clock;
+}
+
+static u64 sched_clock_remote(struct sched_clock_data *scd)
+{
+       struct sched_clock_data *my_scd = this_scd();
+       u64 this_clock, remote_clock;
+       u64 *ptr, old_val, val;
+
+       sched_clock_local(my_scd);
+again:
+       this_clock = my_scd->clock;
+       remote_clock = scd->clock;
+
+       /*
+        * Use the opportunity that we have both locks
+        * taken to couple the two clocks: we take the
+        * larger time as the latest time for both
+        * runqueues. (this creates monotonic movement)
+        */
+       if (likely((s64)(remote_clock - this_clock) < 0)) {
+               ptr = &scd->clock;
+               old_val = remote_clock;
+               val = this_clock;
+       } else {
+               /*
+                * Should be rare, but possible:
+                */
+               ptr = &my_scd->clock;
+               old_val = this_clock;
+               val = remote_clock;
+       }
+
+       if (cmpxchg64(ptr, old_val, val) != old_val)
+               goto again;
+
+       return val;
+}
+
+/*
+ * Similar to cpu_clock(), but requires local IRQs to be disabled.
+ *
+ * See cpu_clock().
+ */
+u64 sched_clock_cpu(int cpu)
+{
+       struct sched_clock_data *scd;
+       u64 clock;
+
+       WARN_ON_ONCE(!irqs_disabled());
+
+       if (sched_clock_stable)
+               return sched_clock();
+
+       if (unlikely(!sched_clock_running))
+               return 0ull;
+
+       scd = cpu_sdc(cpu);
+
+       if (cpu != smp_processor_id())
+               clock = sched_clock_remote(scd);
+       else
+               clock = sched_clock_local(scd);
+
+       return clock;
+}
+
+void sched_clock_tick(void)
+{
+       struct sched_clock_data *scd;
+       u64 now, now_gtod;
+
+       if (sched_clock_stable)
+               return;
+
+       if (unlikely(!sched_clock_running))
+               return;
+
+       WARN_ON_ONCE(!irqs_disabled());
+
+       scd = this_scd();
+       now_gtod = ktime_to_ns(ktime_get());
+       now = sched_clock();
+
+       scd->tick_raw = now;
+       scd->tick_gtod = now_gtod;
+       sched_clock_local(scd);
+}
+
+/*
+ * We are going deep-idle (irqs are disabled):
+ */
+void sched_clock_idle_sleep_event(void)
+{
+       sched_clock_cpu(smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
+
+/*
+ * We just idled delta nanoseconds (called with irqs disabled):
+ */
+void sched_clock_idle_wakeup_event(u64 delta_ns)
+{
+       if (timekeeping_suspended)
+               return;
+
+       sched_clock_tick();
+       touch_softlockup_watchdog();
+}
+EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
+
+/*
+ * As outlined at the top, provides a fast, high resolution, nanosecond
+ * time source that is monotonic per cpu argument and has bounded drift
+ * between cpus.
+ *
+ * ######################### BIG FAT WARNING ##########################
+ * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
+ * # go backwards !!                                                  #
+ * ####################################################################
+ */
+u64 cpu_clock(int cpu)
+{
+       u64 clock;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       clock = sched_clock_cpu(cpu);
+       local_irq_restore(flags);
+
+       return clock;
+}
+
+/*
+ * Similar to cpu_clock() for the current cpu. Time will only be observed
+ * to be monotonic if care is taken to only compare timestampt taken on the
+ * same CPU.
+ *
+ * See cpu_clock().
+ */
+u64 local_clock(void)
+{
+       u64 clock;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       clock = sched_clock_cpu(smp_processor_id());
+       local_irq_restore(flags);
+
+       return clock;
+}
+
+#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
+
+void sched_clock_init(void)
+{
+       sched_clock_running = 1;
+}
+
+u64 sched_clock_cpu(int cpu)
+{
+       if (unlikely(!sched_clock_running))
+               return 0;
+
+       return sched_clock();
+}
+
+u64 cpu_clock(int cpu)
+{
+       return sched_clock_cpu(cpu);
+}
+
+u64 local_clock(void)
+{
+       return sched_clock_cpu(0);
+}
+
+#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
+
+EXPORT_SYMBOL_GPL(cpu_clock);
+EXPORT_SYMBOL_GPL(local_clock);
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
new file mode 100644 (file)
index 0000000..ca8fd44
--- /dev/null
@@ -0,0 +1,8101 @@
+/*
+ *  kernel/sched/core.c
+ *
+ *  Kernel scheduler and related syscalls
+ *
+ *  Copyright (C) 1991-2002  Linus Torvalds
+ *
+ *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
+ *             make semaphores SMP safe
+ *  1998-11-19 Implemented schedule_timeout() and related stuff
+ *             by Andrea Arcangeli
+ *  2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
+ *             hybrid priority-list and round-robin design with
+ *             an array-switch method of distributing timeslices
+ *             and per-CPU runqueues.  Cleanups and useful suggestions
+ *             by Davide Libenzi, preemptible kernel bits by Robert Love.
+ *  2003-09-03 Interactivity tuning by Con Kolivas.
+ *  2004-04-02 Scheduler domains code by Nick Piggin
+ *  2007-04-15  Work begun on replacing all interactivity tuning with a
+ *              fair scheduling design by Con Kolivas.
+ *  2007-05-05  Load balancing (smp-nice) and other improvements
+ *              by Peter Williams
+ *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
+ *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
+ *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
+ *              Thomas Gleixner, Mike Kravetz
+ */
+
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/nmi.h>
+#include <linux/init.h>
+#include <linux/uaccess.h>
+#include <linux/highmem.h>
+#include <asm/mmu_context.h>
+#include <linux/interrupt.h>
+#include <linux/capability.h>
+#include <linux/completion.h>
+#include <linux/kernel_stat.h>
+#include <linux/debug_locks.h>
+#include <linux/perf_event.h>
+#include <linux/security.h>
+#include <linux/notifier.h>
+#include <linux/profile.h>
+#include <linux/freezer.h>
+#include <linux/vmalloc.h>
+#include <linux/blkdev.h>
+#include <linux/delay.h>
+#include <linux/pid_namespace.h>
+#include <linux/smp.h>
+#include <linux/threads.h>
+#include <linux/timer.h>
+#include <linux/rcupdate.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/percpu.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/sysctl.h>
+#include <linux/syscalls.h>
+#include <linux/times.h>
+#include <linux/tsacct_kern.h>
+#include <linux/kprobes.h>
+#include <linux/delayacct.h>
+#include <linux/unistd.h>
+#include <linux/pagemap.h>
+#include <linux/hrtimer.h>
+#include <linux/tick.h>
+#include <linux/debugfs.h>
+#include <linux/ctype.h>
+#include <linux/ftrace.h>
+#include <linux/slab.h>
+#include <linux/init_task.h>
+
+#include <asm/tlb.h>
+#include <asm/irq_regs.h>
+#ifdef CONFIG_PARAVIRT
+#include <asm/paravirt.h>
+#endif
+
+#include "sched.h"
+#include "../workqueue_sched.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/sched.h>
+
+void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
+{
+       unsigned long delta;
+       ktime_t soft, hard, now;
+
+       for (;;) {
+               if (hrtimer_active(period_timer))
+                       break;
+
+               now = hrtimer_cb_get_time(period_timer);
+               hrtimer_forward(period_timer, now, period);
+
+               soft = hrtimer_get_softexpires(period_timer);
+               hard = hrtimer_get_expires(period_timer);
+               delta = ktime_to_ns(ktime_sub(hard, soft));
+               __hrtimer_start_range_ns(period_timer, soft, delta,
+                                        HRTIMER_MODE_ABS_PINNED, 0);
+       }
+}
+
+DEFINE_MUTEX(sched_domains_mutex);
+DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+
+static void update_rq_clock_task(struct rq *rq, s64 delta);
+
+void update_rq_clock(struct rq *rq)
+{
+       s64 delta;
+
+       if (rq->skip_clock_update > 0)
+               return;
+
+       delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
+       rq->clock += delta;
+       update_rq_clock_task(rq, delta);
+}
+
+/*
+ * Debugging: various feature bits
+ */
+
+#define SCHED_FEAT(name, enabled)      \
+       (1UL << __SCHED_FEAT_##name) * enabled |
+
+const_debug unsigned int sysctl_sched_features =
+#include "features.h"
+       0;
+
+#undef SCHED_FEAT
+
+#ifdef CONFIG_SCHED_DEBUG
+#define SCHED_FEAT(name, enabled)      \
+       #name ,
+
+static __read_mostly char *sched_feat_names[] = {
+#include "features.h"
+       NULL
+};
+
+#undef SCHED_FEAT
+
+static int sched_feat_show(struct seq_file *m, void *v)
+{
+       int i;
+
+       for (i = 0; sched_feat_names[i]; i++) {
+               if (!(sysctl_sched_features & (1UL << i)))
+                       seq_puts(m, "NO_");
+               seq_printf(m, "%s ", sched_feat_names[i]);
+       }
+       seq_puts(m, "\n");
+
+       return 0;
+}
+
+static ssize_t
+sched_feat_write(struct file *filp, const char __user *ubuf,
+               size_t cnt, loff_t *ppos)
+{
+       char buf[64];
+       char *cmp;
+       int neg = 0;
+       int i;
+
+       if (cnt > 63)
+               cnt = 63;
+
+       if (copy_from_user(&buf, ubuf, cnt))
+               return -EFAULT;
+
+       buf[cnt] = 0;
+       cmp = strstrip(buf);
+
+       if (strncmp(cmp, "NO_", 3) == 0) {
+               neg = 1;
+               cmp += 3;
+       }
+
+       for (i = 0; sched_feat_names[i]; i++) {
+               if (strcmp(cmp, sched_feat_names[i]) == 0) {
+                       if (neg)
+                               sysctl_sched_features &= ~(1UL << i);
+                       else
+                               sysctl_sched_features |= (1UL << i);
+                       break;
+               }
+       }
+
+       if (!sched_feat_names[i])
+               return -EINVAL;
+
+       *ppos += cnt;
+
+       return cnt;
+}
+
+static int sched_feat_open(struct inode *inode, struct file *filp)
+{
+       return single_open(filp, sched_feat_show, NULL);
+}
+
+static const struct file_operations sched_feat_fops = {
+       .open           = sched_feat_open,
+       .write          = sched_feat_write,
+       .read           = seq_read,
+       .llseek         = seq_lseek,
+       .release        = single_release,
+};
+
+static __init int sched_init_debug(void)
+{
+       debugfs_create_file("sched_features", 0644, NULL, NULL,
+                       &sched_feat_fops);
+
+       return 0;
+}
+late_initcall(sched_init_debug);
+
+#endif
+
+/*
+ * Number of tasks to iterate in a single balance run.
+ * Limited because this is done with IRQs disabled.
+ */
+const_debug unsigned int sysctl_sched_nr_migrate = 32;
+
+/*
+ * period over which we average the RT time consumption, measured
+ * in ms.
+ *
+ * default: 1s
+ */
+const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
+
+/*
+ * period over which we measure -rt task cpu usage in us.
+ * default: 1s
+ */
+unsigned int sysctl_sched_rt_period = 1000000;
+
+__read_mostly int scheduler_running;
+
+/*
+ * part of the period that we allow rt tasks to run in us.
+ * default: 0.95s
+ */
+int sysctl_sched_rt_runtime = 950000;
+
+
+
+/*
+ * __task_rq_lock - lock the rq @p resides on.
+ */
+static inline struct rq *__task_rq_lock(struct task_struct *p)
+       __acquires(rq->lock)
+{
+       struct rq *rq;
+
+       lockdep_assert_held(&p->pi_lock);
+
+       for (;;) {
+               rq = task_rq(p);
+               raw_spin_lock(&rq->lock);
+               if (likely(rq == task_rq(p)))
+                       return rq;
+               raw_spin_unlock(&rq->lock);
+       }
+}
+
+/*
+ * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
+ */
+static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
+       __acquires(p->pi_lock)
+       __acquires(rq->lock)
+{
+       struct rq *rq;
+
+       for (;;) {
+               raw_spin_lock_irqsave(&p->pi_lock, *flags);
+               rq = task_rq(p);
+               raw_spin_lock(&rq->lock);
+               if (likely(rq == task_rq(p)))
+                       return rq;
+               raw_spin_unlock(&rq->lock);
+               raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
+       }
+}
+
+static void __task_rq_unlock(struct rq *rq)
+       __releases(rq->lock)
+{
+       raw_spin_unlock(&rq->lock);
+}
+
+static inline void
+task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
+       __releases(rq->lock)
+       __releases(p->pi_lock)
+{
+       raw_spin_unlock(&rq->lock);
+       raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
+}
+
+/*
+ * this_rq_lock - lock this runqueue and disable interrupts.
+ */
+static struct rq *this_rq_lock(void)
+       __acquires(rq->lock)
+{
+       struct rq *rq;
+
+       local_irq_disable();
+       rq = this_rq();
+       raw_spin_lock(&rq->lock);
+
+       return rq;
+}
+
+#ifdef CONFIG_SCHED_HRTICK
+/*
+ * Use HR-timers to deliver accurate preemption points.
+ *
+ * Its all a bit involved since we cannot program an hrt while holding the
+ * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
+ * reschedule event.
+ *
+ * When we get rescheduled we reprogram the hrtick_timer outside of the
+ * rq->lock.
+ */
+
+static void hrtick_clear(struct rq *rq)
+{
+       if (hrtimer_active(&rq->hrtick_timer))
+               hrtimer_cancel(&rq->hrtick_timer);
+}
+
+/*
+ * High-resolution timer tick.
+ * Runs from hardirq context with interrupts disabled.
+ */
+static enum hrtimer_restart hrtick(struct hrtimer *timer)
+{
+       struct rq *rq = container_of(timer, struct rq, hrtick_timer);
+
+       WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
+
+       raw_spin_lock(&rq->lock);
+       update_rq_clock(rq);
+       rq->curr->sched_class->task_tick(rq, rq->curr, 1);
+       raw_spin_unlock(&rq->lock);
+
+       return HRTIMER_NORESTART;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * called from hardirq (IPI) context
+ */
+static void __hrtick_start(void *arg)
+{
+       struct rq *rq = arg;
+
+       raw_spin_lock(&rq->lock);
+       hrtimer_restart(&rq->hrtick_timer);
+       rq->hrtick_csd_pending = 0;
+       raw_spin_unlock(&rq->lock);
+}
+
+/*
+ * Called to set the hrtick timer state.
+ *
+ * called with rq->lock held and irqs disabled
+ */
+void hrtick_start(struct rq *rq, u64 delay)
+{
+       struct hrtimer *timer = &rq->hrtick_timer;
+       ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
+
+       hrtimer_set_expires(timer, time);
+
+       if (rq == this_rq()) {
+               hrtimer_restart(timer);
+       } else if (!rq->hrtick_csd_pending) {
+               __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
+               rq->hrtick_csd_pending = 1;
+       }
+}
+
+static int
+hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
+{
+       int cpu = (int)(long)hcpu;
+
+       switch (action) {
+       case CPU_UP_CANCELED:
+       case CPU_UP_CANCELED_FROZEN:
+       case CPU_DOWN_PREPARE:
+       case CPU_DOWN_PREPARE_FROZEN:
+       case CPU_DEAD:
+       case CPU_DEAD_FROZEN:
+               hrtick_clear(cpu_rq(cpu));
+               return NOTIFY_OK;
+       }
+
+       return NOTIFY_DONE;
+}
+
+static __init void init_hrtick(void)
+{
+       hotcpu_notifier(hotplug_hrtick, 0);
+}
+#else
+/*
+ * Called to set the hrtick timer state.
+ *
+ * called with rq->lock held and irqs disabled
+ */
+void hrtick_start(struct rq *rq, u64 delay)
+{
+       __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
+                       HRTIMER_MODE_REL_PINNED, 0);
+}
+
+static inline void init_hrtick(void)
+{
+}
+#endif /* CONFIG_SMP */
+
+static void init_rq_hrtick(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+       rq->hrtick_csd_pending = 0;
+
+       rq->hrtick_csd.flags = 0;
+       rq->hrtick_csd.func = __hrtick_start;
+       rq->hrtick_csd.info = rq;
+#endif
+
+       hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       rq->hrtick_timer.function = hrtick;
+}
+#else  /* CONFIG_SCHED_HRTICK */
+static inline void hrtick_clear(struct rq *rq)
+{
+}
+
+static inline void init_rq_hrtick(struct rq *rq)
+{
+}
+
+static inline void init_hrtick(void)
+{
+}
+#endif /* CONFIG_SCHED_HRTICK */
+
+/*
+ * resched_task - mark a task 'to be rescheduled now'.
+ *
+ * On UP this means the setting of the need_resched flag, on SMP it
+ * might also involve a cross-CPU call to trigger the scheduler on
+ * the target CPU.
+ */
+#ifdef CONFIG_SMP
+
+#ifndef tsk_is_polling
+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
+#endif
+
+void resched_task(struct task_struct *p)
+{
+       int cpu;
+
+       assert_raw_spin_locked(&task_rq(p)->lock);
+
+       if (test_tsk_need_resched(p))
+               return;
+
+       set_tsk_need_resched(p);
+
+       cpu = task_cpu(p);
+       if (cpu == smp_processor_id())
+               return;
+
+       /* NEED_RESCHED must be visible before we test polling */
+       smp_mb();
+       if (!tsk_is_polling(p))
+               smp_send_reschedule(cpu);
+}
+
+void resched_cpu(int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long flags;
+
+       if (!raw_spin_trylock_irqsave(&rq->lock, flags))
+               return;
+       resched_task(cpu_curr(cpu));
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * In the semi idle case, use the nearest busy cpu for migrating timers
+ * from an idle cpu.  This is good for power-savings.
+ *
+ * We don't do similar optimization for completely idle system, as
+ * selecting an idle cpu will add more delays to the timers than intended
+ * (as that cpu's timer base may not be uptodate wrt jiffies etc).
+ */
+int get_nohz_timer_target(void)
+{
+       int cpu = smp_processor_id();
+       int i;
+       struct sched_domain *sd;
+
+       rcu_read_lock();
+       for_each_domain(cpu, sd) {
+               for_each_cpu(i, sched_domain_span(sd)) {
+                       if (!idle_cpu(i)) {
+                               cpu = i;
+                               goto unlock;
+                       }
+               }
+       }
+unlock:
+       rcu_read_unlock();
+       return cpu;
+}
+/*
+ * When add_timer_on() enqueues a timer into the timer wheel of an
+ * idle CPU then this timer might expire before the next timer event
+ * which is scheduled to wake up that CPU. In case of a completely
+ * idle system the next event might even be infinite time into the
+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
+ * leaves the inner idle loop so the newly added timer is taken into
+ * account when the CPU goes back to idle and evaluates the timer
+ * wheel for the next timer event.
+ */
+void wake_up_idle_cpu(int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+
+       if (cpu == smp_processor_id())
+               return;
+
+       /*
+        * This is safe, as this function is called with the timer
+        * wheel base lock of (cpu) held. When the CPU is on the way
+        * to idle and has not yet set rq->curr to idle then it will
+        * be serialized on the timer wheel base lock and take the new
+        * timer into account automatically.
+        */
+       if (rq->curr != rq->idle)
+               return;
+
+       /*
+        * We can set TIF_RESCHED on the idle task of the other CPU
+        * lockless. The worst case is that the other CPU runs the
+        * idle task through an additional NOOP schedule()
+        */
+       set_tsk_need_resched(rq->idle);
+
+       /* NEED_RESCHED must be visible before we test polling */
+       smp_mb();
+       if (!tsk_is_polling(rq->idle))
+               smp_send_reschedule(cpu);
+}
+
+static inline bool got_nohz_idle_kick(void)
+{
+       return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
+}
+
+#else /* CONFIG_NO_HZ */
+
+static inline bool got_nohz_idle_kick(void)
+{
+       return false;
+}
+
+#endif /* CONFIG_NO_HZ */
+
+void sched_avg_update(struct rq *rq)
+{
+       s64 period = sched_avg_period();
+
+       while ((s64)(rq->clock - rq->age_stamp) > period) {
+               /*
+                * Inline assembly required to prevent the compiler
+                * optimising this loop into a divmod call.
+                * See __iter_div_u64_rem() for another example of this.
+                */
+               asm("" : "+rm" (rq->age_stamp));
+               rq->age_stamp += period;
+               rq->rt_avg /= 2;
+       }
+}
+
+#else /* !CONFIG_SMP */
+void resched_task(struct task_struct *p)
+{
+       assert_raw_spin_locked(&task_rq(p)->lock);
+       set_tsk_need_resched(p);
+}
+#endif /* CONFIG_SMP */
+
+#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
+                       (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
+/*
+ * Iterate task_group tree rooted at *from, calling @down when first entering a
+ * node and @up when leaving it for the final time.
+ *
+ * Caller must hold rcu_lock or sufficient equivalent.
+ */
+int walk_tg_tree_from(struct task_group *from,
+                            tg_visitor down, tg_visitor up, void *data)
+{
+       struct task_group *parent, *child;
+       int ret;
+
+       parent = from;
+
+down:
+       ret = (*down)(parent, data);
+       if (ret)
+               goto out;
+       list_for_each_entry_rcu(child, &parent->children, siblings) {
+               parent = child;
+               goto down;
+
+up:
+               continue;
+       }
+       ret = (*up)(parent, data);
+       if (ret || parent == from)
+               goto out;
+
+       child = parent;
+       parent = parent->parent;
+       if (parent)
+               goto up;
+out:
+       return ret;
+}
+
+int tg_nop(struct task_group *tg, void *data)
+{
+       return 0;
+}
+#endif
+
+void update_cpu_load(struct rq *this_rq);
+
+static void set_load_weight(struct task_struct *p)
+{
+       int prio = p->static_prio - MAX_RT_PRIO;
+       struct load_weight *load = &p->se.load;
+
+       /*
+        * SCHED_IDLE tasks get minimal weight:
+        */
+       if (p->policy == SCHED_IDLE) {
+               load->weight = scale_load(WEIGHT_IDLEPRIO);
+               load->inv_weight = WMULT_IDLEPRIO;
+               return;
+       }
+
+       load->weight = scale_load(prio_to_weight[prio]);
+       load->inv_weight = prio_to_wmult[prio];
+}
+
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
+{
+       update_rq_clock(rq);
+       sched_info_queued(p);
+       p->sched_class->enqueue_task(rq, p, flags);
+}
+
+static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
+{
+       update_rq_clock(rq);
+       sched_info_dequeued(p);
+       p->sched_class->dequeue_task(rq, p, flags);
+}
+
+/*
+ * activate_task - move a task to the runqueue.
+ */
+void activate_task(struct rq *rq, struct task_struct *p, int flags)
+{
+       if (task_contributes_to_load(p))
+               rq->nr_uninterruptible--;
+
+       enqueue_task(rq, p, flags);
+}
+
+/*
+ * deactivate_task - remove a task from the runqueue.
+ */
+void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
+{
+       if (task_contributes_to_load(p))
+               rq->nr_uninterruptible++;
+
+       dequeue_task(rq, p, flags);
+}
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+
+/*
+ * There are no locks covering percpu hardirq/softirq time.
+ * They are only modified in account_system_vtime, on corresponding CPU
+ * with interrupts disabled. So, writes are safe.
+ * They are read and saved off onto struct rq in update_rq_clock().
+ * This may result in other CPU reading this CPU's irq time and can
+ * race with irq/account_system_vtime on this CPU. We would either get old
+ * or new value with a side effect of accounting a slice of irq time to wrong
+ * task when irq is in progress while we read rq->clock. That is a worthy
+ * compromise in place of having locks on each irq in account_system_time.
+ */
+static DEFINE_PER_CPU(u64, cpu_hardirq_time);
+static DEFINE_PER_CPU(u64, cpu_softirq_time);
+
+static DEFINE_PER_CPU(u64, irq_start_time);
+static int sched_clock_irqtime;
+
+void enable_sched_clock_irqtime(void)
+{
+       sched_clock_irqtime = 1;
+}
+
+void disable_sched_clock_irqtime(void)
+{
+       sched_clock_irqtime = 0;
+}
+
+#ifndef CONFIG_64BIT
+static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
+
+static inline void irq_time_write_begin(void)
+{
+       __this_cpu_inc(irq_time_seq.sequence);
+       smp_wmb();
+}
+
+static inline void irq_time_write_end(void)
+{
+       smp_wmb();
+       __this_cpu_inc(irq_time_seq.sequence);
+}
+
+static inline u64 irq_time_read(int cpu)
+{
+       u64 irq_time;
+       unsigned seq;
+
+       do {
+               seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
+               irq_time = per_cpu(cpu_softirq_time, cpu) +
+                          per_cpu(cpu_hardirq_time, cpu);
+       } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
+
+       return irq_time;
+}
+#else /* CONFIG_64BIT */
+static inline void irq_time_write_begin(void)
+{
+}
+
+static inline void irq_time_write_end(void)
+{
+}
+
+static inline u64 irq_time_read(int cpu)
+{
+       return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
+}
+#endif /* CONFIG_64BIT */
+
+/*
+ * Called before incrementing preempt_count on {soft,}irq_enter
+ * and before decrementing preempt_count on {soft,}irq_exit.
+ */
+void account_system_vtime(struct task_struct *curr)
+{
+       unsigned long flags;
+       s64 delta;
+       int cpu;
+
+       if (!sched_clock_irqtime)
+               return;
+
+       local_irq_save(flags);
+
+       cpu = smp_processor_id();
+       delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
+       __this_cpu_add(irq_start_time, delta);
+
+       irq_time_write_begin();
+       /*
+        * We do not account for softirq time from ksoftirqd here.
+        * We want to continue accounting softirq time to ksoftirqd thread
+        * in that case, so as not to confuse scheduler with a special task
+        * that do not consume any time, but still wants to run.
+        */
+       if (hardirq_count())
+               __this_cpu_add(cpu_hardirq_time, delta);
+       else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
+               __this_cpu_add(cpu_softirq_time, delta);
+
+       irq_time_write_end();
+       local_irq_restore(flags);
+}
+EXPORT_SYMBOL_GPL(account_system_vtime);
+
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#ifdef CONFIG_PARAVIRT
+static inline u64 steal_ticks(u64 steal)
+{
+       if (unlikely(steal > NSEC_PER_SEC))
+               return div_u64(steal, TICK_NSEC);
+
+       return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
+}
+#endif
+
+static void update_rq_clock_task(struct rq *rq, s64 delta)
+{
+/*
+ * In theory, the compile should just see 0 here, and optimize out the call
+ * to sched_rt_avg_update. But I don't trust it...
+ */
+#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
+       s64 steal = 0, irq_delta = 0;
+#endif
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+       irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
+
+       /*
+        * Since irq_time is only updated on {soft,}irq_exit, we might run into
+        * this case when a previous update_rq_clock() happened inside a
+        * {soft,}irq region.
+        *
+        * When this happens, we stop ->clock_task and only update the
+        * prev_irq_time stamp to account for the part that fit, so that a next
+        * update will consume the rest. This ensures ->clock_task is
+        * monotonic.
+        *
+        * It does however cause some slight miss-attribution of {soft,}irq
+        * time, a more accurate solution would be to update the irq_time using
+        * the current rq->clock timestamp, except that would require using
+        * atomic ops.
+        */
+       if (irq_delta > delta)
+               irq_delta = delta;
+
+       rq->prev_irq_time += irq_delta;
+       delta -= irq_delta;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+       if (static_branch((&paravirt_steal_rq_enabled))) {
+               u64 st;
+
+               steal = paravirt_steal_clock(cpu_of(rq));
+               steal -= rq->prev_steal_time_rq;
+
+               if (unlikely(steal > delta))
+                       steal = delta;
+
+               st = steal_ticks(steal);
+               steal = st * TICK_NSEC;
+
+               rq->prev_steal_time_rq += steal;
+
+               delta -= steal;
+       }
+#endif
+
+       rq->clock_task += delta;
+
+#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
+       if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
+               sched_rt_avg_update(rq, irq_delta + steal);
+#endif
+}
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+static int irqtime_account_hi_update(void)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       unsigned long flags;
+       u64 latest_ns;
+       int ret = 0;
+
+       local_irq_save(flags);
+       latest_ns = this_cpu_read(cpu_hardirq_time);
+       if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
+               ret = 1;
+       local_irq_restore(flags);
+       return ret;
+}
+
+static int irqtime_account_si_update(void)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       unsigned long flags;
+       u64 latest_ns;
+       int ret = 0;
+
+       local_irq_save(flags);
+       latest_ns = this_cpu_read(cpu_softirq_time);
+       if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
+               ret = 1;
+       local_irq_restore(flags);
+       return ret;
+}
+
+#else /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#define sched_clock_irqtime    (0)
+
+#endif
+
+void sched_set_stop_task(int cpu, struct task_struct *stop)
+{
+       struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
+       struct task_struct *old_stop = cpu_rq(cpu)->stop;
+
+       if (stop) {
+               /*
+                * Make it appear like a SCHED_FIFO task, its something
+                * userspace knows about and won't get confused about.
+                *
+                * Also, it will make PI more or less work without too
+                * much confusion -- but then, stop work should not
+                * rely on PI working anyway.
+                */
+               sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
+
+               stop->sched_class = &stop_sched_class;
+       }
+
+       cpu_rq(cpu)->stop = stop;
+
+       if (old_stop) {
+               /*
+                * Reset it back to a normal scheduling class so that
+                * it can die in pieces.
+                */
+               old_stop->sched_class = &rt_sched_class;
+       }
+}
+
+/*
+ * __normal_prio - return the priority that is based on the static prio
+ */
+static inline int __normal_prio(struct task_struct *p)
+{
+       return p->static_prio;
+}
+
+/*
+ * Calculate the expected normal priority: i.e. priority
+ * without taking RT-inheritance into account. Might be
+ * boosted by interactivity modifiers. Changes upon fork,
+ * setprio syscalls, and whenever the interactivity
+ * estimator recalculates.
+ */
+static inline int normal_prio(struct task_struct *p)
+{
+       int prio;
+
+       if (task_has_rt_policy(p))
+               prio = MAX_RT_PRIO-1 - p->rt_priority;
+       else
+               prio = __normal_prio(p);
+       return prio;
+}
+
+/*
+ * Calculate the current priority, i.e. the priority
+ * taken into account by the scheduler. This value might
+ * be boosted by RT tasks, or might be boosted by
+ * interactivity modifiers. Will be RT if the task got
+ * RT-boosted. If not then it returns p->normal_prio.
+ */
+static int effective_prio(struct task_struct *p)
+{
+       p->normal_prio = normal_prio(p);
+       /*
+        * If we are RT tasks or we were boosted to RT priority,
+        * keep the priority unchanged. Otherwise, update priority
+        * to the normal priority:
+        */
+       if (!rt_prio(p->prio))
+               return p->normal_prio;
+       return p->prio;
+}
+
+/**
+ * task_curr - is this task currently executing on a CPU?
+ * @p: the task in question.
+ */
+inline int task_curr(const struct task_struct *p)
+{
+       return cpu_curr(task_cpu(p)) == p;
+}
+
+static inline void check_class_changed(struct rq *rq, struct task_struct *p,
+                                      const struct sched_class *prev_class,
+                                      int oldprio)
+{
+       if (prev_class != p->sched_class) {
+               if (prev_class->switched_from)
+                       prev_class->switched_from(rq, p);
+               p->sched_class->switched_to(rq, p);
+       } else if (oldprio != p->prio)
+               p->sched_class->prio_changed(rq, p, oldprio);
+}
+
+void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
+{
+       const struct sched_class *class;
+
+       if (p->sched_class == rq->curr->sched_class) {
+               rq->curr->sched_class->check_preempt_curr(rq, p, flags);
+       } else {
+               for_each_class(class) {
+                       if (class == rq->curr->sched_class)
+                               break;
+                       if (class == p->sched_class) {
+                               resched_task(rq->curr);
+                               break;
+                       }
+               }
+       }
+
+       /*
+        * A queue event has occurred, and we're going to schedule.  In
+        * this case, we can save a useless back to back clock update.
+        */
+       if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
+               rq->skip_clock_update = 1;
+}
+
+#ifdef CONFIG_SMP
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       /*
+        * We should never call set_task_cpu() on a blocked task,
+        * ttwu() will sort out the placement.
+        */
+       WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
+                       !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
+
+#ifdef CONFIG_LOCKDEP
+       /*
+        * The caller should hold either p->pi_lock or rq->lock, when changing
+        * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
+        *
+        * sched_move_task() holds both and thus holding either pins the cgroup,
+        * see set_task_rq().
+        *
+        * Furthermore, all task_rq users should acquire both locks, see
+        * task_rq_lock().
+        */
+       WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
+                                     lockdep_is_held(&task_rq(p)->lock)));
+#endif
+#endif
+
+       trace_sched_migrate_task(p, new_cpu);
+
+       if (task_cpu(p) != new_cpu) {
+               p->se.nr_migrations++;
+               perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
+       }
+
+       __set_task_cpu(p, new_cpu);
+}
+
+struct migration_arg {
+       struct task_struct *task;
+       int dest_cpu;
+};
+
+static int migration_cpu_stop(void *data);
+
+/*
+ * wait_task_inactive - wait for a thread to unschedule.
+ *
+ * If @match_state is nonzero, it's the @p->state value just checked and
+ * not expected to change.  If it changes, i.e. @p might have woken up,
+ * then return zero.  When we succeed in waiting for @p to be off its CPU,
+ * we return a positive number (its total switch count).  If a second call
+ * a short while later returns the same number, the caller can be sure that
+ * @p has remained unscheduled the whole time.
+ *
+ * The caller must ensure that the task *will* unschedule sometime soon,
+ * else this function might spin for a *long* time. This function can't
+ * be called with interrupts off, or it may introduce deadlock with
+ * smp_call_function() if an IPI is sent by the same process we are
+ * waiting to become inactive.
+ */
+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
+{
+       unsigned long flags;
+       int running, on_rq;
+       unsigned long ncsw;
+       struct rq *rq;
+
+       for (;;) {
+               /*
+                * We do the initial early heuristics without holding
+                * any task-queue locks at all. We'll only try to get
+                * the runqueue lock when things look like they will
+                * work out!
+                */
+               rq = task_rq(p);
+
+               /*
+                * If the task is actively running on another CPU
+                * still, just relax and busy-wait without holding
+                * any locks.
+                *
+                * NOTE! Since we don't hold any locks, it's not
+                * even sure that "rq" stays as the right runqueue!
+                * But we don't care, since "task_running()" will
+                * return false if the runqueue has changed and p
+                * is actually now running somewhere else!
+                */
+               while (task_running(rq, p)) {
+                       if (match_state && unlikely(p->state != match_state))
+                               return 0;
+                       cpu_relax();
+               }
+
+               /*
+                * Ok, time to look more closely! We need the rq
+                * lock now, to be *sure*. If we're wrong, we'll
+                * just go back and repeat.
+                */
+               rq = task_rq_lock(p, &flags);
+               trace_sched_wait_task(p);
+               running = task_running(rq, p);
+               on_rq = p->on_rq;
+               ncsw = 0;
+               if (!match_state || p->state == match_state)
+                       ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
+               task_rq_unlock(rq, p, &flags);
+
+               /*
+                * If it changed from the expected state, bail out now.
+                */
+               if (unlikely(!ncsw))
+                       break;
+
+               /*
+                * Was it really running after all now that we
+                * checked with the proper locks actually held?
+                *
+                * Oops. Go back and try again..
+                */
+               if (unlikely(running)) {
+                       cpu_relax();
+                       continue;
+               }
+
+               /*
+                * It's not enough that it's not actively running,
+                * it must be off the runqueue _entirely_, and not
+                * preempted!
+                *
+                * So if it was still runnable (but just not actively
+                * running right now), it's preempted, and we should
+                * yield - it could be a while.
+                */
+               if (unlikely(on_rq)) {
+                       ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
+
+                       set_current_state(TASK_UNINTERRUPTIBLE);
+                       schedule_hrtimeout(&to, HRTIMER_MODE_REL);
+                       continue;
+               }
+
+               /*
+                * Ahh, all good. It wasn't running, and it wasn't
+                * runnable, which means that it will never become
+                * running in the future either. We're all done!
+                */
+               break;
+       }
+
+       return ncsw;
+}
+
+/***
+ * kick_process - kick a running thread to enter/exit the kernel
+ * @p: the to-be-kicked thread
+ *
+ * Cause a process which is running on another CPU to enter
+ * kernel-mode, without any delay. (to get signals handled.)
+ *
+ * NOTE: this function doesn't have to take the runqueue lock,
+ * because all it wants to ensure is that the remote task enters
+ * the kernel. If the IPI races and the task has been migrated
+ * to another CPU then no harm is done and the purpose has been
+ * achieved as well.
+ */
+void kick_process(struct task_struct *p)
+{
+       int cpu;
+
+       preempt_disable();
+       cpu = task_cpu(p);
+       if ((cpu != smp_processor_id()) && task_curr(p))
+               smp_send_reschedule(cpu);
+       preempt_enable();
+}
+EXPORT_SYMBOL_GPL(kick_process);
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_SMP
+/*
+ * ->cpus_allowed is protected by both rq->lock and p->pi_lock
+ */
+static int select_fallback_rq(int cpu, struct task_struct *p)
+{
+       int dest_cpu;
+       const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
+
+       /* Look for allowed, online CPU in same node. */
+       for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
+               if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
+                       return dest_cpu;
+
+       /* Any allowed, online CPU? */
+       dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
+       if (dest_cpu < nr_cpu_ids)
+               return dest_cpu;
+
+       /* No more Mr. Nice Guy. */
+       dest_cpu = cpuset_cpus_allowed_fallback(p);
+       /*
+        * Don't tell them about moving exiting tasks or
+        * kernel threads (both mm NULL), since they never
+        * leave kernel.
+        */
+       if (p->mm && printk_ratelimit()) {
+               printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
+                               task_pid_nr(p), p->comm, cpu);
+       }
+
+       return dest_cpu;
+}
+
+/*
+ * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
+ */
+static inline
+int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
+{
+       int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
+
+       /*
+        * In order not to call set_task_cpu() on a blocking task we need
+        * to rely on ttwu() to place the task on a valid ->cpus_allowed
+        * cpu.
+        *
+        * Since this is common to all placement strategies, this lives here.
+        *
+        * [ this allows ->select_task() to simply return task_cpu(p) and
+        *   not worry about this generic constraint ]
+        */
+       if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
+                    !cpu_online(cpu)))
+               cpu = select_fallback_rq(task_cpu(p), p);
+
+       return cpu;
+}
+
+static void update_avg(u64 *avg, u64 sample)
+{
+       s64 diff = sample - *avg;
+       *avg += diff >> 3;
+}
+#endif
+
+static void
+ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
+{
+#ifdef CONFIG_SCHEDSTATS
+       struct rq *rq = this_rq();
+
+#ifdef CONFIG_SMP
+       int this_cpu = smp_processor_id();
+
+       if (cpu == this_cpu) {
+               schedstat_inc(rq, ttwu_local);
+               schedstat_inc(p, se.statistics.nr_wakeups_local);
+       } else {
+               struct sched_domain *sd;
+
+               schedstat_inc(p, se.statistics.nr_wakeups_remote);
+               rcu_read_lock();
+               for_each_domain(this_cpu, sd) {
+                       if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+                               schedstat_inc(sd, ttwu_wake_remote);
+                               break;
+                       }
+               }
+               rcu_read_unlock();
+       }
+
+       if (wake_flags & WF_MIGRATED)
+               schedstat_inc(p, se.statistics.nr_wakeups_migrate);
+
+#endif /* CONFIG_SMP */
+
+       schedstat_inc(rq, ttwu_count);
+       schedstat_inc(p, se.statistics.nr_wakeups);
+
+       if (wake_flags & WF_SYNC)
+               schedstat_inc(p, se.statistics.nr_wakeups_sync);
+
+#endif /* CONFIG_SCHEDSTATS */
+}
+
+static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
+{
+       activate_task(rq, p, en_flags);
+       p->on_rq = 1;
+
+       /* if a worker is waking up, notify workqueue */
+       if (p->flags & PF_WQ_WORKER)
+               wq_worker_waking_up(p, cpu_of(rq));
+}
+
+/*
+ * Mark the task runnable and perform wakeup-preemption.
+ */
+static void
+ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+       trace_sched_wakeup(p, true);
+       check_preempt_curr(rq, p, wake_flags);
+
+       p->state = TASK_RUNNING;
+#ifdef CONFIG_SMP
+       if (p->sched_class->task_woken)
+               p->sched_class->task_woken(rq, p);
+
+       if (rq->idle_stamp) {
+               u64 delta = rq->clock - rq->idle_stamp;
+               u64 max = 2*sysctl_sched_migration_cost;
+
+               if (delta > max)
+                       rq->avg_idle = max;
+               else
+                       update_avg(&rq->avg_idle, delta);
+               rq->idle_stamp = 0;
+       }
+#endif
+}
+
+static void
+ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+#ifdef CONFIG_SMP
+       if (p->sched_contributes_to_load)
+               rq->nr_uninterruptible--;
+#endif
+
+       ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
+       ttwu_do_wakeup(rq, p, wake_flags);
+}
+
+/*
+ * Called in case the task @p isn't fully descheduled from its runqueue,
+ * in this case we must do a remote wakeup. Its a 'light' wakeup though,
+ * since all we need to do is flip p->state to TASK_RUNNING, since
+ * the task is still ->on_rq.
+ */
+static int ttwu_remote(struct task_struct *p, int wake_flags)
+{
+       struct rq *rq;
+       int ret = 0;
+
+       rq = __task_rq_lock(p);
+       if (p->on_rq) {
+               ttwu_do_wakeup(rq, p, wake_flags);
+               ret = 1;
+       }
+       __task_rq_unlock(rq);
+
+       return ret;
+}
+
+#ifdef CONFIG_SMP
+static void sched_ttwu_pending(void)
+{
+       struct rq *rq = this_rq();
+       struct llist_node *llist = llist_del_all(&rq->wake_list);
+       struct task_struct *p;
+
+       raw_spin_lock(&rq->lock);
+
+       while (llist) {
+               p = llist_entry(llist, struct task_struct, wake_entry);
+               llist = llist_next(llist);
+               ttwu_do_activate(rq, p, 0);
+       }
+
+       raw_spin_unlock(&rq->lock);
+}
+
+void scheduler_ipi(void)
+{
+       if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
+               return;
+
+       /*
+        * Not all reschedule IPI handlers call irq_enter/irq_exit, since
+        * traditionally all their work was done from the interrupt return
+        * path. Now that we actually do some work, we need to make sure
+        * we do call them.
+        *
+        * Some archs already do call them, luckily irq_enter/exit nest
+        * properly.
+        *
+        * Arguably we should visit all archs and update all handlers,
+        * however a fair share of IPIs are still resched only so this would
+        * somewhat pessimize the simple resched case.
+        */
+       irq_enter();
+       sched_ttwu_pending();
+
+       /*
+        * Check if someone kicked us for doing the nohz idle load balance.
+        */
+       if (unlikely(got_nohz_idle_kick() && !need_resched())) {
+               this_rq()->idle_balance = 1;
+               raise_softirq_irqoff(SCHED_SOFTIRQ);
+       }
+       irq_exit();
+}
+
+static void ttwu_queue_remote(struct task_struct *p, int cpu)
+{
+       if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
+               smp_send_reschedule(cpu);
+}
+
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
+{
+       struct rq *rq;
+       int ret = 0;
+
+       rq = __task_rq_lock(p);
+       if (p->on_cpu) {
+               ttwu_activate(rq, p, ENQUEUE_WAKEUP);
+               ttwu_do_wakeup(rq, p, wake_flags);
+               ret = 1;
+       }
+       __task_rq_unlock(rq);
+
+       return ret;
+
+}
+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
+#endif /* CONFIG_SMP */
+
+static void ttwu_queue(struct task_struct *p, int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+
+#if defined(CONFIG_SMP)
+       if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
+               sched_clock_cpu(cpu); /* sync clocks x-cpu */
+               ttwu_queue_remote(p, cpu);
+               return;
+       }
+#endif
+
+       raw_spin_lock(&rq->lock);
+       ttwu_do_activate(rq, p, 0);
+       raw_spin_unlock(&rq->lock);
+}
+
+/**
+ * try_to_wake_up - wake up a thread
+ * @p: the thread to be awakened
+ * @state: the mask of task states that can be woken
+ * @wake_flags: wake modifier flags (WF_*)
+ *
+ * Put it on the run-queue if it's not already there. The "current"
+ * thread is always on the run-queue (except when the actual
+ * re-schedule is in progress), and as such you're allowed to do
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
+ * runnable without the overhead of this.
+ *
+ * Returns %true if @p was woken up, %false if it was already running
+ * or @state didn't match @p's state.
+ */
+static int
+try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
+{
+       unsigned long flags;
+       int cpu, success = 0;
+
+       smp_wmb();
+       raw_spin_lock_irqsave(&p->pi_lock, flags);
+       if (!(p->state & state))
+               goto out;
+
+       success = 1; /* we're going to change ->state */
+       cpu = task_cpu(p);
+
+       if (p->on_rq && ttwu_remote(p, wake_flags))
+               goto stat;
+
+#ifdef CONFIG_SMP
+       /*
+        * If the owning (remote) cpu is still in the middle of schedule() with
+        * this task as prev, wait until its done referencing the task.
+        */
+       while (p->on_cpu) {
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+               /*
+                * In case the architecture enables interrupts in
+                * context_switch(), we cannot busy wait, since that
+                * would lead to deadlocks when an interrupt hits and
+                * tries to wake up @prev. So bail and do a complete
+                * remote wakeup.
+                */
+               if (ttwu_activate_remote(p, wake_flags))
+                       goto stat;
+#else
+               cpu_relax();
+#endif
+       }
+       /*
+        * Pairs with the smp_wmb() in finish_lock_switch().
+        */
+       smp_rmb();
+
+       p->sched_contributes_to_load = !!task_contributes_to_load(p);
+       p->state = TASK_WAKING;
+
+       if (p->sched_class->task_waking)
+               p->sched_class->task_waking(p);
+
+       cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
+       if (task_cpu(p) != cpu) {
+               wake_flags |= WF_MIGRATED;
+               set_task_cpu(p, cpu);
+       }
+#endif /* CONFIG_SMP */
+
+       ttwu_queue(p, cpu);
+stat:
+       ttwu_stat(p, cpu, wake_flags);
+out:
+       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+       return success;
+}
+
+/**
+ * try_to_wake_up_local - try to wake up a local task with rq lock held
+ * @p: the thread to be awakened
+ *
+ * Put @p on the run-queue if it's not already there. The caller must
+ * ensure that this_rq() is locked, @p is bound to this_rq() and not
+ * the current task.
+ */
+static void try_to_wake_up_local(struct task_struct *p)
+{
+       struct rq *rq = task_rq(p);
+
+       BUG_ON(rq != this_rq());
+       BUG_ON(p == current);
+       lockdep_assert_held(&rq->lock);
+
+       if (!raw_spin_trylock(&p->pi_lock)) {
+               raw_spin_unlock(&rq->lock);
+               raw_spin_lock(&p->pi_lock);
+               raw_spin_lock(&rq->lock);
+       }
+
+       if (!(p->state & TASK_NORMAL))
+               goto out;
+
+       if (!p->on_rq)
+               ttwu_activate(rq, p, ENQUEUE_WAKEUP);
+
+       ttwu_do_wakeup(rq, p, 0);
+       ttwu_stat(p, smp_processor_id(), 0);
+out:
+       raw_spin_unlock(&p->pi_lock);
+}
+
+/**
+ * wake_up_process - Wake up a specific process
+ * @p: The process to be woken up.
+ *
+ * Attempt to wake up the nominated process and move it to the set of runnable
+ * processes.  Returns 1 if the process was woken up, 0 if it was already
+ * running.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
+int wake_up_process(struct task_struct *p)
+{
+       return try_to_wake_up(p, TASK_ALL, 0);
+}
+EXPORT_SYMBOL(wake_up_process);
+
+int wake_up_state(struct task_struct *p, unsigned int state)
+{
+       return try_to_wake_up(p, state, 0);
+}
+
+/*
+ * Perform scheduler related setup for a newly forked process p.
+ * p is forked by current.
+ *
+ * __sched_fork() is basic setup used by init_idle() too:
+ */
+static void __sched_fork(struct task_struct *p)
+{
+       p->on_rq                        = 0;
+
+       p->se.on_rq                     = 0;
+       p->se.exec_start                = 0;
+       p->se.sum_exec_runtime          = 0;
+       p->se.prev_sum_exec_runtime     = 0;
+       p->se.nr_migrations             = 0;
+       p->se.vruntime                  = 0;
+       INIT_LIST_HEAD(&p->se.group_node);
+
+#ifdef CONFIG_SCHEDSTATS
+       memset(&p->se.statistics, 0, sizeof(p->se.statistics));
+#endif
+
+       INIT_LIST_HEAD(&p->rt.run_list);
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+       INIT_HLIST_HEAD(&p->preempt_notifiers);
+#endif
+}
+
+/*
+ * fork()/clone()-time setup:
+ */
+void sched_fork(struct task_struct *p)
+{
+       unsigned long flags;
+       int cpu = get_cpu();
+
+       __sched_fork(p);
+       /*
+        * We mark the process as running here. This guarantees that
+        * nobody will actually run it, and a signal or other external
+        * event cannot wake it up and insert it on the runqueue either.
+        */
+       p->state = TASK_RUNNING;
+
+       /*
+        * Make sure we do not leak PI boosting priority to the child.
+        */
+       p->prio = current->normal_prio;
+
+       /*
+        * Revert to default priority/policy on fork if requested.
+        */
+       if (unlikely(p->sched_reset_on_fork)) {
+               if (task_has_rt_policy(p)) {
+                       p->policy = SCHED_NORMAL;
+                       p->static_prio = NICE_TO_PRIO(0);
+                       p->rt_priority = 0;
+               } else if (PRIO_TO_NICE(p->static_prio) < 0)
+                       p->static_prio = NICE_TO_PRIO(0);
+
+               p->prio = p->normal_prio = __normal_prio(p);
+               set_load_weight(p);
+
+               /*
+                * We don't need the reset flag anymore after the fork. It has
+                * fulfilled its duty:
+                */
+               p->sched_reset_on_fork = 0;
+       }
+
+       if (!rt_prio(p->prio))
+               p->sched_class = &fair_sched_class;
+
+       if (p->sched_class->task_fork)
+               p->sched_class->task_fork(p);
+
+       /*
+        * The child is not yet in the pid-hash so no cgroup attach races,
+        * and the cgroup is pinned to this child due to cgroup_fork()
+        * is ran before sched_fork().
+        *
+        * Silence PROVE_RCU.
+        */
+       raw_spin_lock_irqsave(&p->pi_lock, flags);
+       set_task_cpu(p, cpu);
+       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
+       if (likely(sched_info_on()))
+               memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+#if defined(CONFIG_SMP)
+       p->on_cpu = 0;
+#endif
+#ifdef CONFIG_PREEMPT_COUNT
+       /* Want to start with kernel preemption disabled. */
+       task_thread_info(p)->preempt_count = 1;
+#endif
+#ifdef CONFIG_SMP
+       plist_node_init(&p->pushable_tasks, MAX_PRIO);
+#endif
+
+       put_cpu();
+}
+
+/*
+ * wake_up_new_task - wake up a newly created task for the first time.
+ *
+ * This function will do some initial scheduler statistics housekeeping
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
+ */
+void wake_up_new_task(struct task_struct *p)
+{
+       unsigned long flags;
+       struct rq *rq;
+
+       raw_spin_lock_irqsave(&p->pi_lock, flags);
+#ifdef CONFIG_SMP
+       /*
+        * Fork balancing, do it here and not earlier because:
+        *  - cpus_allowed can change in the fork path
+        *  - any previously selected cpu might disappear through hotplug
+        */
+       set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
+#endif
+
+       rq = __task_rq_lock(p);
+       activate_task(rq, p, 0);
+       p->on_rq = 1;
+       trace_sched_wakeup_new(p, true);
+       check_preempt_curr(rq, p, WF_FORK);
+#ifdef CONFIG_SMP
+       if (p->sched_class->task_woken)
+               p->sched_class->task_woken(rq, p);
+#endif
+       task_rq_unlock(rq, p, &flags);
+}
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+
+/**
+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
+ * @notifier: notifier struct to register
+ */
+void preempt_notifier_register(struct preempt_notifier *notifier)
+{
+       hlist_add_head(&notifier->link, &current->preempt_notifiers);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_register);
+
+/**
+ * preempt_notifier_unregister - no longer interested in preemption notifications
+ * @notifier: notifier struct to unregister
+ *
+ * This is safe to call from within a preemption notifier.
+ */
+void preempt_notifier_unregister(struct preempt_notifier *notifier)
+{
+       hlist_del(&notifier->link);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
+
+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+       struct preempt_notifier *notifier;
+       struct hlist_node *node;
+
+       hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
+               notifier->ops->sched_in(notifier, raw_smp_processor_id());
+}
+
+static void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+                                struct task_struct *next)
+{
+       struct preempt_notifier *notifier;
+       struct hlist_node *node;
+
+       hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
+               notifier->ops->sched_out(notifier, next);
+}
+
+#else /* !CONFIG_PREEMPT_NOTIFIERS */
+
+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+}
+
+static void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+                                struct task_struct *next)
+{
+}
+
+#endif /* CONFIG_PREEMPT_NOTIFIERS */
+
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @prev: the current task that is being switched out
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void
+prepare_task_switch(struct rq *rq, struct task_struct *prev,
+                   struct task_struct *next)
+{
+       sched_info_switch(prev, next);
+       perf_event_task_sched_out(prev, next);
+       fire_sched_out_preempt_notifiers(prev, next);
+       prepare_lock_switch(rq, next);
+       prepare_arch_switch(next);
+       trace_sched_switch(prev, next);
+}
+
+/**
+ * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
+ * @prev: the thread we just switched away from.
+ *
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
+ *
+ * Note that we may have delayed dropping an mm in context_switch(). If
+ * so, we finish that here outside of the runqueue lock. (Doing it
+ * with the lock held can cause deadlocks; see schedule() for
+ * details.)
+ */
+static void finish_task_switch(struct rq *rq, struct task_struct *prev)
+       __releases(rq->lock)
+{
+       struct mm_struct *mm = rq->prev_mm;
+       long prev_state;
+
+       rq->prev_mm = NULL;
+
+       /*
+        * A task struct has one reference for the use as "current".
+        * If a task dies, then it sets TASK_DEAD in tsk->state and calls
+        * schedule one last time. The schedule call will never return, and
+        * the scheduled task must drop that reference.
+        * The test for TASK_DEAD must occur while the runqueue locks are
+        * still held, otherwise prev could be scheduled on another cpu, die
+        * there before we look at prev->state, and then the reference would
+        * be dropped twice.
+        *              Manfred Spraul <manfred@colorfullife.com>
+        */
+       prev_state = prev->state;
+       finish_arch_switch(prev);
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_disable();
+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
+       perf_event_task_sched_in(prev, current);
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_enable();
+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
+       finish_lock_switch(rq, prev);
+
+       fire_sched_in_preempt_notifiers(current);
+       if (mm)
+               mmdrop(mm);
+       if (unlikely(prev_state == TASK_DEAD)) {
+               /*
+                * Remove function-return probe instances associated with this
+                * task and put them back on the free list.
+                */
+               kprobe_flush_task(prev);
+               put_task_struct(prev);
+       }
+}
+
+#ifdef CONFIG_SMP
+
+/* assumes rq->lock is held */
+static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
+{
+       if (prev->sched_class->pre_schedule)
+               prev->sched_class->pre_schedule(rq, prev);
+}
+
+/* rq->lock is NOT held, but preemption is disabled */
+static inline void post_schedule(struct rq *rq)
+{
+       if (rq->post_schedule) {
+               unsigned long flags;
+
+               raw_spin_lock_irqsave(&rq->lock, flags);
+               if (rq->curr->sched_class->post_schedule)
+                       rq->curr->sched_class->post_schedule(rq);
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+               rq->post_schedule = 0;
+       }
+}
+
+#else
+
+static inline void pre_schedule(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline void post_schedule(struct rq *rq)
+{
+}
+
+#endif
+
+/**
+ * schedule_tail - first thing a freshly forked thread must call.
+ * @prev: the thread we just switched away from.
+ */
+asmlinkage void schedule_tail(struct task_struct *prev)
+       __releases(rq->lock)
+{
+       struct rq *rq = this_rq();
+
+       finish_task_switch(rq, prev);
+
+       /*
+        * FIXME: do we need to worry about rq being invalidated by the
+        * task_switch?
+        */
+       post_schedule(rq);
+
+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
+       /* In this case, finish_task_switch does not reenable preemption */
+       preempt_enable();
+#endif
+       if (current->set_child_tid)
+               put_user(task_pid_vnr(current), current->set_child_tid);
+}
+
+/*
+ * context_switch - switch to the new MM and the new
+ * thread's register state.
+ */
+static inline void
+context_switch(struct rq *rq, struct task_struct *prev,
+              struct task_struct *next)
+{
+       struct mm_struct *mm, *oldmm;
+
+       prepare_task_switch(rq, prev, next);
+
+       mm = next->mm;
+       oldmm = prev->active_mm;
+       /*
+        * For paravirt, this is coupled with an exit in switch_to to
+        * combine the page table reload and the switch backend into
+        * one hypercall.
+        */
+       arch_start_context_switch(prev);
+
+       if (!mm) {
+               next->active_mm = oldmm;
+               atomic_inc(&oldmm->mm_count);
+               enter_lazy_tlb(oldmm, next);
+       } else
+               switch_mm(oldmm, mm, next);
+
+       if (!prev->mm) {
+               prev->active_mm = NULL;
+               rq->prev_mm = oldmm;
+       }
+       /*
+        * Since the runqueue lock will be released by the next
+        * task (which is an invalid locking op but in the case
+        * of the scheduler it's an obvious special-case), so we
+        * do an early lockdep release here:
+        */
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+       spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
+#endif
+
+       /* Here we just switch the register state and the stack. */
+       switch_to(prev, next, prev);
+
+       barrier();
+       /*
+        * this_rq must be evaluated again because prev may have moved
+        * CPUs since it called schedule(), thus the 'rq' on its stack
+        * frame will be invalid.
+        */
+       finish_task_switch(this_rq(), prev);
+}
+
+/*
+ * nr_running, nr_uninterruptible and nr_context_switches:
+ *
+ * externally visible scheduler statistics: current number of runnable
+ * threads, current number of uninterruptible-sleeping threads, total
+ * number of context switches performed since bootup.
+ */
+unsigned long nr_running(void)
+{
+       unsigned long i, sum = 0;
+
+       for_each_online_cpu(i)
+               sum += cpu_rq(i)->nr_running;
+
+       return sum;
+}
+
+unsigned long nr_uninterruptible(void)
+{
+       unsigned long i, sum = 0;
+
+       for_each_possible_cpu(i)
+               sum += cpu_rq(i)->nr_uninterruptible;
+
+       /*
+        * Since we read the counters lockless, it might be slightly
+        * inaccurate. Do not allow it to go below zero though:
+        */
+       if (unlikely((long)sum < 0))
+               sum = 0;
+
+       return sum;
+}
+
+unsigned long long nr_context_switches(void)
+{
+       int i;
+       unsigned long long sum = 0;
+
+       for_each_possible_cpu(i)
+               sum += cpu_rq(i)->nr_switches;
+
+       return sum;
+}
+
+unsigned long nr_iowait(void)
+{
+       unsigned long i, sum = 0;
+
+       for_each_possible_cpu(i)
+               sum += atomic_read(&cpu_rq(i)->nr_iowait);
+
+       return sum;
+}
+
+unsigned long nr_iowait_cpu(int cpu)
+{
+       struct rq *this = cpu_rq(cpu);
+       return atomic_read(&this->nr_iowait);
+}
+
+unsigned long this_cpu_load(void)
+{
+       struct rq *this = this_rq();
+       return this->cpu_load[0];
+}
+
+
+/* Variables and functions for calc_load */
+static atomic_long_t calc_load_tasks;
+static unsigned long calc_load_update;
+unsigned long avenrun[3];
+EXPORT_SYMBOL(avenrun);
+
+static long calc_load_fold_active(struct rq *this_rq)
+{
+       long nr_active, delta = 0;
+
+       nr_active = this_rq->nr_running;
+       nr_active += (long) this_rq->nr_uninterruptible;
+
+       if (nr_active != this_rq->calc_load_active) {
+               delta = nr_active - this_rq->calc_load_active;
+               this_rq->calc_load_active = nr_active;
+       }
+
+       return delta;
+}
+
+static unsigned long
+calc_load(unsigned long load, unsigned long exp, unsigned long active)
+{
+       load *= exp;
+       load += active * (FIXED_1 - exp);
+       load += 1UL << (FSHIFT - 1);
+       return load >> FSHIFT;
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
+ *
+ * When making the ILB scale, we should try to pull this in as well.
+ */
+static atomic_long_t calc_load_tasks_idle;
+
+void calc_load_account_idle(struct rq *this_rq)
+{
+       long delta;
+
+       delta = calc_load_fold_active(this_rq);
+       if (delta)
+               atomic_long_add(delta, &calc_load_tasks_idle);
+}
+
+static long calc_load_fold_idle(void)
+{
+       long delta = 0;
+
+       /*
+        * Its got a race, we don't care...
+        */
+       if (atomic_long_read(&calc_load_tasks_idle))
+               delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
+
+       return delta;
+}
+
+/**
+ * fixed_power_int - compute: x^n, in O(log n) time
+ *
+ * @x:         base of the power
+ * @frac_bits: fractional bits of @x
+ * @n:         power to raise @x to.
+ *
+ * By exploiting the relation between the definition of the natural power
+ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
+ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
+ * (where: n_i \elem {0, 1}, the binary vector representing n),
+ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
+ * of course trivially computable in O(log_2 n), the length of our binary
+ * vector.
+ */
+static unsigned long
+fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
+{
+       unsigned long result = 1UL << frac_bits;
+
+       if (n) for (;;) {
+               if (n & 1) {
+                       result *= x;
+                       result += 1UL << (frac_bits - 1);
+                       result >>= frac_bits;
+               }
+               n >>= 1;
+               if (!n)
+                       break;
+               x *= x;
+               x += 1UL << (frac_bits - 1);
+               x >>= frac_bits;
+       }
+
+       return result;
+}
+
+/*
+ * a1 = a0 * e + a * (1 - e)
+ *
+ * a2 = a1 * e + a * (1 - e)
+ *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
+ *    = a0 * e^2 + a * (1 - e) * (1 + e)
+ *
+ * a3 = a2 * e + a * (1 - e)
+ *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
+ *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
+ *
+ *  ...
+ *
+ * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
+ *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
+ *    = a0 * e^n + a * (1 - e^n)
+ *
+ * [1] application of the geometric series:
+ *
+ *              n         1 - x^(n+1)
+ *     S_n := \Sum x^i = -------------
+ *             i=0          1 - x
+ */
+static unsigned long
+calc_load_n(unsigned long load, unsigned long exp,
+           unsigned long active, unsigned int n)
+{
+
+       return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
+}
+
+/*
+ * NO_HZ can leave us missing all per-cpu ticks calling
+ * calc_load_account_active(), but since an idle CPU folds its delta into
+ * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
+ * in the pending idle delta if our idle period crossed a load cycle boundary.
+ *
+ * Once we've updated the global active value, we need to apply the exponential
+ * weights adjusted to the number of cycles missed.
+ */
+static void calc_global_nohz(unsigned long ticks)
+{
+       long delta, active, n;
+
+       if (time_before(jiffies, calc_load_update))
+               return;
+
+       /*
+        * If we crossed a calc_load_update boundary, make sure to fold
+        * any pending idle changes, the respective CPUs might have
+        * missed the tick driven calc_load_account_active() update
+        * due to NO_HZ.
+        */
+       delta = calc_load_fold_idle();
+       if (delta)
+               atomic_long_add(delta, &calc_load_tasks);
+
+       /*
+        * If we were idle for multiple load cycles, apply them.
+        */
+       if (ticks >= LOAD_FREQ) {
+               n = ticks / LOAD_FREQ;
+
+               active = atomic_long_read(&calc_load_tasks);
+               active = active > 0 ? active * FIXED_1 : 0;
+
+               avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
+               avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
+               avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
+
+               calc_load_update += n * LOAD_FREQ;
+       }
+
+       /*
+        * Its possible the remainder of the above division also crosses
+        * a LOAD_FREQ period, the regular check in calc_global_load()
+        * which comes after this will take care of that.
+        *
+        * Consider us being 11 ticks before a cycle completion, and us
+        * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
+        * age us 4 cycles, and the test in calc_global_load() will
+        * pick up the final one.
+        */
+}
+#else
+void calc_load_account_idle(struct rq *this_rq)
+{
+}
+
+static inline long calc_load_fold_idle(void)
+{
+       return 0;
+}
+
+static void calc_global_nohz(unsigned long ticks)
+{
+}
+#endif
+
+/**
+ * get_avenrun - get the load average array
+ * @loads:     pointer to dest load array
+ * @offset:    offset to add
+ * @shift:     shift count to shift the result left
+ *
+ * These values are estimates at best, so no need for locking.
+ */
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+{
+       loads[0] = (avenrun[0] + offset) << shift;
+       loads[1] = (avenrun[1] + offset) << shift;
+       loads[2] = (avenrun[2] + offset) << shift;
+}
+
+/*
+ * calc_load - update the avenrun load estimates 10 ticks after the
+ * CPUs have updated calc_load_tasks.
+ */
+void calc_global_load(unsigned long ticks)
+{
+       long active;
+
+       calc_global_nohz(ticks);
+
+       if (time_before(jiffies, calc_load_update + 10))
+               return;
+
+       active = atomic_long_read(&calc_load_tasks);
+       active = active > 0 ? active * FIXED_1 : 0;
+
+       avenrun[0] = calc_load(avenrun[0], EXP_1, active);
+       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
+
+       calc_load_update += LOAD_FREQ;
+}
+
+/*
+ * Called from update_cpu_load() to periodically update this CPU's
+ * active count.
+ */
+static void calc_load_account_active(struct rq *this_rq)
+{
+       long delta;
+
+       if (time_before(jiffies, this_rq->calc_load_update))
+               return;
+
+       delta  = calc_load_fold_active(this_rq);
+       delta += calc_load_fold_idle();
+       if (delta)
+               atomic_long_add(delta, &calc_load_tasks);
+
+       this_rq->calc_load_update += LOAD_FREQ;
+}
+
+/*
+ * The exact cpuload at various idx values, calculated at every tick would be
+ * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
+ *
+ * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
+ * on nth tick when cpu may be busy, then we have:
+ * load = ((2^idx - 1) / 2^idx)^(n-1) * load
+ * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
+ *
+ * decay_load_missed() below does efficient calculation of
+ * load = ((2^idx - 1) / 2^idx)^(n-1) * load
+ * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
+ *
+ * The calculation is approximated on a 128 point scale.
+ * degrade_zero_ticks is the number of ticks after which load at any
+ * particular idx is approximated to be zero.
+ * degrade_factor is a precomputed table, a row for each load idx.
+ * Each column corresponds to degradation factor for a power of two ticks,
+ * based on 128 point scale.
+ * Example:
+ * row 2, col 3 (=12) says that the degradation at load idx 2 after
+ * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
+ *
+ * With this power of 2 load factors, we can degrade the load n times
+ * by looking at 1 bits in n and doing as many mult/shift instead of
+ * n mult/shifts needed by the exact degradation.
+ */
+#define DEGRADE_SHIFT          7
+static const unsigned char
+               degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
+static const unsigned char
+               degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
+                                       {0, 0, 0, 0, 0, 0, 0, 0},
+                                       {64, 32, 8, 0, 0, 0, 0, 0},
+                                       {96, 72, 40, 12, 1, 0, 0},
+                                       {112, 98, 75, 43, 15, 1, 0},
+                                       {120, 112, 98, 76, 45, 16, 2} };
+
+/*
+ * Update cpu_load for any missed ticks, due to tickless idle. The backlog
+ * would be when CPU is idle and so we just decay the old load without
+ * adding any new load.
+ */
+static unsigned long
+decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
+{
+       int j = 0;
+
+       if (!missed_updates)
+               return load;
+
+       if (missed_updates >= degrade_zero_ticks[idx])
+               return 0;
+
+       if (idx == 1)
+               return load >> missed_updates;
+
+       while (missed_updates) {
+               if (missed_updates % 2)
+                       load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
+
+               missed_updates >>= 1;
+               j++;
+       }
+       return load;
+}
+
+/*
+ * Update rq->cpu_load[] statistics. This function is usually called every
+ * scheduler tick (TICK_NSEC). With tickless idle this will not be called
+ * every tick. We fix it up based on jiffies.
+ */
+void update_cpu_load(struct rq *this_rq)
+{
+       unsigned long this_load = this_rq->load.weight;
+       unsigned long curr_jiffies = jiffies;
+       unsigned long pending_updates;
+       int i, scale;
+
+       this_rq->nr_load_updates++;
+
+       /* Avoid repeated calls on same jiffy, when moving in and out of idle */
+       if (curr_jiffies == this_rq->last_load_update_tick)
+               return;
+
+       pending_updates = curr_jiffies - this_rq->last_load_update_tick;
+       this_rq->last_load_update_tick = curr_jiffies;
+
+       /* Update our load: */
+       this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
+       for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+               unsigned long old_load, new_load;
+
+               /* scale is effectively 1 << i now, and >> i divides by scale */
+
+               old_load = this_rq->cpu_load[i];
+               old_load = decay_load_missed(old_load, pending_updates - 1, i);
+               new_load = this_load;
+               /*
+                * Round up the averaging division if load is increasing. This
+                * prevents us from getting stuck on 9 if the load is 10, for
+                * example.
+                */
+               if (new_load > old_load)
+                       new_load += scale - 1;
+
+               this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
+       }
+
+       sched_avg_update(this_rq);
+}
+
+static void update_cpu_load_active(struct rq *this_rq)
+{
+       update_cpu_load(this_rq);
+
+       calc_load_account_active(this_rq);
+}
+
+#ifdef CONFIG_SMP
+
+/*
+ * sched_exec - execve() is a valuable balancing opportunity, because at
+ * this point the task has the smallest effective memory and cache footprint.
+ */
+void sched_exec(void)
+{
+       struct task_struct *p = current;
+       unsigned long flags;
+       int dest_cpu;
+
+       raw_spin_lock_irqsave(&p->pi_lock, flags);
+       dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
+       if (dest_cpu == smp_processor_id())
+               goto unlock;
+
+       if (likely(cpu_active(dest_cpu))) {
+               struct migration_arg arg = { p, dest_cpu };
+
+               raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+               stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
+               return;
+       }
+unlock:
+       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+}
+
+#endif
+
+DEFINE_PER_CPU(struct kernel_stat, kstat);
+
+EXPORT_PER_CPU_SYMBOL(kstat);
+
+/*
+ * Return any ns on the sched_clock that have not yet been accounted in
+ * @p in case that task is currently running.
+ *
+ * Called with task_rq_lock() held on @rq.
+ */
+static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
+{
+       u64 ns = 0;
+
+       if (task_current(rq, p)) {
+               update_rq_clock(rq);
+               ns = rq->clock_task - p->se.exec_start;
+               if ((s64)ns < 0)
+                       ns = 0;
+       }
+
+       return ns;
+}
+
+unsigned long long task_delta_exec(struct task_struct *p)
+{
+       unsigned long flags;
+       struct rq *rq;
+       u64 ns = 0;
+
+       rq = task_rq_lock(p, &flags);
+       ns = do_task_delta_exec(p, rq);
+       task_rq_unlock(rq, p, &flags);
+
+       return ns;
+}
+
+/*
+ * Return accounted runtime for the task.
+ * In case the task is currently running, return the runtime plus current's
+ * pending runtime that have not been accounted yet.
+ */
+unsigned long long task_sched_runtime(struct task_struct *p)
+{
+       unsigned long flags;
+       struct rq *rq;
+       u64 ns = 0;
+
+       rq = task_rq_lock(p, &flags);
+       ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
+       task_rq_unlock(rq, p, &flags);
+
+       return ns;
+}
+
+/*
+ * Account user cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @cputime: the cpu time spent in user space since the last update
+ * @cputime_scaled: cputime scaled by cpu frequency
+ */
+void account_user_time(struct task_struct *p, cputime_t cputime,
+                      cputime_t cputime_scaled)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       cputime64_t tmp;
+
+       /* Add user time to process. */
+       p->utime = cputime_add(p->utime, cputime);
+       p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
+       account_group_user_time(p, cputime);
+
+       /* Add user time to cpustat. */
+       tmp = cputime_to_cputime64(cputime);
+       if (TASK_NICE(p) > 0)
+               cpustat->nice = cputime64_add(cpustat->nice, tmp);
+       else
+               cpustat->user = cputime64_add(cpustat->user, tmp);
+
+       cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
+       /* Account for user time used */
+       acct_update_integrals(p);
+}
+
+/*
+ * Account guest cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @cputime: the cpu time spent in virtual machine since the last update
+ * @cputime_scaled: cputime scaled by cpu frequency
+ */
+static void account_guest_time(struct task_struct *p, cputime_t cputime,
+                              cputime_t cputime_scaled)
+{
+       cputime64_t tmp;
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+
+       tmp = cputime_to_cputime64(cputime);
+
+       /* Add guest time to process. */
+       p->utime = cputime_add(p->utime, cputime);
+       p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
+       account_group_user_time(p, cputime);
+       p->gtime = cputime_add(p->gtime, cputime);
+
+       /* Add guest time to cpustat. */
+       if (TASK_NICE(p) > 0) {
+               cpustat->nice = cputime64_add(cpustat->nice, tmp);
+               cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
+       } else {
+               cpustat->user = cputime64_add(cpustat->user, tmp);
+               cpustat->guest = cputime64_add(cpustat->guest, tmp);
+       }
+}
+
+/*
+ * Account system cpu time to a process and desired cpustat field
+ * @p: the process that the cpu time gets accounted to
+ * @cputime: the cpu time spent in kernel space since the last update
+ * @cputime_scaled: cputime scaled by cpu frequency
+ * @target_cputime64: pointer to cpustat field that has to be updated
+ */
+static inline
+void __account_system_time(struct task_struct *p, cputime_t cputime,
+                       cputime_t cputime_scaled, cputime64_t *target_cputime64)
+{
+       cputime64_t tmp = cputime_to_cputime64(cputime);
+
+       /* Add system time to process. */
+       p->stime = cputime_add(p->stime, cputime);
+       p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
+       account_group_system_time(p, cputime);
+
+       /* Add system time to cpustat. */
+       *target_cputime64 = cputime64_add(*target_cputime64, tmp);
+       cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
+
+       /* Account for system time used */
+       acct_update_integrals(p);
+}
+
+/*
+ * Account system cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in kernel space since the last update
+ * @cputime_scaled: cputime scaled by cpu frequency
+ */
+void account_system_time(struct task_struct *p, int hardirq_offset,
+                        cputime_t cputime, cputime_t cputime_scaled)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       cputime64_t *target_cputime64;
+
+       if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
+               account_guest_time(p, cputime, cputime_scaled);
+               return;
+       }
+
+       if (hardirq_count() - hardirq_offset)
+               target_cputime64 = &cpustat->irq;
+       else if (in_serving_softirq())
+               target_cputime64 = &cpustat->softirq;
+       else
+               target_cputime64 = &cpustat->system;
+
+       __account_system_time(p, cputime, cputime_scaled, target_cputime64);
+}
+
+/*
+ * Account for involuntary wait time.
+ * @cputime: the cpu time spent in involuntary wait
+ */
+void account_steal_time(cputime_t cputime)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       cputime64_t cputime64 = cputime_to_cputime64(cputime);
+
+       cpustat->steal = cputime64_add(cpustat->steal, cputime64);
+}
+
+/*
+ * Account for idle time.
+ * @cputime: the cpu time spent in idle wait
+ */
+void account_idle_time(cputime_t cputime)
+{
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+       cputime64_t cputime64 = cputime_to_cputime64(cputime);
+       struct rq *rq = this_rq();
+
+       if (atomic_read(&rq->nr_iowait) > 0)
+               cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
+       else
+               cpustat->idle = cputime64_add(cpustat->idle, cputime64);
+}
+
+static __always_inline bool steal_account_process_tick(void)
+{
+#ifdef CONFIG_PARAVIRT
+       if (static_branch(&paravirt_steal_enabled)) {
+               u64 steal, st = 0;
+
+               steal = paravirt_steal_clock(smp_processor_id());
+               steal -= this_rq()->prev_steal_time;
+
+               st = steal_ticks(steal);
+               this_rq()->prev_steal_time += st * TICK_NSEC;
+
+               account_steal_time(st);
+               return st;
+       }
+#endif
+       return false;
+}
+
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+/*
+ * Account a tick to a process and cpustat
+ * @p: the process that the cpu time gets accounted to
+ * @user_tick: is the tick from userspace
+ * @rq: the pointer to rq
+ *
+ * Tick demultiplexing follows the order
+ * - pending hardirq update
+ * - pending softirq update
+ * - user_time
+ * - idle_time
+ * - system time
+ *   - check for guest_time
+ *   - else account as system_time
+ *
+ * Check for hardirq is done both for system and user time as there is
+ * no timer going off while we are on hardirq and hence we may never get an
+ * opportunity to update it solely in system time.
+ * p->stime and friends are only updated on system time and not on irq
+ * softirq as those do not count in task exec_runtime any more.
+ */
+static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
+                                               struct rq *rq)
+{
+       cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
+       cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
+       struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+
+       if (steal_account_process_tick())
+               return;
+
+       if (irqtime_account_hi_update()) {
+               cpustat->irq = cputime64_add(cpustat->irq, tmp);
+       } else if (irqtime_account_si_update()) {
+               cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
+       } else if (this_cpu_ksoftirqd() == p) {
+               /*
+                * ksoftirqd time do not get accounted in cpu_softirq_time.
+                * So, we have to handle it separately here.
+                * Also, p->stime needs to be updated for ksoftirqd.
+                */
+               __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
+                                       &cpustat->softirq);
+       } else if (user_tick) {
+               account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
+       } else if (p == rq->idle) {
+               account_idle_time(cputime_one_jiffy);
+       } else if (p->flags & PF_VCPU) { /* System time or guest time */
+               account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
+       } else {
+               __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
+                                       &cpustat->system);
+       }
+}
+
+static void irqtime_account_idle_ticks(int ticks)
+{
+       int i;
+       struct rq *rq = this_rq();
+
+       for (i = 0; i < ticks; i++)
+               irqtime_account_process_tick(current, 0, rq);
+}
+#else /* CONFIG_IRQ_TIME_ACCOUNTING */
+static void irqtime_account_idle_ticks(int ticks) {}
+static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
+                                               struct rq *rq) {}
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+/*
+ * Account a single tick of cpu time.
+ * @p: the process that the cpu time gets accounted to
+ * @user_tick: indicates if the tick is a user or a system tick
+ */
+void account_process_tick(struct task_struct *p, int user_tick)
+{
+       cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
+       struct rq *rq = this_rq();
+
+       if (sched_clock_irqtime) {
+               irqtime_account_process_tick(p, user_tick, rq);
+               return;
+       }
+
+       if (steal_account_process_tick())
+               return;
+
+       if (user_tick)
+               account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
+       else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
+               account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
+                                   one_jiffy_scaled);
+       else
+               account_idle_time(cputime_one_jiffy);
+}
+
+/*
+ * Account multiple ticks of steal time.
+ * @p: the process from which the cpu time has been stolen
+ * @ticks: number of stolen ticks
+ */
+void account_steal_ticks(unsigned long ticks)
+{
+       account_steal_time(jiffies_to_cputime(ticks));
+}
+
+/*
+ * Account multiple ticks of idle time.
+ * @ticks: number of stolen ticks
+ */
+void account_idle_ticks(unsigned long ticks)
+{
+
+       if (sched_clock_irqtime) {
+               irqtime_account_idle_ticks(ticks);
+               return;
+       }
+
+       account_idle_time(jiffies_to_cputime(ticks));
+}
+
+#endif
+
+/*
+ * Use precise platform statistics if available:
+ */
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
+void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
+{
+       *ut = p->utime;
+       *st = p->stime;
+}
+
+void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
+{
+       struct task_cputime cputime;
+
+       thread_group_cputime(p, &cputime);
+
+       *ut = cputime.utime;
+       *st = cputime.stime;
+}
+#else
+
+#ifndef nsecs_to_cputime
+# define nsecs_to_cputime(__nsecs)     nsecs_to_jiffies(__nsecs)
+#endif
+
+void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
+{
+       cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
+
+       /*
+        * Use CFS's precise accounting:
+        */
+       rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
+
+       if (total) {
+               u64 temp = rtime;
+
+               temp *= utime;
+               do_div(temp, total);
+               utime = (cputime_t)temp;
+       } else
+               utime = rtime;
+
+       /*
+        * Compare with previous values, to keep monotonicity:
+        */
+       p->prev_utime = max(p->prev_utime, utime);
+       p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
+
+       *ut = p->prev_utime;
+       *st = p->prev_stime;
+}
+
+/*
+ * Must be called with siglock held.
+ */
+void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
+{
+       struct signal_struct *sig = p->signal;
+       struct task_cputime cputime;
+       cputime_t rtime, utime, total;
+
+       thread_group_cputime(p, &cputime);
+
+       total = cputime_add(cputime.utime, cputime.stime);
+       rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
+
+       if (total) {
+               u64 temp = rtime;
+
+               temp *= cputime.utime;
+               do_div(temp, total);
+               utime = (cputime_t)temp;
+       } else
+               utime = rtime;
+
+       sig->prev_utime = max(sig->prev_utime, utime);
+       sig->prev_stime = max(sig->prev_stime,
+                             cputime_sub(rtime, sig->prev_utime));
+
+       *ut = sig->prev_utime;
+       *st = sig->prev_stime;
+}
+#endif
+
+/*
+ * This function gets called by the timer code, with HZ frequency.
+ * We call it with interrupts disabled.
+ */
+void scheduler_tick(void)
+{
+       int cpu = smp_processor_id();
+       struct rq *rq = cpu_rq(cpu);
+       struct task_struct *curr = rq->curr;
+
+       sched_clock_tick();
+
+       raw_spin_lock(&rq->lock);
+       update_rq_clock(rq);
+       update_cpu_load_active(rq);
+       curr->sched_class->task_tick(rq, curr, 0);
+       raw_spin_unlock(&rq->lock);
+
+       perf_event_task_tick();
+
+#ifdef CONFIG_SMP
+       rq->idle_balance = idle_cpu(cpu);
+       trigger_load_balance(rq, cpu);
+#endif
+}
+
+notrace unsigned long get_parent_ip(unsigned long addr)
+{
+       if (in_lock_functions(addr)) {
+               addr = CALLER_ADDR2;
+               if (in_lock_functions(addr))
+                       addr = CALLER_ADDR3;
+       }
+       return addr;
+}
+
+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
+                               defined(CONFIG_PREEMPT_TRACER))
+
+void __kprobes add_preempt_count(int val)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+       /*
+        * Underflow?
+        */
+       if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
+               return;
+#endif
+       preempt_count() += val;
+#ifdef CONFIG_DEBUG_PREEMPT
+       /*
+        * Spinlock count overflowing soon?
+        */
+       DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
+                               PREEMPT_MASK - 10);
+#endif
+       if (preempt_count() == val)
+               trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
+}
+EXPORT_SYMBOL(add_preempt_count);
+
+void __kprobes sub_preempt_count(int val)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+       /*
+        * Underflow?
+        */
+       if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
+               return;
+       /*
+        * Is the spinlock portion underflowing?
+        */
+       if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
+                       !(preempt_count() & PREEMPT_MASK)))
+               return;
+#endif
+
+       if (preempt_count() == val)
+               trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
+       preempt_count() -= val;
+}
+EXPORT_SYMBOL(sub_preempt_count);
+
+#endif
+
+/*
+ * Print scheduling while atomic bug:
+ */
+static noinline void __schedule_bug(struct task_struct *prev)
+{
+       struct pt_regs *regs = get_irq_regs();
+
+       printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
+               prev->comm, prev->pid, preempt_count());
+
+       debug_show_held_locks(prev);
+       print_modules();
+       if (irqs_disabled())
+               print_irqtrace_events(prev);
+
+       if (regs)
+               show_regs(regs);
+       else
+               dump_stack();
+}
+
+/*
+ * Various schedule()-time debugging checks and statistics:
+ */
+static inline void schedule_debug(struct task_struct *prev)
+{
+       /*
+        * Test if we are atomic. Since do_exit() needs to call into
+        * schedule() atomically, we ignore that path for now.
+        * Otherwise, whine if we are scheduling when we should not be.
+        */
+       if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
+               __schedule_bug(prev);
+       rcu_sleep_check();
+
+       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+       schedstat_inc(this_rq(), sched_count);
+}
+
+static void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+       if (prev->on_rq || rq->skip_clock_update < 0)
+               update_rq_clock(rq);
+       prev->sched_class->put_prev_task(rq, prev);
+}
+
+/*
+ * Pick up the highest-prio task:
+ */
+static inline struct task_struct *
+pick_next_task(struct rq *rq)
+{
+       const struct sched_class *class;
+       struct task_struct *p;
+
+       /*
+        * Optimization: we know that if all tasks are in
+        * the fair class we can call that function directly:
+        */
+       if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
+               p = fair_sched_class.pick_next_task(rq);
+               if (likely(p))
+                       return p;
+       }
+
+       for_each_class(class) {
+               p = class->pick_next_task(rq);
+               if (p)
+                       return p;
+       }
+
+       BUG(); /* the idle class will always have a runnable task */
+}
+
+/*
+ * __schedule() is the main scheduler function.
+ */
+static void __sched __schedule(void)
+{
+       struct task_struct *prev, *next;
+       unsigned long *switch_count;
+       struct rq *rq;
+       int cpu;
+
+need_resched:
+       preempt_disable();
+       cpu = smp_processor_id();
+       rq = cpu_rq(cpu);
+       rcu_note_context_switch(cpu);
+       prev = rq->curr;
+
+       schedule_debug(prev);
+
+       if (sched_feat(HRTICK))
+               hrtick_clear(rq);
+
+       raw_spin_lock_irq(&rq->lock);
+
+       switch_count = &prev->nivcsw;
+       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
+               if (unlikely(signal_pending_state(prev->state, prev))) {
+                       prev->state = TASK_RUNNING;
+               } else {
+                       deactivate_task(rq, prev, DEQUEUE_SLEEP);
+                       prev->on_rq = 0;
+
+                       /*
+                        * If a worker went to sleep, notify and ask workqueue
+                        * whether it wants to wake up a task to maintain
+                        * concurrency.
+                        */
+                       if (prev->flags & PF_WQ_WORKER) {
+                               struct task_struct *to_wakeup;
+
+                               to_wakeup = wq_worker_sleeping(prev, cpu);
+                               if (to_wakeup)
+                                       try_to_wake_up_local(to_wakeup);
+                       }
+               }
+               switch_count = &prev->nvcsw;
+       }
+
+       pre_schedule(rq, prev);
+
+       if (unlikely(!rq->nr_running))
+               idle_balance(cpu, rq);
+
+       put_prev_task(rq, prev);
+       next = pick_next_task(rq);
+       clear_tsk_need_resched(prev);
+       rq->skip_clock_update = 0;
+
+       if (likely(prev != next)) {
+               rq->nr_switches++;
+               rq->curr = next;
+               ++*switch_count;
+
+               context_switch(rq, prev, next); /* unlocks the rq */
+               /*
+                * The context switch have flipped the stack from under us
+                * and restored the local variables which were saved when
+                * this task called schedule() in the past. prev == current
+                * is still correct, but it can be moved to another cpu/rq.
+                */
+               cpu = smp_processor_id();
+               rq = cpu_rq(cpu);
+       } else
+               raw_spin_unlock_irq(&rq->lock);
+
+       post_schedule(rq);
+
+       preempt_enable_no_resched();
+       if (need_resched())
+               goto need_resched;
+}
+
+static inline void sched_submit_work(struct task_struct *tsk)
+{
+       if (!tsk->state)
+               return;
+       /*
+        * If we are going to sleep and we have plugged IO queued,
+        * make sure to submit it to avoid deadlocks.
+        */
+       if (blk_needs_flush_plug(tsk))
+               blk_schedule_flush_plug(tsk);
+}
+
+asmlinkage void __sched schedule(void)
+{
+       struct task_struct *tsk = current;
+
+       sched_submit_work(tsk);
+       __schedule();
+}
+EXPORT_SYMBOL(schedule);
+
+#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
+
+static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
+{
+       if (lock->owner != owner)
+               return false;
+
+       /*
+        * Ensure we emit the owner->on_cpu, dereference _after_ checking
+        * lock->owner still matches owner, if that fails, owner might
+        * point to free()d memory, if it still matches, the rcu_read_lock()
+        * ensures the memory stays valid.
+        */
+       barrier();
+
+       return owner->on_cpu;
+}
+
+/*
+ * Look out! "owner" is an entirely speculative pointer
+ * access and not reliable.
+ */
+int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
+{
+       if (!sched_feat(OWNER_SPIN))
+               return 0;
+
+       rcu_read_lock();
+       while (owner_running(lock, owner)) {
+               if (need_resched())
+                       break;
+
+               arch_mutex_cpu_relax();
+       }
+       rcu_read_unlock();
+
+       /*
+        * We break out the loop above on need_resched() and when the
+        * owner changed, which is a sign for heavy contention. Return
+        * success only when lock->owner is NULL.
+        */
+       return lock->owner == NULL;
+}
+#endif
+
+#ifdef CONFIG_PREEMPT
+/*
+ * this is the entry point to schedule() from in-kernel preemption
+ * off of preempt_enable. Kernel preemptions off return from interrupt
+ * occur there and call schedule directly.
+ */
+asmlinkage void __sched notrace preempt_schedule(void)
+{
+       struct thread_info *ti = current_thread_info();
+
+       /*
+        * If there is a non-zero preempt_count or interrupts are disabled,
+        * we do not want to preempt the current task. Just return..
+        */
+       if (likely(ti->preempt_count || irqs_disabled()))
+               return;
+
+       do {
+               add_preempt_count_notrace(PREEMPT_ACTIVE);
+               __schedule();
+               sub_preempt_count_notrace(PREEMPT_ACTIVE);
+
+               /*
+                * Check again in case we missed a preemption opportunity
+                * between schedule and now.
+                */
+               barrier();
+       } while (need_resched());
+}
+EXPORT_SYMBOL(preempt_schedule);
+
+/*
+ * this is the entry point to schedule() from kernel preemption
+ * off of irq context.
+ * Note, that this is called and return with irqs disabled. This will
+ * protect us against recursive calling from irq.
+ */
+asmlinkage void __sched preempt_schedule_irq(void)
+{
+       struct thread_info *ti = current_thread_info();
+
+       /* Catch callers which need to be fixed */
+       BUG_ON(ti->preempt_count || !irqs_disabled());
+
+       do {
+               add_preempt_count(PREEMPT_ACTIVE);
+               local_irq_enable();
+               __schedule();
+               local_irq_disable();
+               sub_preempt_count(PREEMPT_ACTIVE);
+
+               /*
+                * Check again in case we missed a preemption opportunity
+                * between schedule and now.
+                */
+               barrier();
+       } while (need_resched());
+}
+
+#endif /* CONFIG_PREEMPT */
+
+int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
+                         void *key)
+{
+       return try_to_wake_up(curr->private, mode, wake_flags);
+}
+EXPORT_SYMBOL(default_wake_function);
+
+/*
+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
+ * number) then we wake all the non-exclusive tasks and one exclusive task.
+ *
+ * There are circumstances in which we can try to wake a task which has already
+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
+ */
+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
+                       int nr_exclusive, int wake_flags, void *key)
+{
+       wait_queue_t *curr, *next;
+
+       list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
+               unsigned flags = curr->flags;
+
+               if (curr->func(curr, mode, wake_flags, key) &&
+                               (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
+                       break;
+       }
+}
+
+/**
+ * __wake_up - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ * @key: is directly passed to the wakeup function
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
+void __wake_up(wait_queue_head_t *q, unsigned int mode,
+                       int nr_exclusive, void *key)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&q->lock, flags);
+       __wake_up_common(q, mode, nr_exclusive, 0, key);
+       spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL(__wake_up);
+
+/*
+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
+ */
+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+{
+       __wake_up_common(q, mode, 1, 0, NULL);
+}
+EXPORT_SYMBOL_GPL(__wake_up_locked);
+
+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
+{
+       __wake_up_common(q, mode, 1, 0, key);
+}
+EXPORT_SYMBOL_GPL(__wake_up_locked_key);
+
+/**
+ * __wake_up_sync_key - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ * @key: opaque value to be passed to wakeup targets
+ *
+ * The sync wakeup differs that the waker knows that it will schedule
+ * away soon, so while the target thread will be woken up, it will not
+ * be migrated to another CPU - ie. the two threads are 'synchronized'
+ * with each other. This can prevent needless bouncing between CPUs.
+ *
+ * On UP it can prevent extra preemption.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
+                       int nr_exclusive, void *key)
+{
+       unsigned long flags;
+       int wake_flags = WF_SYNC;
+
+       if (unlikely(!q))
+               return;
+
+       if (unlikely(!nr_exclusive))
+               wake_flags = 0;
+
+       spin_lock_irqsave(&q->lock, flags);
+       __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
+       spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL_GPL(__wake_up_sync_key);
+
+/*
+ * __wake_up_sync - see __wake_up_sync_key()
+ */
+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+{
+       __wake_up_sync_key(q, mode, nr_exclusive, NULL);
+}
+EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
+
+/**
+ * complete: - signals a single thread waiting on this completion
+ * @x:  holds the state of this particular completion
+ *
+ * This will wake up a single thread waiting on this completion. Threads will be
+ * awakened in the same order in which they were queued.
+ *
+ * See also complete_all(), wait_for_completion() and related routines.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
+void complete(struct completion *x)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       x->done++;
+       __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete);
+
+/**
+ * complete_all: - signals all threads waiting on this completion
+ * @x:  holds the state of this particular completion
+ *
+ * This will wake up all threads waiting on this particular completion event.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
+void complete_all(struct completion *x)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       x->done += UINT_MAX/2;
+       __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete_all);
+
+static inline long __sched
+do_wait_for_common(struct completion *x, long timeout, int state)
+{
+       if (!x->done) {
+               DECLARE_WAITQUEUE(wait, current);
+
+               __add_wait_queue_tail_exclusive(&x->wait, &wait);
+               do {
+                       if (signal_pending_state(state, current)) {
+                               timeout = -ERESTARTSYS;
+                               break;
+                       }
+                       __set_current_state(state);
+                       spin_unlock_irq(&x->wait.lock);
+                       timeout = schedule_timeout(timeout);
+                       spin_lock_irq(&x->wait.lock);
+               } while (!x->done && timeout);
+               __remove_wait_queue(&x->wait, &wait);
+               if (!x->done)
+                       return timeout;
+       }
+       x->done--;
+       return timeout ?: 1;
+}
+
+static long __sched
+wait_for_common(struct completion *x, long timeout, int state)
+{
+       might_sleep();
+
+       spin_lock_irq(&x->wait.lock);
+       timeout = do_wait_for_common(x, timeout, state);
+       spin_unlock_irq(&x->wait.lock);
+       return timeout;
+}
+
+/**
+ * wait_for_completion: - waits for completion of a task
+ * @x:  holds the state of this particular completion
+ *
+ * This waits to be signaled for completion of a specific task. It is NOT
+ * interruptible and there is no timeout.
+ *
+ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
+ * and interrupt capability. Also see complete().
+ */
+void __sched wait_for_completion(struct completion *x)
+{
+       wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
+}
+EXPORT_SYMBOL(wait_for_completion);
+
+/**
+ * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
+ * @x:  holds the state of this particular completion
+ * @timeout:  timeout value in jiffies
+ *
+ * This waits for either a completion of a specific task to be signaled or for a
+ * specified timeout to expire. The timeout is in jiffies. It is not
+ * interruptible.
+ *
+ * The return value is 0 if timed out, and positive (at least 1, or number of
+ * jiffies left till timeout) if completed.
+ */
+unsigned long __sched
+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
+{
+       return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
+}
+EXPORT_SYMBOL(wait_for_completion_timeout);
+
+/**
+ * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
+ * @x:  holds the state of this particular completion
+ *
+ * This waits for completion of a specific task to be signaled. It is
+ * interruptible.
+ *
+ * The return value is -ERESTARTSYS if interrupted, 0 if completed.
+ */
+int __sched wait_for_completion_interruptible(struct completion *x)
+{
+       long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
+       if (t == -ERESTARTSYS)
+               return t;
+       return 0;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible);
+
+/**
+ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
+ * @x:  holds the state of this particular completion
+ * @timeout:  timeout value in jiffies
+ *
+ * This waits for either a completion of a specific task to be signaled or for a
+ * specified timeout to expire. It is interruptible. The timeout is in jiffies.
+ *
+ * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
+ * positive (at least 1, or number of jiffies left till timeout) if completed.
+ */
+long __sched
+wait_for_completion_interruptible_timeout(struct completion *x,
+                                         unsigned long timeout)
+{
+       return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
+
+/**
+ * wait_for_completion_killable: - waits for completion of a task (killable)
+ * @x:  holds the state of this particular completion
+ *
+ * This waits to be signaled for completion of a specific task. It can be
+ * interrupted by a kill signal.
+ *
+ * The return value is -ERESTARTSYS if interrupted, 0 if completed.
+ */
+int __sched wait_for_completion_killable(struct completion *x)
+{
+       long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
+       if (t == -ERESTARTSYS)
+               return t;
+       return 0;
+}
+EXPORT_SYMBOL(wait_for_completion_killable);
+
+/**
+ * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
+ * @x:  holds the state of this particular completion
+ * @timeout:  timeout value in jiffies
+ *
+ * This waits for either a completion of a specific task to be
+ * signaled or for a specified timeout to expire. It can be
+ * interrupted by a kill signal. The timeout is in jiffies.
+ *
+ * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
+ * positive (at least 1, or number of jiffies left till timeout) if completed.
+ */
+long __sched
+wait_for_completion_killable_timeout(struct completion *x,
+                                    unsigned long timeout)
+{
+       return wait_for_common(x, timeout, TASK_KILLABLE);
+}
+EXPORT_SYMBOL(wait_for_completion_killable_timeout);
+
+/**
+ *     try_wait_for_completion - try to decrement a completion without blocking
+ *     @x:     completion structure
+ *
+ *     Returns: 0 if a decrement cannot be done without blocking
+ *              1 if a decrement succeeded.
+ *
+ *     If a completion is being used as a counting completion,
+ *     attempt to decrement the counter without blocking. This
+ *     enables us to avoid waiting if the resource the completion
+ *     is protecting is not available.
+ */
+bool try_wait_for_completion(struct completion *x)
+{
+       unsigned long flags;
+       int ret = 1;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       if (!x->done)
+               ret = 0;
+       else
+               x->done--;
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+       return ret;
+}
+EXPORT_SYMBOL(try_wait_for_completion);
+
+/**
+ *     completion_done - Test to see if a completion has any waiters
+ *     @x:     completion structure
+ *
+ *     Returns: 0 if there are waiters (wait_for_completion() in progress)
+ *              1 if there are no waiters.
+ *
+ */
+bool completion_done(struct completion *x)
+{
+       unsigned long flags;
+       int ret = 1;
+
+       spin_lock_irqsave(&x->wait.lock, flags);
+       if (!x->done)
+               ret = 0;
+       spin_unlock_irqrestore(&x->wait.lock, flags);
+       return ret;
+}
+EXPORT_SYMBOL(completion_done);
+
+static long __sched
+sleep_on_common(wait_queue_head_t *q, int state, long timeout)
+{
+       unsigned long flags;
+       wait_queue_t wait;
+
+       init_waitqueue_entry(&wait, current);
+
+       __set_current_state(state);
+
+       spin_lock_irqsave(&q->lock, flags);
+       __add_wait_queue(q, &wait);
+       spin_unlock(&q->lock);
+       timeout = schedule_timeout(timeout);
+       spin_lock_irq(&q->lock);
+       __remove_wait_queue(q, &wait);
+       spin_unlock_irqrestore(&q->lock, flags);
+
+       return timeout;
+}
+
+void __sched interruptible_sleep_on(wait_queue_head_t *q)
+{
+       sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
+}
+EXPORT_SYMBOL(interruptible_sleep_on);
+
+long __sched
+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
+}
+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
+
+void __sched sleep_on(wait_queue_head_t *q)
+{
+       sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
+}
+EXPORT_SYMBOL(sleep_on);
+
+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+       return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
+}
+EXPORT_SYMBOL(sleep_on_timeout);
+
+#ifdef CONFIG_RT_MUTEXES
+
+/*
+ * rt_mutex_setprio - set the current priority of a task
+ * @p: task
+ * @prio: prio value (kernel-internal form)
+ *
+ * This function changes the 'effective' priority of a task. It does
+ * not touch ->normal_prio like __setscheduler().
+ *
+ * Used by the rt_mutex code to implement priority inheritance logic.
+ */
+void rt_mutex_setprio(struct task_struct *p, int prio)
+{
+       int oldprio, on_rq, running;
+       struct rq *rq;
+       const struct sched_class *prev_class;
+
+       BUG_ON(prio < 0 || prio > MAX_PRIO);
+
+       rq = __task_rq_lock(p);
+
+       trace_sched_pi_setprio(p, prio);
+       oldprio = p->prio;
+       prev_class = p->sched_class;
+       on_rq = p->on_rq;
+       running = task_current(rq, p);
+       if (on_rq)
+               dequeue_task(rq, p, 0);
+       if (running)
+               p->sched_class->put_prev_task(rq, p);
+
+       if (rt_prio(prio))
+               p->sched_class = &rt_sched_class;
+       else
+               p->sched_class = &fair_sched_class;
+
+       p->prio = prio;
+
+       if (running)
+               p->sched_class->set_curr_task(rq);
+       if (on_rq)
+               enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
+
+       check_class_changed(rq, p, prev_class, oldprio);
+       __task_rq_unlock(rq);
+}
+
+#endif
+
+void set_user_nice(struct task_struct *p, long nice)
+{
+       int old_prio, delta, on_rq;
+       unsigned long flags;
+       struct rq *rq;
+
+       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
+               return;
+       /*
+        * We have to be careful, if called from sys_setpriority(),
+        * the task might be in the middle of scheduling on another CPU.
+        */
+       rq = task_rq_lock(p, &flags);
+       /*
+        * The RT priorities are set via sched_setscheduler(), but we still
+        * allow the 'normal' nice value to be set - but as expected
+        * it wont have any effect on scheduling until the task is
+        * SCHED_FIFO/SCHED_RR:
+        */
+       if (task_has_rt_policy(p)) {
+               p->static_prio = NICE_TO_PRIO(nice);
+               goto out_unlock;
+       }
+       on_rq = p->on_rq;
+       if (on_rq)
+               dequeue_task(rq, p, 0);
+
+       p->static_prio = NICE_TO_PRIO(nice);
+       set_load_weight(p);
+       old_prio = p->prio;
+       p->prio = effective_prio(p);
+       delta = p->prio - old_prio;
+
+       if (on_rq) {
+               enqueue_task(rq, p, 0);
+               /*
+                * If the task increased its priority or is running and
+                * lowered its priority, then reschedule its CPU:
+                */
+               if (delta < 0 || (delta > 0 && task_running(rq, p)))
+                       resched_task(rq->curr);
+       }
+out_unlock:
+       task_rq_unlock(rq, p, &flags);
+}
+EXPORT_SYMBOL(set_user_nice);
+
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const struct task_struct *p, const int nice)
+{
+       /* convert nice value [19,-20] to rlimit style value [1,40] */
+       int nice_rlim = 20 - nice;
+
+       return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
+               capable(CAP_SYS_NICE));
+}
+
+#ifdef __ARCH_WANT_SYS_NICE
+
+/*
+ * sys_nice - change the priority of the current process.
+ * @increment: priority increment
+ *
+ * sys_setpriority is a more generic, but much slower function that
+ * does similar things.
+ */
+SYSCALL_DEFINE1(nice, int, increment)
+{
+       long nice, retval;
+
+       /*
+        * Setpriority might change our priority at the same moment.
+        * We don't have to worry. Conceptually one call occurs first
+        * and we have a single winner.
+        */
+       if (increment < -40)
+               increment = -40;
+       if (increment > 40)
+               increment = 40;
+
+       nice = TASK_NICE(current) + increment;
+       if (nice < -20)
+               nice = -20;
+       if (nice > 19)
+               nice = 19;
+
+       if (increment < 0 && !can_nice(current, nice))
+               return -EPERM;
+
+       retval = security_task_setnice(current, nice);
+       if (retval)
+               return retval;
+
+       set_user_nice(current, nice);
+       return 0;
+}
+
+#endif
+
+/**
+ * task_prio - return the priority value of a given task.
+ * @p: the task in question.
+ *
+ * This is the priority value as seen by users in /proc.
+ * RT tasks are offset by -200. Normal tasks are centered
+ * around 0, value goes from -16 to +15.
+ */
+int task_prio(const struct task_struct *p)
+{
+       return p->prio - MAX_RT_PRIO;
+}
+
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ */
+int task_nice(const struct task_struct *p)
+{
+       return TASK_NICE(p);
+}
+EXPORT_SYMBOL(task_nice);
+
+/**
+ * idle_cpu - is a given cpu idle currently?
+ * @cpu: the processor in question.
+ */
+int idle_cpu(int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+
+       if (rq->curr != rq->idle)
+               return 0;
+
+       if (rq->nr_running)
+               return 0;
+
+#ifdef CONFIG_SMP
+       if (!llist_empty(&rq->wake_list))
+               return 0;
+#endif
+
+       return 1;
+}
+
+/**
+ * idle_task - return the idle task for a given cpu.
+ * @cpu: the processor in question.
+ */
+struct task_struct *idle_task(int cpu)
+{
+       return cpu_rq(cpu)->idle;
+}
+
+/**
+ * find_process_by_pid - find a process with a matching PID value.
+ * @pid: the pid in question.
+ */
+static struct task_struct *find_process_by_pid(pid_t pid)
+{
+       return pid ? find_task_by_vpid(pid) : current;
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void
+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
+{
+       p->policy = policy;
+       p->rt_priority = prio;
+       p->normal_prio = normal_prio(p);
+       /* we are holding p->pi_lock already */
+       p->prio = rt_mutex_getprio(p);
+       if (rt_prio(p->prio))
+               p->sched_class = &rt_sched_class;
+       else
+               p->sched_class = &fair_sched_class;
+       set_load_weight(p);
+}
+
+/*
+ * check the target process has a UID that matches the current process's
+ */
+static bool check_same_owner(struct task_struct *p)
+{
+       const struct cred *cred = current_cred(), *pcred;
+       bool match;
+
+       rcu_read_lock();
+       pcred = __task_cred(p);
+       if (cred->user->user_ns == pcred->user->user_ns)
+               match = (cred->euid == pcred->euid ||
+                        cred->euid == pcred->uid);
+       else
+               match = false;
+       rcu_read_unlock();
+       return match;
+}
+
+static int __sched_setscheduler(struct task_struct *p, int policy,
+                               const struct sched_param *param, bool user)
+{
+       int retval, oldprio, oldpolicy = -1, on_rq, running;
+       unsigned long flags;
+       const struct sched_class *prev_class;
+       struct rq *rq;
+       int reset_on_fork;
+
+       /* may grab non-irq protected spin_locks */
+       BUG_ON(in_interrupt());
+recheck:
+       /* double check policy once rq lock held */
+       if (policy < 0) {
+               reset_on_fork = p->sched_reset_on_fork;
+               policy = oldpolicy = p->policy;
+       } else {
+               reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
+               policy &= ~SCHED_RESET_ON_FORK;
+
+               if (policy != SCHED_FIFO && policy != SCHED_RR &&
+                               policy != SCHED_NORMAL && policy != SCHED_BATCH &&
+                               policy != SCHED_IDLE)
+                       return -EINVAL;
+       }
+
+       /*
+        * Valid priorities for SCHED_FIFO and SCHED_RR are
+        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
+        * SCHED_BATCH and SCHED_IDLE is 0.
+        */
+       if (param->sched_priority < 0 ||
+           (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
+           (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
+               return -EINVAL;
+       if (rt_policy(policy) != (param->sched_priority != 0))
+               return -EINVAL;
+
+       /*
+        * Allow unprivileged RT tasks to decrease priority:
+        */
+       if (user && !capable(CAP_SYS_NICE)) {
+               if (rt_policy(policy)) {
+                       unsigned long rlim_rtprio =
+                                       task_rlimit(p, RLIMIT_RTPRIO);
+
+                       /* can't set/change the rt policy */
+                       if (policy != p->policy && !rlim_rtprio)
+                               return -EPERM;
+
+                       /* can't increase priority */
+                       if (param->sched_priority > p->rt_priority &&
+                           param->sched_priority > rlim_rtprio)
+                               return -EPERM;
+               }
+
+               /*
+                * Treat SCHED_IDLE as nice 20. Only allow a switch to
+                * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
+                */
+               if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
+                       if (!can_nice(p, TASK_NICE(p)))
+                               return -EPERM;
+               }
+
+               /* can't change other user's priorities */
+               if (!check_same_owner(p))
+                       return -EPERM;
+
+               /* Normal users shall not reset the sched_reset_on_fork flag */
+               if (p->sched_reset_on_fork && !reset_on_fork)
+                       return -EPERM;
+       }
+
+       if (user) {
+               retval = security_task_setscheduler(p);
+               if (retval)
+                       return retval;
+       }
+
+       /*
+        * make sure no PI-waiters arrive (or leave) while we are
+        * changing the priority of the task:
+        *
+        * To be able to change p->policy safely, the appropriate
+        * runqueue lock must be held.
+        */
+       rq = task_rq_lock(p, &flags);
+
+       /*
+        * Changing the policy of the stop threads its a very bad idea
+        */
+       if (p == rq->stop) {
+               task_rq_unlock(rq, p, &flags);
+               return -EINVAL;
+       }
+
+       /*
+        * If not changing anything there's no need to proceed further:
+        */
+       if (unlikely(policy == p->policy && (!rt_policy(policy) ||
+                       param->sched_priority == p->rt_priority))) {
+
+               __task_rq_unlock(rq);
+               raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+               return 0;
+       }
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       if (user) {
+               /*
+                * Do not allow realtime tasks into groups that have no runtime
+                * assigned.
+                */
+               if (rt_bandwidth_enabled() && rt_policy(policy) &&
+                               task_group(p)->rt_bandwidth.rt_runtime == 0 &&
+                               !task_group_is_autogroup(task_group(p))) {
+                       task_rq_unlock(rq, p, &flags);
+                       return -EPERM;
+               }
+       }
+#endif
+
+       /* recheck policy now with rq lock held */
+       if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+               policy = oldpolicy = -1;
+               task_rq_unlock(rq, p, &flags);
+               goto recheck;
+       }
+       on_rq = p->on_rq;
+       running = task_current(rq, p);
+       if (on_rq)
+               deactivate_task(rq, p, 0);
+       if (running)
+               p->sched_class->put_prev_task(rq, p);
+
+       p->sched_reset_on_fork = reset_on_fork;
+
+       oldprio = p->prio;
+       prev_class = p->sched_class;
+       __setscheduler(rq, p, policy, param->sched_priority);
+
+       if (running)
+               p->sched_class->set_curr_task(rq);
+       if (on_rq)
+               activate_task(rq, p, 0);
+
+       check_class_changed(rq, p, prev_class, oldprio);
+       task_rq_unlock(rq, p, &flags);
+
+       rt_mutex_adjust_pi(p);
+
+       return 0;
+}
+
+/**
+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * NOTE that the task may be already dead.
+ */
+int sched_setscheduler(struct task_struct *p, int policy,
+                      const struct sched_param *param)
+{
+       return __sched_setscheduler(p, policy, param, true);
+}
+EXPORT_SYMBOL_GPL(sched_setscheduler);
+
+/**
+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Just like sched_setscheduler, only don't bother checking if the
+ * current context has permission.  For example, this is needed in
+ * stop_machine(): we create temporary high priority worker threads,
+ * but our caller might not have that capability.
+ */
+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
+                              const struct sched_param *param)
+{
+       return __sched_setscheduler(p, policy, param, false);
+}
+
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+       struct sched_param lparam;
+       struct task_struct *p;
+       int retval;
+
+       if (!param || pid < 0)
+               return -EINVAL;
+       if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
+               return -EFAULT;
+
+       rcu_read_lock();
+       retval = -ESRCH;
+       p = find_process_by_pid(pid);
+       if (p != NULL)
+               retval = sched_setscheduler(p, policy, &lparam);
+       rcu_read_unlock();
+
+       return retval;
+}
+
+/**
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
+ * @pid: the pid in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ */
+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
+               struct sched_param __user *, param)
+{
+       /* negative values for policy are not valid */
+       if (policy < 0)
+               return -EINVAL;
+
+       return do_sched_setscheduler(pid, policy, param);
+}
+
+/**
+ * sys_sched_setparam - set/change the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the new RT priority.
+ */
+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
+{
+       return do_sched_setscheduler(pid, -1, param);
+}
+
+/**
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
+ * @pid: the pid in question.
+ */
+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
+{
+       struct task_struct *p;
+       int retval;
+
+       if (pid < 0)
+               return -EINVAL;
+
+       retval = -ESRCH;
+       rcu_read_lock();
+       p = find_process_by_pid(pid);
+       if (p) {
+               retval = security_task_getscheduler(p);
+               if (!retval)
+                       retval = p->policy
+                               | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
+       }
+       rcu_read_unlock();
+       return retval;
+}
+
+/**
+ * sys_sched_getparam - get the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the RT priority.
+ */
+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
+{
+       struct sched_param lp;
+       struct task_struct *p;
+       int retval;
+
+       if (!param || pid < 0)
+               return -EINVAL;
+
+       rcu_read_lock();
+       p = find_process_by_pid(pid);
+       retval = -ESRCH;
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       lp.sched_priority = p->rt_priority;
+       rcu_read_unlock();
+
+       /*
+        * This one might sleep, we cannot do it with a spinlock held ...
+        */
+       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+
+       return retval;
+
+out_unlock:
+       rcu_read_unlock();
+       return retval;
+}
+
+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
+{
+       cpumask_var_t cpus_allowed, new_mask;
+       struct task_struct *p;
+       int retval;
+
+       get_online_cpus();
+       rcu_read_lock();
+
+       p = find_process_by_pid(pid);
+       if (!p) {
+               rcu_read_unlock();
+               put_online_cpus();
+               return -ESRCH;
+       }
+
+       /* Prevent p going away */
+       get_task_struct(p);
+       rcu_read_unlock();
+
+       if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
+               retval = -ENOMEM;
+               goto out_put_task;
+       }
+       if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
+               retval = -ENOMEM;
+               goto out_free_cpus_allowed;
+       }
+       retval = -EPERM;
+       if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
+               goto out_unlock;
+
+       retval = security_task_setscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       cpuset_cpus_allowed(p, cpus_allowed);
+       cpumask_and(new_mask, in_mask, cpus_allowed);
+again:
+       retval = set_cpus_allowed_ptr(p, new_mask);
+
+       if (!retval) {
+               cpuset_cpus_allowed(p, cpus_allowed);
+               if (!cpumask_subset(new_mask, cpus_allowed)) {
+                       /*
+                        * We must have raced with a concurrent cpuset
+                        * update. Just reset the cpus_allowed to the
+                        * cpuset's cpus_allowed
+                        */
+                       cpumask_copy(new_mask, cpus_allowed);
+                       goto again;
+               }
+       }
+out_unlock:
+       free_cpumask_var(new_mask);
+out_free_cpus_allowed:
+       free_cpumask_var(cpus_allowed);
+out_put_task:
+       put_task_struct(p);
+       put_online_cpus();
+       return retval;
+}
+
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+                            struct cpumask *new_mask)
+{
+       if (len < cpumask_size())
+               cpumask_clear(new_mask);
+       else if (len > cpumask_size())
+               len = cpumask_size();
+
+       return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+/**
+ * sys_sched_setaffinity - set the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new cpu mask
+ */
+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
+               unsigned long __user *, user_mask_ptr)
+{
+       cpumask_var_t new_mask;
+       int retval;
+
+       if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
+               return -ENOMEM;
+
+       retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
+       if (retval == 0)
+               retval = sched_setaffinity(pid, new_mask);
+       free_cpumask_var(new_mask);
+       return retval;
+}
+
+long sched_getaffinity(pid_t pid, struct cpumask *mask)
+{
+       struct task_struct *p;
+       unsigned long flags;
+       int retval;
+
+       get_online_cpus();
+       rcu_read_lock();
+
+       retval = -ESRCH;
+       p = find_process_by_pid(pid);
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       raw_spin_lock_irqsave(&p->pi_lock, flags);
+       cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
+       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+out_unlock:
+       rcu_read_unlock();
+       put_online_cpus();
+
+       return retval;
+}
+
+/**
+ * sys_sched_getaffinity - get the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
+ */
+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
+               unsigned long __user *, user_mask_ptr)
+{
+       int ret;
+       cpumask_var_t mask;
+
+       if ((len * BITS_PER_BYTE) < nr_cpu_ids)
+               return -EINVAL;
+       if (len & (sizeof(unsigned long)-1))
+               return -EINVAL;
+
+       if (!alloc_cpumask_var(&mask, GFP_KERNEL))
+               return -ENOMEM;
+
+       ret = sched_getaffinity(pid, mask);
+       if (ret == 0) {
+               size_t retlen = min_t(size_t, len, cpumask_size());
+
+               if (copy_to_user(user_mask_ptr, mask, retlen))
+                       ret = -EFAULT;
+               else
+                       ret = retlen;
+       }
+       free_cpumask_var(mask);
+
+       return ret;
+}
+
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * This function yields the current CPU to other tasks. If there are no
+ * other threads running on this CPU then this function will return.
+ */
+SYSCALL_DEFINE0(sched_yield)
+{
+       struct rq *rq = this_rq_lock();
+
+       schedstat_inc(rq, yld_count);
+       current->sched_class->yield_task(rq);
+
+       /*
+        * Since we are going to call schedule() anyway, there's
+        * no need to preempt or enable interrupts:
+        */
+       __release(rq->lock);
+       spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
+       do_raw_spin_unlock(&rq->lock);
+       preempt_enable_no_resched();
+
+       schedule();
+
+       return 0;
+}
+
+static inline int should_resched(void)
+{
+       return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
+}
+
+static void __cond_resched(void)
+{
+       add_preempt_count(PREEMPT_ACTIVE);
+       __schedule();
+       sub_preempt_count(PREEMPT_ACTIVE);
+}
+
+int __sched _cond_resched(void)
+{
+       if (should_resched()) {
+               __cond_resched();
+               return 1;
+       }
+       return 0;
+}
+EXPORT_SYMBOL(_cond_resched);
+
+/*
+ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
+ * call schedule, and on return reacquire the lock.
+ *
+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
+ * operations here to prevent schedule() from being called twice (once via
+ * spin_unlock(), once by hand).
+ */
+int __cond_resched_lock(spinlock_t *lock)
+{
+       int resched = should_resched();
+       int ret = 0;
+
+       lockdep_assert_held(lock);
+
+       if (spin_needbreak(lock) || resched) {
+               spin_unlock(lock);
+               if (resched)
+                       __cond_resched();
+               else
+                       cpu_relax();
+               ret = 1;
+               spin_lock(lock);
+       }
+       return ret;
+}
+EXPORT_SYMBOL(__cond_resched_lock);
+
+int __sched __cond_resched_softirq(void)
+{
+       BUG_ON(!in_softirq());
+
+       if (should_resched()) {
+               local_bh_enable();
+               __cond_resched();
+               local_bh_disable();
+               return 1;
+       }
+       return 0;
+}
+EXPORT_SYMBOL(__cond_resched_softirq);
+
+/**
+ * yield - yield the current processor to other threads.
+ *
+ * This is a shortcut for kernel-space yielding - it marks the
+ * thread runnable and calls sys_sched_yield().
+ */
+void __sched yield(void)
+{
+       set_current_state(TASK_RUNNING);
+       sys_sched_yield();
+}
+EXPORT_SYMBOL(yield);
+
+/**
+ * yield_to - yield the current processor to another thread in
+ * your thread group, or accelerate that thread toward the
+ * processor it's on.
+ * @p: target task
+ * @preempt: whether task preemption is allowed or not
+ *
+ * It's the caller's job to ensure that the target task struct
+ * can't go away on us before we can do any checks.
+ *
+ * Returns true if we indeed boosted the target task.
+ */
+bool __sched yield_to(struct task_struct *p, bool preempt)
+{
+       struct task_struct *curr = current;
+       struct rq *rq, *p_rq;
+       unsigned long flags;
+       bool yielded = 0;
+
+       local_irq_save(flags);
+       rq = this_rq();
+
+again:
+       p_rq = task_rq(p);
+       double_rq_lock(rq, p_rq);
+       while (task_rq(p) != p_rq) {
+               double_rq_unlock(rq, p_rq);
+               goto again;
+       }
+
+       if (!curr->sched_class->yield_to_task)
+               goto out;
+
+       if (curr->sched_class != p->sched_class)
+               goto out;
+
+       if (task_running(p_rq, p) || p->state)
+               goto out;
+
+       yielded = curr->sched_class->yield_to_task(rq, p, preempt);
+       if (yielded) {
+               schedstat_inc(rq, yld_count);
+               /*
+                * Make p's CPU reschedule; pick_next_entity takes care of
+                * fairness.
+                */
+               if (preempt && rq != p_rq)
+                       resched_task(p_rq->curr);
+       }
+
+out:
+       double_rq_unlock(rq, p_rq);
+       local_irq_restore(flags);
+
+       if (yielded)
+               schedule();
+
+       return yielded;
+}
+EXPORT_SYMBOL_GPL(yield_to);
+
+/*
+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
+ * that process accounting knows that this is a task in IO wait state.
+ */
+void __sched io_schedule(void)
+{
+       struct rq *rq = raw_rq();
+
+       delayacct_blkio_start();
+       atomic_inc(&rq->nr_iowait);
+       blk_flush_plug(current);
+       current->in_iowait = 1;
+       schedule();
+       current->in_iowait = 0;
+       atomic_dec(&rq->nr_iowait);
+       delayacct_blkio_end();
+}
+EXPORT_SYMBOL(io_schedule);
+
+long __sched io_schedule_timeout(long timeout)
+{
+       struct rq *rq = raw_rq();
+       long ret;
+
+       delayacct_blkio_start();
+       atomic_inc(&rq->nr_iowait);
+       blk_flush_plug(current);
+       current->in_iowait = 1;
+       ret = schedule_timeout(timeout);
+       current->in_iowait = 0;
+       atomic_dec(&rq->nr_iowait);
+       delayacct_blkio_end();
+       return ret;
+}
+
+/**
+ * sys_sched_get_priority_max - return maximum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the maximum rt_priority that can be used
+ * by a given scheduling class.
+ */
+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
+{
+       int ret = -EINVAL;
+
+       switch (policy) {
+       case SCHED_FIFO:
+       case SCHED_RR:
+               ret = MAX_USER_RT_PRIO-1;
+               break;
+       case SCHED_NORMAL:
+       case SCHED_BATCH:
+       case SCHED_IDLE:
+               ret = 0;
+               break;
+       }
+       return ret;
+}
+
+/**
+ * sys_sched_get_priority_min - return minimum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the minimum rt_priority that can be used
+ * by a given scheduling class.
+ */
+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
+{
+       int ret = -EINVAL;
+
+       switch (policy) {
+       case SCHED_FIFO:
+       case SCHED_RR:
+               ret = 1;
+               break;
+       case SCHED_NORMAL:
+       case SCHED_BATCH:
+       case SCHED_IDLE:
+               ret = 0;
+       }
+       return ret;
+}
+
+/**
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
+ * @pid: pid of the process.
+ * @interval: userspace pointer to the timeslice value.
+ *
+ * this syscall writes the default timeslice value of a given process
+ * into the user-space timespec buffer. A value of '0' means infinity.
+ */
+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
+               struct timespec __user *, interval)
+{
+       struct task_struct *p;
+       unsigned int time_slice;
+       unsigned long flags;
+       struct rq *rq;
+       int retval;
+       struct timespec t;
+
+       if (pid < 0)
+               return -EINVAL;
+
+       retval = -ESRCH;
+       rcu_read_lock();
+       p = find_process_by_pid(pid);
+       if (!p)
+               goto out_unlock;
+
+       retval = security_task_getscheduler(p);
+       if (retval)
+               goto out_unlock;
+
+       rq = task_rq_lock(p, &flags);
+       time_slice = p->sched_class->get_rr_interval(rq, p);
+       task_rq_unlock(rq, p, &flags);
+
+       rcu_read_unlock();
+       jiffies_to_timespec(time_slice, &t);
+       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
+       return retval;
+
+out_unlock:
+       rcu_read_unlock();
+       return retval;
+}
+
+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
+
+void sched_show_task(struct task_struct *p)
+{
+       unsigned long free = 0;
+       unsigned state;
+
+       state = p->state ? __ffs(p->state) + 1 : 0;
+       printk(KERN_INFO "%-15.15s %c", p->comm,
+               state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
+#if BITS_PER_LONG == 32
+       if (state == TASK_RUNNING)
+               printk(KERN_CONT " running  ");
+       else
+               printk(KERN_CONT " %08lx ", thread_saved_pc(p));
+#else
+       if (state == TASK_RUNNING)
+               printk(KERN_CONT "  running task    ");
+       else
+               printk(KERN_CONT " %016lx ", thread_saved_pc(p));
+#endif
+#ifdef CONFIG_DEBUG_STACK_USAGE
+       free = stack_not_used(p);
+#endif
+       printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
+               task_pid_nr(p), task_pid_nr(p->real_parent),
+               (unsigned long)task_thread_info(p)->flags);
+
+       show_stack(p, NULL);
+}
+
+void show_state_filter(unsigned long state_filter)
+{
+       struct task_struct *g, *p;
+
+#if BITS_PER_LONG == 32
+       printk(KERN_INFO
+               "  task                PC stack   pid father\n");
+#else
+       printk(KERN_INFO
+               "  task                        PC stack   pid father\n");
+#endif
+       rcu_read_lock();
+       do_each_thread(g, p) {
+               /*
+                * reset the NMI-timeout, listing all files on a slow
+                * console might take a lot of time:
+                */
+               touch_nmi_watchdog();
+               if (!state_filter || (p->state & state_filter))
+                       sched_show_task(p);
+       } while_each_thread(g, p);
+
+       touch_all_softlockup_watchdogs();
+
+#ifdef CONFIG_SCHED_DEBUG
+       sysrq_sched_debug_show();
+#endif
+       rcu_read_unlock();
+       /*
+        * Only show locks if all tasks are dumped:
+        */
+       if (!state_filter)
+               debug_show_all_locks();
+}
+
+void __cpuinit init_idle_bootup_task(struct task_struct *idle)
+{
+       idle->sched_class = &idle_sched_class;
+}
+
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
+void __cpuinit init_idle(struct task_struct *idle, int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       __sched_fork(idle);
+       idle->state = TASK_RUNNING;
+       idle->se.exec_start = sched_clock();
+
+       do_set_cpus_allowed(idle, cpumask_of(cpu));
+       /*
+        * We're having a chicken and egg problem, even though we are
+        * holding rq->lock, the cpu isn't yet set to this cpu so the
+        * lockdep check in task_group() will fail.
+        *
+        * Similar case to sched_fork(). / Alternatively we could
+        * use task_rq_lock() here and obtain the other rq->lock.
+        *
+        * Silence PROVE_RCU
+        */
+       rcu_read_lock();
+       __set_task_cpu(idle, cpu);
+       rcu_read_unlock();
+
+       rq->curr = rq->idle = idle;
+#if defined(CONFIG_SMP)
+       idle->on_cpu = 1;
+#endif
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+       /* Set the preempt count _outside_ the spinlocks! */
+       task_thread_info(idle)->preempt_count = 0;
+
+       /*
+        * The idle tasks have their own, simple scheduling class:
+        */
+       idle->sched_class = &idle_sched_class;
+       ftrace_graph_init_idle_task(idle, cpu);
+#if defined(CONFIG_SMP)
+       sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
+#endif
+}
+
+#ifdef CONFIG_SMP
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+       if (p->sched_class && p->sched_class->set_cpus_allowed)
+               p->sched_class->set_cpus_allowed(p, new_mask);
+
+       cpumask_copy(&p->cpus_allowed, new_mask);
+       p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
+}
+
+/*
+ * This is how migration works:
+ *
+ * 1) we invoke migration_cpu_stop() on the target CPU using
+ *    stop_one_cpu().
+ * 2) stopper starts to run (implicitly forcing the migrated thread
+ *    off the CPU)
+ * 3) it checks whether the migrated task is still in the wrong runqueue.
+ * 4) if it's in the wrong runqueue then the migration thread removes
+ *    it and puts it into the right queue.
+ * 5) stopper completes and stop_one_cpu() returns and the migration
+ *    is done.
+ */
+
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely. The
+ * call is not atomic; no spinlocks may be held.
+ */
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+       unsigned long flags;
+       struct rq *rq;
+       unsigned int dest_cpu;
+       int ret = 0;
+
+       rq = task_rq_lock(p, &flags);
+
+       if (cpumask_equal(&p->cpus_allowed, new_mask))
+               goto out;
+
+       if (!cpumask_intersects(new_mask, cpu_active_mask)) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+       if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
+               ret = -EINVAL;
+               goto out;
+       }
+
+       do_set_cpus_allowed(p, new_mask);
+
+       /* Can the task run on the task's current CPU? If so, we're done */
+       if (cpumask_test_cpu(task_cpu(p), new_mask))
+               goto out;
+
+       dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
+       if (p->on_rq) {
+               struct migration_arg arg = { p, dest_cpu };
+               /* Need help from migration thread: drop lock and wait. */
+               task_rq_unlock(rq, p, &flags);
+               stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
+               tlb_migrate_finish(p->mm);
+               return 0;
+       }
+out:
+       task_rq_unlock(rq, p, &flags);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
+
+/*
+ * Move (not current) task off this cpu, onto dest cpu. We're doing
+ * this because either it can't run here any more (set_cpus_allowed()
+ * away from this CPU, or CPU going down), or because we're
+ * attempting to rebalance this task on exec (sched_exec).
+ *
+ * So we race with normal scheduler movements, but that's OK, as long
+ * as the task is no longer on this CPU.
+ *
+ * Returns non-zero if task was successfully migrated.
+ */
+static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
+{
+       struct rq *rq_dest, *rq_src;
+       int ret = 0;
+
+       if (unlikely(!cpu_active(dest_cpu)))
+               return ret;
+
+       rq_src = cpu_rq(src_cpu);
+       rq_dest = cpu_rq(dest_cpu);
+
+       raw_spin_lock(&p->pi_lock);
+       double_rq_lock(rq_src, rq_dest);
+       /* Already moved. */
+       if (task_cpu(p) != src_cpu)
+               goto done;
+       /* Affinity changed (again). */
+       if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
+               goto fail;
+
+       /*
+        * If we're not on a rq, the next wake-up will ensure we're
+        * placed properly.
+        */
+       if (p->on_rq) {
+               deactivate_task(rq_src, p, 0);
+               set_task_cpu(p, dest_cpu);
+               activate_task(rq_dest, p, 0);
+               check_preempt_curr(rq_dest, p, 0);
+       }
+done:
+       ret = 1;
+fail:
+       double_rq_unlock(rq_src, rq_dest);
+       raw_spin_unlock(&p->pi_lock);
+       return ret;
+}
+
+/*
+ * migration_cpu_stop - this will be executed by a highprio stopper thread
+ * and performs thread migration by bumping thread off CPU then
+ * 'pushing' onto another runqueue.
+ */
+static int migration_cpu_stop(void *data)
+{
+       struct migration_arg *arg = data;
+
+       /*
+        * The original target cpu might have gone down and we might
+        * be on another cpu but it doesn't matter.
+        */
+       local_irq_disable();
+       __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
+       local_irq_enable();
+       return 0;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+/*
+ * Ensures that the idle task is using init_mm right before its cpu goes
+ * offline.
+ */
+void idle_task_exit(void)
+{
+       struct mm_struct *mm = current->active_mm;
+
+       BUG_ON(cpu_online(smp_processor_id()));
+
+       if (mm != &init_mm)
+               switch_mm(mm, &init_mm, current);
+       mmdrop(mm);
+}
+
+/*
+ * While a dead CPU has no uninterruptible tasks queued at this point,
+ * it might still have a nonzero ->nr_uninterruptible counter, because
+ * for performance reasons the counter is not stricly tracking tasks to
+ * their home CPUs. So we just add the counter to another CPU's counter,
+ * to keep the global sum constant after CPU-down:
+ */
+static void migrate_nr_uninterruptible(struct rq *rq_src)
+{
+       struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
+
+       rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
+       rq_src->nr_uninterruptible = 0;
+}
+
+/*
+ * remove the tasks which were accounted by rq from calc_load_tasks.
+ */
+static void calc_global_load_remove(struct rq *rq)
+{
+       atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
+       rq->calc_load_active = 0;
+}
+
+/*
+ * Migrate all tasks from the rq, sleeping tasks will be migrated by
+ * try_to_wake_up()->select_task_rq().
+ *
+ * Called with rq->lock held even though we'er in stop_machine() and
+ * there's no concurrency possible, we hold the required locks anyway
+ * because of lock validation efforts.
+ */
+static void migrate_tasks(unsigned int dead_cpu)
+{
+       struct rq *rq = cpu_rq(dead_cpu);
+       struct task_struct *next, *stop = rq->stop;
+       int dest_cpu;
+
+       /*
+        * Fudge the rq selection such that the below task selection loop
+        * doesn't get stuck on the currently eligible stop task.
+        *
+        * We're currently inside stop_machine() and the rq is either stuck
+        * in the stop_machine_cpu_stop() loop, or we're executing this code,
+        * either way we should never end up calling schedule() until we're
+        * done here.
+        */
+       rq->stop = NULL;
+
+       /* Ensure any throttled groups are reachable by pick_next_task */
+       unthrottle_offline_cfs_rqs(rq);
+
+       for ( ; ; ) {
+               /*
+                * There's this thread running, bail when that's the only
+                * remaining thread.
+                */
+               if (rq->nr_running == 1)
+                       break;
+
+               next = pick_next_task(rq);
+               BUG_ON(!next);
+               next->sched_class->put_prev_task(rq, next);
+
+               /* Find suitable destination for @next, with force if needed. */
+               dest_cpu = select_fallback_rq(dead_cpu, next);
+               raw_spin_unlock(&rq->lock);
+
+               __migrate_task(next, dead_cpu, dest_cpu);
+
+               raw_spin_lock(&rq->lock);
+       }
+
+       rq->stop = stop;
+}
+
+#endif /* CONFIG_HOTPLUG_CPU */
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+
+static struct ctl_table sd_ctl_dir[] = {
+       {
+               .procname       = "sched_domain",
+               .mode           = 0555,
+       },
+       {}
+};
+
+static struct ctl_table sd_ctl_root[] = {
+       {
+               .procname       = "kernel",
+               .mode           = 0555,
+               .child          = sd_ctl_dir,
+       },
+       {}
+};
+
+static struct ctl_table *sd_alloc_ctl_entry(int n)
+{
+       struct ctl_table *entry =
+               kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
+
+       return entry;
+}
+
+static void sd_free_ctl_entry(struct ctl_table **tablep)
+{
+       struct ctl_table *entry;
+
+       /*
+        * In the intermediate directories, both the child directory and
+        * procname are dynamically allocated and could fail but the mode
+        * will always be set. In the lowest directory the names are
+        * static strings and all have proc handlers.
+        */
+       for (entry = *tablep; entry->mode; entry++) {
+               if (entry->child)
+                       sd_free_ctl_entry(&entry->child);
+               if (entry->proc_handler == NULL)
+                       kfree(entry->procname);
+       }
+
+       kfree(*tablep);
+       *tablep = NULL;
+}
+
+static void
+set_table_entry(struct ctl_table *entry,
+               const char *procname, void *data, int maxlen,
+               mode_t mode, proc_handler *proc_handler)
+{
+       entry->procname = procname;
+       entry->data = data;
+       entry->maxlen = maxlen;
+       entry->mode = mode;
+       entry->proc_handler = proc_handler;
+}
+
+static struct ctl_table *
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
+{
+       struct ctl_table *table = sd_alloc_ctl_entry(13);
+
+       if (table == NULL)
+               return NULL;
+
+       set_table_entry(&table[0], "min_interval", &sd->min_interval,
+               sizeof(long), 0644, proc_doulongvec_minmax);
+       set_table_entry(&table[1], "max_interval", &sd->max_interval,
+               sizeof(long), 0644, proc_doulongvec_minmax);
+       set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[9], "cache_nice_tries",
+               &sd->cache_nice_tries,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[10], "flags", &sd->flags,
+               sizeof(int), 0644, proc_dointvec_minmax);
+       set_table_entry(&table[11], "name", sd->name,
+               CORENAME_MAX_SIZE, 0444, proc_dostring);
+       /* &table[12] is terminator */
+
+       return table;
+}
+
+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
+{
+       struct ctl_table *entry, *table;
+       struct sched_domain *sd;
+       int domain_num = 0, i;
+       char buf[32];
+
+       for_each_domain(cpu, sd)
+               domain_num++;
+       entry = table = sd_alloc_ctl_entry(domain_num + 1);
+       if (table == NULL)
+               return NULL;
+
+       i = 0;
+       for_each_domain(cpu, sd) {
+               snprintf(buf, 32, "domain%d", i);
+               entry->procname = kstrdup(buf, GFP_KERNEL);
+               entry->mode = 0555;
+               entry->child = sd_alloc_ctl_domain_table(sd);
+               entry++;
+               i++;
+       }
+       return table;
+}
+
+static struct ctl_table_header *sd_sysctl_header;
+static void register_sched_domain_sysctl(void)
+{
+       int i, cpu_num = num_possible_cpus();
+       struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
+       char buf[32];
+
+       WARN_ON(sd_ctl_dir[0].child);
+       sd_ctl_dir[0].child = entry;
+
+       if (entry == NULL)
+               return;
+
+       for_each_possible_cpu(i) {
+               snprintf(buf, 32, "cpu%d", i);
+               entry->procname = kstrdup(buf, GFP_KERNEL);
+               entry->mode = 0555;
+               entry->child = sd_alloc_ctl_cpu_table(i);
+               entry++;
+       }
+
+       WARN_ON(sd_sysctl_header);
+       sd_sysctl_header = register_sysctl_table(sd_ctl_root);
+}
+
+/* may be called multiple times per register */
+static void unregister_sched_domain_sysctl(void)
+{
+       if (sd_sysctl_header)
+               unregister_sysctl_table(sd_sysctl_header);
+       sd_sysctl_header = NULL;
+       if (sd_ctl_dir[0].child)
+               sd_free_ctl_entry(&sd_ctl_dir[0].child);
+}
+#else
+static void register_sched_domain_sysctl(void)
+{
+}
+static void unregister_sched_domain_sysctl(void)
+{
+}
+#endif
+
+static void set_rq_online(struct rq *rq)
+{
+       if (!rq->online) {
+               const struct sched_class *class;
+
+               cpumask_set_cpu(rq->cpu, rq->rd->online);
+               rq->online = 1;
+
+               for_each_class(class) {
+                       if (class->rq_online)
+                               class->rq_online(rq);
+               }
+       }
+}
+
+static void set_rq_offline(struct rq *rq)
+{
+       if (rq->online) {
+               const struct sched_class *class;
+
+               for_each_class(class) {
+                       if (class->rq_offline)
+                               class->rq_offline(rq);
+               }
+
+               cpumask_clear_cpu(rq->cpu, rq->rd->online);
+               rq->online = 0;
+       }
+}
+
+/*
+ * migration_call - callback that gets triggered when a CPU is added.
+ * Here we can start up the necessary migration thread for the new CPU.
+ */
+static int __cpuinit
+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
+{
+       int cpu = (long)hcpu;
+       unsigned long flags;
+       struct rq *rq = cpu_rq(cpu);
+
+       switch (action & ~CPU_TASKS_FROZEN) {
+
+       case CPU_UP_PREPARE:
+               rq->calc_load_update = calc_load_update;
+               break;
+
+       case CPU_ONLINE:
+               /* Update our root-domain */
+               raw_spin_lock_irqsave(&rq->lock, flags);
+               if (rq->rd) {
+                       BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+
+                       set_rq_online(rq);
+               }
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
+               break;
+
+#ifdef CONFIG_HOTPLUG_CPU
+       case CPU_DYING:
+               sched_ttwu_pending();
+               /* Update our root-domain */
+               raw_spin_lock_irqsave(&rq->lock, flags);
+               if (rq->rd) {
+                       BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+                       set_rq_offline(rq);
+               }
+               migrate_tasks(cpu);
+               BUG_ON(rq->nr_running != 1); /* the migration thread */
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+               migrate_nr_uninterruptible(rq);
+               calc_global_load_remove(rq);
+               break;
+#endif
+       }
+
+       update_max_interval();
+
+       return NOTIFY_OK;
+}
+
+/*
+ * Register at high priority so that task migration (migrate_all_tasks)
+ * happens before everything else.  This has to be lower priority than
+ * the notifier in the perf_event subsystem, though.
+ */
+static struct notifier_block __cpuinitdata migration_notifier = {
+       .notifier_call = migration_call,
+       .priority = CPU_PRI_MIGRATION,
+};
+
+static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
+                                     unsigned long action, void *hcpu)
+{
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_ONLINE:
+       case CPU_DOWN_FAILED:
+               set_cpu_active((long)hcpu, true);
+               return NOTIFY_OK;
+       default:
+               return NOTIFY_DONE;
+       }
+}
+
+static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
+                                       unsigned long action, void *hcpu)
+{
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_DOWN_PREPARE:
+               set_cpu_active((long)hcpu, false);
+               return NOTIFY_OK;
+       default:
+               return NOTIFY_DONE;
+       }
+}
+
+static int __init migration_init(void)
+{
+       void *cpu = (void *)(long)smp_processor_id();
+       int err;
+
+       /* Initialize migration for the boot CPU */
+       err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
+       BUG_ON(err == NOTIFY_BAD);
+       migration_call(&migration_notifier, CPU_ONLINE, cpu);
+       register_cpu_notifier(&migration_notifier);
+
+       /* Register cpu active notifiers */
+       cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
+       cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
+
+       return 0;
+}
+early_initcall(migration_init);
+#endif
+
+#ifdef CONFIG_SMP
+
+static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
+
+#ifdef CONFIG_SCHED_DEBUG
+
+static __read_mostly int sched_domain_debug_enabled;
+
+static int __init sched_domain_debug_setup(char *str)
+{
+       sched_domain_debug_enabled = 1;
+
+       return 0;
+}
+early_param("sched_debug", sched_domain_debug_setup);
+
+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
+                                 struct cpumask *groupmask)
+{
+       struct sched_group *group = sd->groups;
+       char str[256];
+
+       cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
+       cpumask_clear(groupmask);
+
+       printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
+
+       if (!(sd->flags & SD_LOAD_BALANCE)) {
+               printk("does not load-balance\n");
+               if (sd->parent)
+                       printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
+                                       " has parent");
+               return -1;
+       }
+
+       printk(KERN_CONT "span %s level %s\n", str, sd->name);
+
+       if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+               printk(KERN_ERR "ERROR: domain->span does not contain "
+                               "CPU%d\n", cpu);
+       }
+       if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
+               printk(KERN_ERR "ERROR: domain->groups does not contain"
+                               " CPU%d\n", cpu);
+       }
+
+       printk(KERN_DEBUG "%*s groups:", level + 1, "");
+       do {
+               if (!group) {
+                       printk("\n");
+                       printk(KERN_ERR "ERROR: group is NULL\n");
+                       break;
+               }
+
+               if (!group->sgp->power) {
+                       printk(KERN_CONT "\n");
+                       printk(KERN_ERR "ERROR: domain->cpu_power not "
+                                       "set\n");
+                       break;
+               }
+
+               if (!cpumask_weight(sched_group_cpus(group))) {
+                       printk(KERN_CONT "\n");
+                       printk(KERN_ERR "ERROR: empty group\n");
+                       break;
+               }
+
+               if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
+                       printk(KERN_CONT "\n");
+                       printk(KERN_ERR "ERROR: repeated CPUs\n");
+                       break;
+               }
+
+               cpumask_or(groupmask, groupmask, sched_group_cpus(group));
+
+               cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
+
+               printk(KERN_CONT " %s", str);
+               if (group->sgp->power != SCHED_POWER_SCALE) {
+                       printk(KERN_CONT " (cpu_power = %d)",
+                               group->sgp->power);
+               }
+
+               group = group->next;
+       } while (group != sd->groups);
+       printk(KERN_CONT "\n");
+
+       if (!cpumask_equal(sched_domain_span(sd), groupmask))
+               printk(KERN_ERR "ERROR: groups don't span domain->span\n");
+
+       if (sd->parent &&
+           !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
+               printk(KERN_ERR "ERROR: parent span is not a superset "
+                       "of domain->span\n");
+       return 0;
+}
+
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
+{
+       int level = 0;
+
+       if (!sched_domain_debug_enabled)
+               return;
+
+       if (!sd) {
+               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+               return;
+       }
+
+       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
+
+       for (;;) {
+               if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
+                       break;
+               level++;
+               sd = sd->parent;
+               if (!sd)
+                       break;
+       }
+}
+#else /* !CONFIG_SCHED_DEBUG */
+# define sched_domain_debug(sd, cpu) do { } while (0)
+#endif /* CONFIG_SCHED_DEBUG */
+
+static int sd_degenerate(struct sched_domain *sd)
+{
+       if (cpumask_weight(sched_domain_span(sd)) == 1)
+               return 1;
+
+       /* Following flags need at least 2 groups */
+       if (sd->flags & (SD_LOAD_BALANCE |
+                        SD_BALANCE_NEWIDLE |
+                        SD_BALANCE_FORK |
+                        SD_BALANCE_EXEC |
+                        SD_SHARE_CPUPOWER |
+                        SD_SHARE_PKG_RESOURCES)) {
+               if (sd->groups != sd->groups->next)
+                       return 0;
+       }
+
+       /* Following flags don't use groups */
+       if (sd->flags & (SD_WAKE_AFFINE))
+               return 0;
+
+       return 1;
+}
+
+static int
+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
+{
+       unsigned long cflags = sd->flags, pflags = parent->flags;
+
+       if (sd_degenerate(parent))
+               return 1;
+
+       if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
+               return 0;
+
+       /* Flags needing groups don't count if only 1 group in parent */
+       if (parent->groups == parent->groups->next) {
+               pflags &= ~(SD_LOAD_BALANCE |
+                               SD_BALANCE_NEWIDLE |
+                               SD_BALANCE_FORK |
+                               SD_BALANCE_EXEC |
+                               SD_SHARE_CPUPOWER |
+                               SD_SHARE_PKG_RESOURCES);
+               if (nr_node_ids == 1)
+                       pflags &= ~SD_SERIALIZE;
+       }
+       if (~cflags & pflags)
+               return 0;
+
+       return 1;
+}
+
+static void free_rootdomain(struct rcu_head *rcu)
+{
+       struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
+
+       cpupri_cleanup(&rd->cpupri);
+       free_cpumask_var(rd->rto_mask);
+       free_cpumask_var(rd->online);
+       free_cpumask_var(rd->span);
+       kfree(rd);
+}
+
+static void rq_attach_root(struct rq *rq, struct root_domain *rd)
+{
+       struct root_domain *old_rd = NULL;
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       if (rq->rd) {
+               old_rd = rq->rd;
+
+               if (cpumask_test_cpu(rq->cpu, old_rd->online))
+                       set_rq_offline(rq);
+
+               cpumask_clear_cpu(rq->cpu, old_rd->span);
+
+               /*
+                * If we dont want to free the old_rt yet then
+                * set old_rd to NULL to skip the freeing later
+                * in this function:
+                */
+               if (!atomic_dec_and_test(&old_rd->refcount))
+                       old_rd = NULL;
+       }
+
+       atomic_inc(&rd->refcount);
+       rq->rd = rd;
+
+       cpumask_set_cpu(rq->cpu, rd->span);
+       if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
+               set_rq_online(rq);
+
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+       if (old_rd)
+               call_rcu_sched(&old_rd->rcu, free_rootdomain);
+}
+
+static int init_rootdomain(struct root_domain *rd)
+{
+       memset(rd, 0, sizeof(*rd));
+
+       if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
+               goto out;
+       if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
+               goto free_span;
+       if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+               goto free_online;
+
+       if (cpupri_init(&rd->cpupri) != 0)
+               goto free_rto_mask;
+       return 0;
+
+free_rto_mask:
+       free_cpumask_var(rd->rto_mask);
+free_online:
+       free_cpumask_var(rd->online);
+free_span:
+       free_cpumask_var(rd->span);
+out:
+       return -ENOMEM;
+}
+
+/*
+ * By default the system creates a single root-domain with all cpus as
+ * members (mimicking the global state we have today).
+ */
+struct root_domain def_root_domain;
+
+static void init_defrootdomain(void)
+{
+       init_rootdomain(&def_root_domain);
+
+       atomic_set(&def_root_domain.refcount, 1);
+}
+
+static struct root_domain *alloc_rootdomain(void)
+{
+       struct root_domain *rd;
+
+       rd = kmalloc(sizeof(*rd), GFP_KERNEL);
+       if (!rd)
+               return NULL;
+
+       if (init_rootdomain(rd) != 0) {
+               kfree(rd);
+               return NULL;
+       }
+
+       return rd;
+}
+
+static void free_sched_groups(struct sched_group *sg, int free_sgp)
+{
+       struct sched_group *tmp, *first;
+
+       if (!sg)
+               return;
+
+       first = sg;
+       do {
+               tmp = sg->next;
+
+               if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
+                       kfree(sg->sgp);
+
+               kfree(sg);
+               sg = tmp;
+       } while (sg != first);
+}
+
+static void free_sched_domain(struct rcu_head *rcu)
+{
+       struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
+
+       /*
+        * If its an overlapping domain it has private groups, iterate and
+        * nuke them all.
+        */
+       if (sd->flags & SD_OVERLAP) {
+               free_sched_groups(sd->groups, 1);
+       } else if (atomic_dec_and_test(&sd->groups->ref)) {
+               kfree(sd->groups->sgp);
+               kfree(sd->groups);
+       }
+       kfree(sd);
+}
+
+static void destroy_sched_domain(struct sched_domain *sd, int cpu)
+{
+       call_rcu(&sd->rcu, free_sched_domain);
+}
+
+static void destroy_sched_domains(struct sched_domain *sd, int cpu)
+{
+       for (; sd; sd = sd->parent)
+               destroy_sched_domain(sd, cpu);
+}
+
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
+ * hold the hotplug lock.
+ */
+static void
+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       struct sched_domain *tmp;
+
+       /* Remove the sched domains which do not contribute to scheduling. */
+       for (tmp = sd; tmp; ) {
+               struct sched_domain *parent = tmp->parent;
+               if (!parent)
+                       break;
+
+               if (sd_parent_degenerate(tmp, parent)) {
+                       tmp->parent = parent->parent;
+                       if (parent->parent)
+                               parent->parent->child = tmp;
+                       destroy_sched_domain(parent, cpu);
+               } else
+                       tmp = tmp->parent;
+       }
+
+       if (sd && sd_degenerate(sd)) {
+               tmp = sd;
+               sd = sd->parent;
+               destroy_sched_domain(tmp, cpu);
+               if (sd)
+                       sd->child = NULL;
+       }
+
+       sched_domain_debug(sd, cpu);
+
+       rq_attach_root(rq, rd);
+       tmp = rq->sd;
+       rcu_assign_pointer(rq->sd, sd);
+       destroy_sched_domains(tmp, cpu);
+}
+
+/* cpus with isolated domains */
+static cpumask_var_t cpu_isolated_map;
+
+/* Setup the mask of cpus configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
+{
+       alloc_bootmem_cpumask_var(&cpu_isolated_map);
+       cpulist_parse(str, cpu_isolated_map);
+       return 1;
+}
+
+__setup("isolcpus=", isolated_cpu_setup);
+
+#ifdef CONFIG_NUMA
+
+/**
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
+ *
+ * Find the next node to include in a given scheduling domain. Simply
+ * finds the closest node not already in the @used_nodes map.
+ *
+ * Should use nodemask_t.
+ */
+static int find_next_best_node(int node, nodemask_t *used_nodes)
+{
+       int i, n, val, min_val, best_node = -1;
+
+       min_val = INT_MAX;
+
+       for (i = 0; i < nr_node_ids; i++) {
+               /* Start at @node */
+               n = (node + i) % nr_node_ids;
+
+               if (!nr_cpus_node(n))
+                       continue;
+
+               /* Skip already used nodes */
+               if (node_isset(n, *used_nodes))
+                       continue;
+
+               /* Simple min distance search */
+               val = node_distance(node, n);
+
+               if (val < min_val) {
+                       min_val = val;
+                       best_node = n;
+               }
+       }
+
+       if (best_node != -1)
+               node_set(best_node, *used_nodes);
+       return best_node;
+}
+
+/**
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @span: resulting cpumask
+ *
+ * Given a node, construct a good cpumask for its sched_domain to span. It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
+ */
+static void sched_domain_node_span(int node, struct cpumask *span)
+{
+       nodemask_t used_nodes;
+       int i;
+
+       cpumask_clear(span);
+       nodes_clear(used_nodes);
+
+       cpumask_or(span, span, cpumask_of_node(node));
+       node_set(node, used_nodes);
+
+       for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
+               int next_node = find_next_best_node(node, &used_nodes);
+               if (next_node < 0)
+                       break;
+               cpumask_or(span, span, cpumask_of_node(next_node));
+       }
+}
+
+static const struct cpumask *cpu_node_mask(int cpu)
+{
+       lockdep_assert_held(&sched_domains_mutex);
+
+       sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
+
+       return sched_domains_tmpmask;
+}
+
+static const struct cpumask *cpu_allnodes_mask(int cpu)
+{
+       return cpu_possible_mask;
+}
+#endif /* CONFIG_NUMA */
+
+static const struct cpumask *cpu_cpu_mask(int cpu)
+{
+       return cpumask_of_node(cpu_to_node(cpu));
+}
+
+int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
+
+struct sd_data {
+       struct sched_domain **__percpu sd;
+       struct sched_group **__percpu sg;
+       struct sched_group_power **__percpu sgp;
+};
+
+struct s_data {
+       struct sched_domain ** __percpu sd;
+       struct root_domain      *rd;
+};
+
+enum s_alloc {
+       sa_rootdomain,
+       sa_sd,
+       sa_sd_storage,
+       sa_none,
+};
+
+struct sched_domain_topology_level;
+
+typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
+typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
+
+#define SDTL_OVERLAP   0x01
+
+struct sched_domain_topology_level {
+       sched_domain_init_f init;
+       sched_domain_mask_f mask;
+       int                 flags;
+       struct sd_data      data;
+};
+
+static int
+build_overlap_sched_groups(struct sched_domain *sd, int cpu)
+{
+       struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
+       const struct cpumask *span = sched_domain_span(sd);
+       struct cpumask *covered = sched_domains_tmpmask;
+       struct sd_data *sdd = sd->private;
+       struct sched_domain *child;
+       int i;
+
+       cpumask_clear(covered);
+
+       for_each_cpu(i, span) {
+               struct cpumask *sg_span;
+
+               if (cpumask_test_cpu(i, covered))
+                       continue;
+
+               sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+                               GFP_KERNEL, cpu_to_node(i));
+
+               if (!sg)
+                       goto fail;
+
+               sg_span = sched_group_cpus(sg);
+
+               child = *per_cpu_ptr(sdd->sd, i);
+               if (child->child) {
+                       child = child->child;
+                       cpumask_copy(sg_span, sched_domain_span(child));
+               } else
+                       cpumask_set_cpu(i, sg_span);
+
+               cpumask_or(covered, covered, sg_span);
+
+               sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
+               atomic_inc(&sg->sgp->ref);
+
+               if (cpumask_test_cpu(cpu, sg_span))
+                       groups = sg;
+
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+               last->next = first;
+       }
+       sd->groups = groups;
+
+       return 0;
+
+fail:
+       free_sched_groups(first, 0);
+
+       return -ENOMEM;
+}
+
+static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
+{
+       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+       struct sched_domain *child = sd->child;
+
+       if (child)
+               cpu = cpumask_first(sched_domain_span(child));
+
+       if (sg) {
+               *sg = *per_cpu_ptr(sdd->sg, cpu);
+               (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
+               atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
+       }
+
+       return cpu;
+}
+
+/*
+ * build_sched_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_power to 0.
+ *
+ * Assumes the sched_domain tree is fully constructed
+ */
+static int
+build_sched_groups(struct sched_domain *sd, int cpu)
+{
+       struct sched_group *first = NULL, *last = NULL;
+       struct sd_data *sdd = sd->private;
+       const struct cpumask *span = sched_domain_span(sd);
+       struct cpumask *covered;
+       int i;
+
+       get_group(cpu, sdd, &sd->groups);
+       atomic_inc(&sd->groups->ref);
+
+       if (cpu != cpumask_first(sched_domain_span(sd)))
+               return 0;
+
+       lockdep_assert_held(&sched_domains_mutex);
+       covered = sched_domains_tmpmask;
+
+       cpumask_clear(covered);
+
+       for_each_cpu(i, span) {
+               struct sched_group *sg;
+               int group = get_group(i, sdd, &sg);
+               int j;
+
+               if (cpumask_test_cpu(i, covered))
+                       continue;
+
+               cpumask_clear(sched_group_cpus(sg));
+               sg->sgp->power = 0;
+
+               for_each_cpu(j, span) {
+                       if (get_group(j, sdd, NULL) != group)
+                               continue;
+
+                       cpumask_set_cpu(j, covered);
+                       cpumask_set_cpu(j, sched_group_cpus(sg));
+               }
+
+               if (!first)
+                       first = sg;
+               if (last)
+                       last->next = sg;
+               last = sg;
+       }
+       last->next = first;
+
+       return 0;
+}
+
+/*
+ * Initialize sched groups cpu_power.
+ *
+ * cpu_power indicates the capacity of sched group, which is used while
+ * distributing the load between different sched groups in a sched domain.
+ * Typically cpu_power for all the groups in a sched domain will be same unless
+ * there are asymmetries in the topology. If there are asymmetries, group
+ * having more cpu_power will pickup more load compared to the group having
+ * less cpu_power.
+ */
+static void init_sched_groups_power(int cpu, struct sched_domain *sd)
+{
+       struct sched_group *sg = sd->groups;
+
+       WARN_ON(!sd || !sg);
+
+       do {
+               sg->group_weight = cpumask_weight(sched_group_cpus(sg));
+               sg = sg->next;
+       } while (sg != sd->groups);
+
+       if (cpu != group_first_cpu(sg))
+               return;
+
+       update_group_power(sd, cpu);
+}
+
+int __weak arch_sd_sibling_asym_packing(void)
+{
+       return 0*SD_ASYM_PACKING;
+}
+
+/*
+ * Initializers for schedule domains
+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
+ */
+
+#ifdef CONFIG_SCHED_DEBUG
+# define SD_INIT_NAME(sd, type)                sd->name = #type
+#else
+# define SD_INIT_NAME(sd, type)                do { } while (0)
+#endif
+
+#define SD_INIT_FUNC(type)                                             \
+static noinline struct sched_domain *                                  \
+sd_init_##type(struct sched_domain_topology_level *tl, int cpu)        \
+{                                                                      \
+       struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
+       *sd = SD_##type##_INIT;                                         \
+       SD_INIT_NAME(sd, type);                                         \
+       sd->private = &tl->data;                                        \
+       return sd;                                                      \
+}
+
+SD_INIT_FUNC(CPU)
+#ifdef CONFIG_NUMA
+ SD_INIT_FUNC(ALLNODES)
+ SD_INIT_FUNC(NODE)
+#endif
+#ifdef CONFIG_SCHED_SMT
+ SD_INIT_FUNC(SIBLING)
+#endif
+#ifdef CONFIG_SCHED_MC
+ SD_INIT_FUNC(MC)
+#endif
+#ifdef CONFIG_SCHED_BOOK
+ SD_INIT_FUNC(BOOK)
+#endif
+
+static int default_relax_domain_level = -1;
+int sched_domain_level_max;
+
+static int __init setup_relax_domain_level(char *str)
+{
+       unsigned long val;
+
+       val = simple_strtoul(str, NULL, 0);
+       if (val < sched_domain_level_max)
+               default_relax_domain_level = val;
+
+       return 1;
+}
+__setup("relax_domain_level=", setup_relax_domain_level);
+
+static void set_domain_attribute(struct sched_domain *sd,
+                                struct sched_domain_attr *attr)
+{
+       int request;
+
+       if (!attr || attr->relax_domain_level < 0) {
+               if (default_relax_domain_level < 0)
+                       return;
+               else
+                       request = default_relax_domain_level;
+       } else
+               request = attr->relax_domain_level;
+       if (request < sd->level) {
+               /* turn off idle balance on this domain */
+               sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+       } else {
+               /* turn on idle balance on this domain */
+               sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+       }
+}
+
+static void __sdt_free(const struct cpumask *cpu_map);
+static int __sdt_alloc(const struct cpumask *cpu_map);
+
+static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
+                                const struct cpumask *cpu_map)
+{
+       switch (what) {
+       case sa_rootdomain:
+               if (!atomic_read(&d->rd->refcount))
+                       free_rootdomain(&d->rd->rcu); /* fall through */
+       case sa_sd:
+               free_percpu(d->sd); /* fall through */
+       case sa_sd_storage:
+               __sdt_free(cpu_map); /* fall through */
+       case sa_none:
+               break;
+       }
+}
+
+static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
+                                                  const struct cpumask *cpu_map)
+{
+       memset(d, 0, sizeof(*d));
+
+       if (__sdt_alloc(cpu_map))
+               return sa_sd_storage;
+       d->sd = alloc_percpu(struct sched_domain *);
+       if (!d->sd)
+               return sa_sd_storage;
+       d->rd = alloc_rootdomain();
+       if (!d->rd)
+               return sa_sd;
+       return sa_rootdomain;
+}
+
+/*
+ * NULL the sd_data elements we've used to build the sched_domain and
+ * sched_group structure so that the subsequent __free_domain_allocs()
+ * will not free the data we're using.
+ */
+static void claim_allocations(int cpu, struct sched_domain *sd)
+{
+       struct sd_data *sdd = sd->private;
+
+       WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
+       *per_cpu_ptr(sdd->sd, cpu) = NULL;
+
+       if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
+               *per_cpu_ptr(sdd->sg, cpu) = NULL;
+
+       if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
+               *per_cpu_ptr(sdd->sgp, cpu) = NULL;
+}
+
+#ifdef CONFIG_SCHED_SMT
+static const struct cpumask *cpu_smt_mask(int cpu)
+{
+       return topology_thread_cpumask(cpu);
+}
+#endif
+
+/*
+ * Topology list, bottom-up.
+ */
+static struct sched_domain_topology_level default_topology[] = {
+#ifdef CONFIG_SCHED_SMT
+       { sd_init_SIBLING, cpu_smt_mask, },
+#endif
+#ifdef CONFIG_SCHED_MC
+       { sd_init_MC, cpu_coregroup_mask, },
+#endif
+#ifdef CONFIG_SCHED_BOOK
+       { sd_init_BOOK, cpu_book_mask, },
+#endif
+       { sd_init_CPU, cpu_cpu_mask, },
+#ifdef CONFIG_NUMA
+       { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
+       { sd_init_ALLNODES, cpu_allnodes_mask, },
+#endif
+       { NULL, },
+};
+
+static struct sched_domain_topology_level *sched_domain_topology = default_topology;
+
+static int __sdt_alloc(const struct cpumask *cpu_map)
+{
+       struct sched_domain_topology_level *tl;
+       int j;
+
+       for (tl = sched_domain_topology; tl->init; tl++) {
+               struct sd_data *sdd = &tl->data;
+
+               sdd->sd = alloc_percpu(struct sched_domain *);
+               if (!sdd->sd)
+                       return -ENOMEM;
+
+               sdd->sg = alloc_percpu(struct sched_group *);
+               if (!sdd->sg)
+                       return -ENOMEM;
+
+               sdd->sgp = alloc_percpu(struct sched_group_power *);
+               if (!sdd->sgp)
+                       return -ENOMEM;
+
+               for_each_cpu(j, cpu_map) {
+                       struct sched_domain *sd;
+                       struct sched_group *sg;
+                       struct sched_group_power *sgp;
+
+                       sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sd)
+                               return -ENOMEM;
+
+                       *per_cpu_ptr(sdd->sd, j) = sd;
+
+                       sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sg)
+                               return -ENOMEM;
+
+                       *per_cpu_ptr(sdd->sg, j) = sg;
+
+                       sgp = kzalloc_node(sizeof(struct sched_group_power),
+                                       GFP_KERNEL, cpu_to_node(j));
+                       if (!sgp)
+                               return -ENOMEM;
+
+                       *per_cpu_ptr(sdd->sgp, j) = sgp;
+               }
+       }
+
+       return 0;
+}
+
+static void __sdt_free(const struct cpumask *cpu_map)
+{
+       struct sched_domain_topology_level *tl;
+       int j;
+
+       for (tl = sched_domain_topology; tl->init; tl++) {
+               struct sd_data *sdd = &tl->data;
+
+               for_each_cpu(j, cpu_map) {
+                       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
+                       if (sd && (sd->flags & SD_OVERLAP))
+                               free_sched_groups(sd->groups, 0);
+                       kfree(*per_cpu_ptr(sdd->sd, j));
+                       kfree(*per_cpu_ptr(sdd->sg, j));
+                       kfree(*per_cpu_ptr(sdd->sgp, j));
+               }
+               free_percpu(sdd->sd);
+               free_percpu(sdd->sg);
+               free_percpu(sdd->sgp);
+       }
+}
+
+struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
+               struct s_data *d, const struct cpumask *cpu_map,
+               struct sched_domain_attr *attr, struct sched_domain *child,
+               int cpu)
+{
+       struct sched_domain *sd = tl->init(tl, cpu);
+       if (!sd)
+               return child;
+
+       set_domain_attribute(sd, attr);
+       cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
+       if (child) {
+               sd->level = child->level + 1;
+               sched_domain_level_max = max(sched_domain_level_max, sd->level);
+               child->parent = sd;
+       }
+       sd->child = child;
+
+       return sd;
+}
+
+/*
+ * Build sched domains for a given set of cpus and attach the sched domains
+ * to the individual cpus
+ */
+static int build_sched_domains(const struct cpumask *cpu_map,
+                              struct sched_domain_attr *attr)
+{
+       enum s_alloc alloc_state = sa_none;
+       struct sched_domain *sd;
+       struct s_data d;
+       int i, ret = -ENOMEM;
+
+       alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
+       if (alloc_state != sa_rootdomain)
+               goto error;
+
+       /* Set up domains for cpus specified by the cpu_map. */
+       for_each_cpu(i, cpu_map) {
+               struct sched_domain_topology_level *tl;
+
+               sd = NULL;
+               for (tl = sched_domain_topology; tl->init; tl++) {
+                       sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
+                       if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
+                               sd->flags |= SD_OVERLAP;
+                       if (cpumask_equal(cpu_map, sched_domain_span(sd)))
+                               break;
+               }
+
+               while (sd->child)
+                       sd = sd->child;
+
+               *per_cpu_ptr(d.sd, i) = sd;
+       }
+
+       /* Build the groups for the domains */
+       for_each_cpu(i, cpu_map) {
+               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+                       sd->span_weight = cpumask_weight(sched_domain_span(sd));
+                       if (sd->flags & SD_OVERLAP) {
+                               if (build_overlap_sched_groups(sd, i))
+                                       goto error;
+                       } else {
+                               if (build_sched_groups(sd, i))
+                                       goto error;
+                       }
+               }
+       }
+
+       /* Calculate CPU power for physical packages and nodes */
+       for (i = nr_cpumask_bits-1; i >= 0; i--) {
+               if (!cpumask_test_cpu(i, cpu_map))
+                       continue;
+
+               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+                       claim_allocations(i, sd);
+                       init_sched_groups_power(i, sd);
+               }
+       }
+
+       /* Attach the domains */
+       rcu_read_lock();
+       for_each_cpu(i, cpu_map) {
+               sd = *per_cpu_ptr(d.sd, i);
+               cpu_attach_domain(sd, d.rd, i);
+       }
+       rcu_read_unlock();
+
+       ret = 0;
+error:
+       __free_domain_allocs(&d, alloc_state, cpu_map);
+       return ret;
+}
+
+static cpumask_var_t *doms_cur;        /* current sched domains */
+static int ndoms_cur;          /* number of sched domains in 'doms_cur' */
+static struct sched_domain_attr *dattr_cur;
+                               /* attribues of custom domains in 'doms_cur' */
+
+/*
+ * Special case: If a kmalloc of a doms_cur partition (array of
+ * cpumask) fails, then fallback to a single sched domain,
+ * as determined by the single cpumask fallback_doms.
+ */
+static cpumask_var_t fallback_doms;
+
+/*
+ * arch_update_cpu_topology lets virtualized architectures update the
+ * cpu core maps. It is supposed to return 1 if the topology changed
+ * or 0 if it stayed the same.
+ */
+int __attribute__((weak)) arch_update_cpu_topology(void)
+{
+       return 0;
+}
+
+cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
+{
+       int i;
+       cpumask_var_t *doms;
+
+       doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
+       if (!doms)
+               return NULL;
+       for (i = 0; i < ndoms; i++) {
+               if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
+                       free_sched_domains(doms, i);
+                       return NULL;
+               }
+       }
+       return doms;
+}
+
+void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
+{
+       unsigned int i;
+       for (i = 0; i < ndoms; i++)
+               free_cpumask_var(doms[i]);
+       kfree(doms);
+}
+
+/*
+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
+ * For now this just excludes isolated cpus, but could be used to
+ * exclude other special cases in the future.
+ */
+static int init_sched_domains(const struct cpumask *cpu_map)
+{
+       int err;
+
+       arch_update_cpu_topology();
+       ndoms_cur = 1;
+       doms_cur = alloc_sched_domains(ndoms_cur);
+       if (!doms_cur)
+               doms_cur = &fallback_doms;
+       cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
+       dattr_cur = NULL;
+       err = build_sched_domains(doms_cur[0], NULL);
+       register_sched_domain_sysctl();
+
+       return err;
+}
+
+/*
+ * Detach sched domains from a group of cpus specified in cpu_map
+ * These cpus will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const struct cpumask *cpu_map)
+{
+       int i;
+
+       rcu_read_lock();
+       for_each_cpu(i, cpu_map)
+               cpu_attach_domain(NULL, &def_root_domain, i);
+       rcu_read_unlock();
+}
+
+/* handle null as "default" */
+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
+                       struct sched_domain_attr *new, int idx_new)
+{
+       struct sched_domain_attr tmp;
+
+       /* fast path */
+       if (!new && !cur)
+               return 1;
+
+       tmp = SD_ATTR_INIT;
+       return !memcmp(cur ? (cur + idx_cur) : &tmp,
+                       new ? (new + idx_new) : &tmp,
+                       sizeof(struct sched_domain_attr));
+}
+
+/*
+ * Partition sched domains as specified by the 'ndoms_new'
+ * cpumasks in the array doms_new[] of cpumasks. This compares
+ * doms_new[] to the current sched domain partitioning, doms_cur[].
+ * It destroys each deleted domain and builds each new domain.
+ *
+ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
+ * The masks don't intersect (don't overlap.) We should setup one
+ * sched domain for each mask. CPUs not in any of the cpumasks will
+ * not be load balanced. If the same cpumask appears both in the
+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
+ * it as it is.
+ *
+ * The passed in 'doms_new' should be allocated using
+ * alloc_sched_domains.  This routine takes ownership of it and will
+ * free_sched_domains it when done with it. If the caller failed the
+ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
+ * and partition_sched_domains() will fallback to the single partition
+ * 'fallback_doms', it also forces the domains to be rebuilt.
+ *
+ * If doms_new == NULL it will be replaced with cpu_online_mask.
+ * ndoms_new == 0 is a special case for destroying existing domains,
+ * and it will not create the default domain.
+ *
+ * Call with hotplug lock held
+ */
+void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
+                            struct sched_domain_attr *dattr_new)
+{
+       int i, j, n;
+       int new_topology;
+
+       mutex_lock(&sched_domains_mutex);
+
+       /* always unregister in case we don't destroy any domains */
+       unregister_sched_domain_sysctl();
+
+       /* Let architecture update cpu core mappings. */
+       new_topology = arch_update_cpu_topology();
+
+       n = doms_new ? ndoms_new : 0;
+
+       /* Destroy deleted domains */
+       for (i = 0; i < ndoms_cur; i++) {
+               for (j = 0; j < n && !new_topology; j++) {
+                       if (cpumask_equal(doms_cur[i], doms_new[j])
+                           && dattrs_equal(dattr_cur, i, dattr_new, j))
+                               goto match1;
+               }
+               /* no match - a current sched domain not in new doms_new[] */
+               detach_destroy_domains(doms_cur[i]);
+match1:
+               ;
+       }
+
+       if (doms_new == NULL) {
+               ndoms_cur = 0;
+               doms_new = &fallback_doms;
+               cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
+               WARN_ON_ONCE(dattr_new);
+       }
+
+       /* Build new domains */
+       for (i = 0; i < ndoms_new; i++) {
+               for (j = 0; j < ndoms_cur && !new_topology; j++) {
+                       if (cpumask_equal(doms_new[i], doms_cur[j])
+                           && dattrs_equal(dattr_new, i, dattr_cur, j))
+                               goto match2;
+               }
+               /* no match - add a new doms_new */
+               build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
+match2:
+               ;
+       }
+
+       /* Remember the new sched domains */
+       if (doms_cur != &fallback_doms)
+               free_sched_domains(doms_cur, ndoms_cur);
+       kfree(dattr_cur);       /* kfree(NULL) is safe */
+       doms_cur = doms_new;
+       dattr_cur = dattr_new;
+       ndoms_cur = ndoms_new;
+
+       register_sched_domain_sysctl();
+
+       mutex_unlock(&sched_domains_mutex);
+}
+
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+static void reinit_sched_domains(void)
+{
+       get_online_cpus();
+
+       /* Destroy domains first to force the rebuild */
+       partition_sched_domains(0, NULL, NULL);
+
+       rebuild_sched_domains();
+       put_online_cpus();
+}
+
+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
+{
+       unsigned int level = 0;
+
+       if (sscanf(buf, "%u", &level) != 1)
+               return -EINVAL;
+
+       /*
+        * level is always be positive so don't check for
+        * level < POWERSAVINGS_BALANCE_NONE which is 0
+        * What happens on 0 or 1 byte write,
+        * need to check for count as well?
+        */
+
+       if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
+               return -EINVAL;
+
+       if (smt)
+               sched_smt_power_savings = level;
+       else
+               sched_mc_power_savings = level;
+
+       reinit_sched_domains();
+
+       return count;
+}
+
+#ifdef CONFIG_SCHED_MC
+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
+                                          struct sysdev_class_attribute *attr,
+                                          char *page)
+{
+       return sprintf(page, "%u\n", sched_mc_power_savings);
+}
+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
+                                           struct sysdev_class_attribute *attr,
+                                           const char *buf, size_t count)
+{
+       return sched_power_savings_store(buf, count, 0);
+}
+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
+                        sched_mc_power_savings_show,
+                        sched_mc_power_savings_store);
+#endif
+
+#ifdef CONFIG_SCHED_SMT
+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
+                                           struct sysdev_class_attribute *attr,
+                                           char *page)
+{
+       return sprintf(page, "%u\n", sched_smt_power_savings);
+}
+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
+                                            struct sysdev_class_attribute *attr,
+                                            const char *buf, size_t count)
+{
+       return sched_power_savings_store(buf, count, 1);
+}
+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
+                  sched_smt_power_savings_show,
+                  sched_smt_power_savings_store);
+#endif
+
+int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
+{
+       int err = 0;
+
+#ifdef CONFIG_SCHED_SMT
+       if (smt_capable())
+               err = sysfs_create_file(&cls->kset.kobj,
+                                       &attr_sched_smt_power_savings.attr);
+#endif
+#ifdef CONFIG_SCHED_MC
+       if (!err && mc_capable())
+               err = sysfs_create_file(&cls->kset.kobj,
+                                       &attr_sched_mc_power_savings.attr);
+#endif
+       return err;
+}
+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
+
+/*
+ * Update cpusets according to cpu_active mask.  If cpusets are
+ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
+ * around partition_sched_domains().
+ */
+static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
+                            void *hcpu)
+{
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_ONLINE:
+       case CPU_DOWN_FAILED:
+               cpuset_update_active_cpus();
+               return NOTIFY_OK;
+       default:
+               return NOTIFY_DONE;
+       }
+}
+
+static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
+                              void *hcpu)
+{
+       switch (action & ~CPU_TASKS_FROZEN) {
+       case CPU_DOWN_PREPARE:
+               cpuset_update_active_cpus();
+               return NOTIFY_OK;
+       default:
+               return NOTIFY_DONE;
+       }
+}
+
+void __init sched_init_smp(void)
+{
+       cpumask_var_t non_isolated_cpus;
+
+       alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
+       alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
+
+       get_online_cpus();
+       mutex_lock(&sched_domains_mutex);
+       init_sched_domains(cpu_active_mask);
+       cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
+       if (cpumask_empty(non_isolated_cpus))
+               cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
+       mutex_unlock(&sched_domains_mutex);
+       put_online_cpus();
+
+       hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
+       hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
+
+       /* RT runtime code needs to handle some hotplug events */
+       hotcpu_notifier(update_runtime, 0);
+
+       init_hrtick();
+
+       /* Move init over to a non-isolated CPU */
+       if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
+               BUG();
+       sched_init_granularity();
+       free_cpumask_var(non_isolated_cpus);
+
+       init_sched_rt_class();
+}
+#else
+void __init sched_init_smp(void)
+{
+       sched_init_granularity();
+}
+#endif /* CONFIG_SMP */
+
+const_debug unsigned int sysctl_timer_migration = 1;
+
+int in_sched_functions(unsigned long addr)
+{
+       return in_lock_functions(addr) ||
+               (addr >= (unsigned long)__sched_text_start
+               && addr < (unsigned long)__sched_text_end);
+}
+
+#ifdef CONFIG_CGROUP_SCHED
+struct task_group root_task_group;
+#endif
+
+DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
+
+void __init sched_init(void)
+{
+       int i, j;
+       unsigned long alloc_size = 0, ptr;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       alloc_size += 2 * nr_cpu_ids * sizeof(void **);
+#endif
+#ifdef CONFIG_RT_GROUP_SCHED
+       alloc_size += 2 * nr_cpu_ids * sizeof(void **);
+#endif
+#ifdef CONFIG_CPUMASK_OFFSTACK
+       alloc_size += num_possible_cpus() * cpumask_size();
+#endif
+       if (alloc_size) {
+               ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+               root_task_group.se = (struct sched_entity **)ptr;
+               ptr += nr_cpu_ids * sizeof(void **);
+
+               root_task_group.cfs_rq = (struct cfs_rq **)ptr;
+               ptr += nr_cpu_ids * sizeof(void **);
+
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+#ifdef CONFIG_RT_GROUP_SCHED
+               root_task_group.rt_se = (struct sched_rt_entity **)ptr;
+               ptr += nr_cpu_ids * sizeof(void **);
+
+               root_task_group.rt_rq = (struct rt_rq **)ptr;
+               ptr += nr_cpu_ids * sizeof(void **);
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+#ifdef CONFIG_CPUMASK_OFFSTACK
+               for_each_possible_cpu(i) {
+                       per_cpu(load_balance_tmpmask, i) = (void *)ptr;
+                       ptr += cpumask_size();
+               }
+#endif /* CONFIG_CPUMASK_OFFSTACK */
+       }
+
+#ifdef CONFIG_SMP
+       init_defrootdomain();
+#endif
+
+       init_rt_bandwidth(&def_rt_bandwidth,
+                       global_rt_period(), global_rt_runtime());
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       init_rt_bandwidth(&root_task_group.rt_bandwidth,
+                       global_rt_period(), global_rt_runtime());
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_CGROUP_SCHED
+       list_add(&root_task_group.list, &task_groups);
+       INIT_LIST_HEAD(&root_task_group.children);
+       INIT_LIST_HEAD(&root_task_group.siblings);
+       autogroup_init(&init_task);
+#endif /* CONFIG_CGROUP_SCHED */
+
+       for_each_possible_cpu(i) {
+               struct rq *rq;
+
+               rq = cpu_rq(i);
+               raw_spin_lock_init(&rq->lock);
+               rq->nr_running = 0;
+               rq->calc_load_active = 0;
+               rq->calc_load_update = jiffies + LOAD_FREQ;
+               init_cfs_rq(&rq->cfs);
+               init_rt_rq(&rq->rt, rq);
+#ifdef CONFIG_FAIR_GROUP_SCHED
+               root_task_group.shares = ROOT_TASK_GROUP_LOAD;
+               INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
+               /*
+                * How much cpu bandwidth does root_task_group get?
+                *
+                * In case of task-groups formed thr' the cgroup filesystem, it
+                * gets 100% of the cpu resources in the system. This overall
+                * system cpu resource is divided among the tasks of
+                * root_task_group and its child task-groups in a fair manner,
+                * based on each entity's (task or task-group's) weight
+                * (se->load.weight).
+                *
+                * In other words, if root_task_group has 10 tasks of weight
+                * 1024) and two child groups A0 and A1 (of weight 1024 each),
+                * then A0's share of the cpu resource is:
+                *
+                *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
+                *
+                * We achieve this by letting root_task_group's tasks sit
+                * directly in rq->cfs (i.e root_task_group->se[] = NULL).
+                */
+               init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
+               init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+               rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
+#ifdef CONFIG_RT_GROUP_SCHED
+               INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
+               init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
+#endif
+
+               for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
+                       rq->cpu_load[j] = 0;
+
+               rq->last_load_update_tick = jiffies;
+
+#ifdef CONFIG_SMP
+               rq->sd = NULL;
+               rq->rd = NULL;
+               rq->cpu_power = SCHED_POWER_SCALE;
+               rq->post_schedule = 0;
+               rq->active_balance = 0;
+               rq->next_balance = jiffies;
+               rq->push_cpu = 0;
+               rq->cpu = i;
+               rq->online = 0;
+               rq->idle_stamp = 0;
+               rq->avg_idle = 2*sysctl_sched_migration_cost;
+               rq_attach_root(rq, &def_root_domain);
+#ifdef CONFIG_NO_HZ
+               rq->nohz_balance_kick = 0;
+#endif
+#endif
+               init_rq_hrtick(rq);
+               atomic_set(&rq->nr_iowait, 0);
+       }
+
+       set_load_weight(&init_task);
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+       INIT_HLIST_HEAD(&init_task.preempt_notifiers);
+#endif
+
+#ifdef CONFIG_RT_MUTEXES
+       plist_head_init(&init_task.pi_waiters);
+#endif
+
+       /*
+        * The boot idle thread does lazy MMU switching as well:
+        */
+       atomic_inc(&init_mm.mm_count);
+       enter_lazy_tlb(&init_mm, current);
+
+       /*
+        * Make us the idle thread. Technically, schedule() should not be
+        * called from this thread, however somewhere below it might be,
+        * but because we are the idle thread, we just pick up running again
+        * when this runqueue becomes "idle".
+        */
+       init_idle(current, smp_processor_id());
+
+       calc_load_update = jiffies + LOAD_FREQ;
+
+       /*
+        * During early bootup we pretend to be a normal task:
+        */
+       current->sched_class = &fair_sched_class;
+
+#ifdef CONFIG_SMP
+       zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
+       /* May be allocated at isolcpus cmdline parse time */
+       if (cpu_isolated_map == NULL)
+               zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
+#endif
+       init_sched_fair_class();
+
+       scheduler_running = 1;
+}
+
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+static inline int preempt_count_equals(int preempt_offset)
+{
+       int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
+
+       return (nested == preempt_offset);
+}
+
+void __might_sleep(const char *file, int line, int preempt_offset)
+{
+       static unsigned long prev_jiffy;        /* ratelimiting */
+
+       rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
+       if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
+           system_state != SYSTEM_RUNNING || oops_in_progress)
+               return;
+       if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
+               return;
+       prev_jiffy = jiffies;
+
+       printk(KERN_ERR
+               "BUG: sleeping function called from invalid context at %s:%d\n",
+                       file, line);
+       printk(KERN_ERR
+               "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
+                       in_atomic(), irqs_disabled(),
+                       current->pid, current->comm);
+
+       debug_show_held_locks(current);
+       if (irqs_disabled())
+               print_irqtrace_events(current);
+       dump_stack();
+}
+EXPORT_SYMBOL(__might_sleep);
+#endif
+
+#ifdef CONFIG_MAGIC_SYSRQ
+static void normalize_task(struct rq *rq, struct task_struct *p)
+{
+       const struct sched_class *prev_class = p->sched_class;
+       int old_prio = p->prio;
+       int on_rq;
+
+       on_rq = p->on_rq;
+       if (on_rq)
+               deactivate_task(rq, p, 0);
+       __setscheduler(rq, p, SCHED_NORMAL, 0);
+       if (on_rq) {
+               activate_task(rq, p, 0);
+               resched_task(rq->curr);
+       }
+
+       check_class_changed(rq, p, prev_class, old_prio);
+}
+
+void normalize_rt_tasks(void)
+{
+       struct task_struct *g, *p;
+       unsigned long flags;
+       struct rq *rq;
+
+       read_lock_irqsave(&tasklist_lock, flags);
+       do_each_thread(g, p) {
+               /*
+                * Only normalize user tasks:
+                */
+               if (!p->mm)
+                       continue;
+
+               p->se.exec_start                = 0;
+#ifdef CONFIG_SCHEDSTATS
+               p->se.statistics.wait_start     = 0;
+               p->se.statistics.sleep_start    = 0;
+               p->se.statistics.block_start    = 0;
+#endif
+
+               if (!rt_task(p)) {
+                       /*
+                        * Renice negative nice level userspace
+                        * tasks back to 0:
+                        */
+                       if (TASK_NICE(p) < 0 && p->mm)
+                               set_user_nice(p, 0);
+                       continue;
+               }
+
+               raw_spin_lock(&p->pi_lock);
+               rq = __task_rq_lock(p);
+
+               normalize_task(rq, p);
+
+               __task_rq_unlock(rq);
+               raw_spin_unlock(&p->pi_lock);
+       } while_each_thread(g, p);
+
+       read_unlock_irqrestore(&tasklist_lock, flags);
+}
+
+#endif /* CONFIG_MAGIC_SYSRQ */
+
+#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
+/*
+ * These functions are only useful for the IA64 MCA handling, or kdb.
+ *
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given cpu.
+ * @cpu: the processor in question.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+struct task_struct *curr_task(int cpu)
+{
+       return cpu_curr(cpu);
+}
+
+#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
+
+#ifdef CONFIG_IA64
+/**
+ * set_curr_task - set the current task for a given cpu.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack. It allows the architecture to switch the
+ * notion of the current task on a cpu in a non-blocking manner. This function
+ * must be called with all CPU's synchronized, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+void set_curr_task(int cpu, struct task_struct *p)
+{
+       cpu_curr(cpu) = p;
+}
+
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+#else /* !CONFIG_RT_GROUP_SCHED */
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_CGROUP_SCHED
+/* task_group_lock serializes the addition/removal of task groups */
+static DEFINE_SPINLOCK(task_group_lock);
+
+static void free_sched_group(struct task_group *tg)
+{
+       free_fair_sched_group(tg);
+       free_rt_sched_group(tg);
+       autogroup_free(tg);
+       kfree(tg);
+}
+
+/* allocate runqueue etc for a new task group */
+struct task_group *sched_create_group(struct task_group *parent)
+{
+       struct task_group *tg;
+       unsigned long flags;
+
+       tg = kzalloc(sizeof(*tg), GFP_KERNEL);
+       if (!tg)
+               return ERR_PTR(-ENOMEM);
+
+       if (!alloc_fair_sched_group(tg, parent))
+               goto err;
+
+       if (!alloc_rt_sched_group(tg, parent))
+               goto err;
+
+       spin_lock_irqsave(&task_group_lock, flags);
+       list_add_rcu(&tg->list, &task_groups);
+
+       WARN_ON(!parent); /* root should already exist */
+
+       tg->parent = parent;
+       INIT_LIST_HEAD(&tg->children);
+       list_add_rcu(&tg->siblings, &parent->children);
+       spin_unlock_irqrestore(&task_group_lock, flags);
+
+       return tg;
+
+err:
+       free_sched_group(tg);
+       return ERR_PTR(-ENOMEM);
+}
+
+/* rcu callback to free various structures associated with a task group */
+static void free_sched_group_rcu(struct rcu_head *rhp)
+{
+       /* now it should be safe to free those cfs_rqs */
+       free_sched_group(container_of(rhp, struct task_group, rcu));
+}
+
+/* Destroy runqueue etc associated with a task group */
+void sched_destroy_group(struct task_group *tg)
+{
+       unsigned long flags;
+       int i;
+
+       /* end participation in shares distribution */
+       for_each_possible_cpu(i)
+               unregister_fair_sched_group(tg, i);
+
+       spin_lock_irqsave(&task_group_lock, flags);
+       list_del_rcu(&tg->list);
+       list_del_rcu(&tg->siblings);
+       spin_unlock_irqrestore(&task_group_lock, flags);
+
+       /* wait for possible concurrent references to cfs_rqs complete */
+       call_rcu(&tg->rcu, free_sched_group_rcu);
+}
+
+/* change task's runqueue when it moves between groups.
+ *     The caller of this function should have put the task in its new group
+ *     by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
+ *     reflect its new group.
+ */
+void sched_move_task(struct task_struct *tsk)
+{
+       int on_rq, running;
+       unsigned long flags;
+       struct rq *rq;
+
+       rq = task_rq_lock(tsk, &flags);
+
+       running = task_current(rq, tsk);
+       on_rq = tsk->on_rq;
+
+       if (on_rq)
+               dequeue_task(rq, tsk, 0);
+       if (unlikely(running))
+               tsk->sched_class->put_prev_task(rq, tsk);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       if (tsk->sched_class->task_move_group)
+               tsk->sched_class->task_move_group(tsk, on_rq);
+       else
+#endif
+               set_task_rq(tsk, task_cpu(tsk));
+
+       if (unlikely(running))
+               tsk->sched_class->set_curr_task(rq);
+       if (on_rq)
+               enqueue_task(rq, tsk, 0);
+
+       task_rq_unlock(rq, tsk, &flags);
+}
+#endif /* CONFIG_CGROUP_SCHED */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+#endif
+
+#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
+static unsigned long to_ratio(u64 period, u64 runtime)
+{
+       if (runtime == RUNTIME_INF)
+               return 1ULL << 20;
+
+       return div64_u64(runtime << 20, period);
+}
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+/*
+ * Ensure that the real time constraints are schedulable.
+ */
+static DEFINE_MUTEX(rt_constraints_mutex);
+
+/* Must be called with tasklist_lock held */
+static inline int tg_has_rt_tasks(struct task_group *tg)
+{
+       struct task_struct *g, *p;
+
+       do_each_thread(g, p) {
+               if (rt_task(p) && task_rq(p)->rt.tg == tg)
+                       return 1;
+       } while_each_thread(g, p);
+
+       return 0;
+}
+
+struct rt_schedulable_data {
+       struct task_group *tg;
+       u64 rt_period;
+       u64 rt_runtime;
+};
+
+static int tg_rt_schedulable(struct task_group *tg, void *data)
+{
+       struct rt_schedulable_data *d = data;
+       struct task_group *child;
+       unsigned long total, sum = 0;
+       u64 period, runtime;
+
+       period = ktime_to_ns(tg->rt_bandwidth.rt_period);
+       runtime = tg->rt_bandwidth.rt_runtime;
+
+       if (tg == d->tg) {
+               period = d->rt_period;
+               runtime = d->rt_runtime;
+       }
+
+       /*
+        * Cannot have more runtime than the period.
+        */
+       if (runtime > period && runtime != RUNTIME_INF)
+               return -EINVAL;
+
+       /*
+        * Ensure we don't starve existing RT tasks.
+        */
+       if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
+               return -EBUSY;
+
+       total = to_ratio(period, runtime);
+
+       /*
+        * Nobody can have more than the global setting allows.
+        */
+       if (total > to_ratio(global_rt_period(), global_rt_runtime()))
+               return -EINVAL;
+
+       /*
+        * The sum of our children's runtime should not exceed our own.
+        */
+       list_for_each_entry_rcu(child, &tg->children, siblings) {
+               period = ktime_to_ns(child->rt_bandwidth.rt_period);
+               runtime = child->rt_bandwidth.rt_runtime;
+
+               if (child == d->tg) {
+                       period = d->rt_period;
+                       runtime = d->rt_runtime;
+               }
+
+               sum += to_ratio(period, runtime);
+       }
+
+       if (sum > total)
+               return -EINVAL;
+
+       return 0;
+}
+
+static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
+{
+       int ret;
+
+       struct rt_schedulable_data data = {
+               .tg = tg,
+               .rt_period = period,
+               .rt_runtime = runtime,
+       };
+
+       rcu_read_lock();
+       ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
+       rcu_read_unlock();
+
+       return ret;
+}
+
+static int tg_set_rt_bandwidth(struct task_group *tg,
+               u64 rt_period, u64 rt_runtime)
+{
+       int i, err = 0;
+
+       mutex_lock(&rt_constraints_mutex);
+       read_lock(&tasklist_lock);
+       err = __rt_schedulable(tg, rt_period, rt_runtime);
+       if (err)
+               goto unlock;
+
+       raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+       tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
+       tg->rt_bandwidth.rt_runtime = rt_runtime;
+
+       for_each_possible_cpu(i) {
+               struct rt_rq *rt_rq = tg->rt_rq[i];
+
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               rt_rq->rt_runtime = rt_runtime;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+       }
+       raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+unlock:
+       read_unlock(&tasklist_lock);
+       mutex_unlock(&rt_constraints_mutex);
+
+       return err;
+}
+
+int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
+{
+       u64 rt_runtime, rt_period;
+
+       rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
+       rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
+       if (rt_runtime_us < 0)
+               rt_runtime = RUNTIME_INF;
+
+       return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
+}
+
+long sched_group_rt_runtime(struct task_group *tg)
+{
+       u64 rt_runtime_us;
+
+       if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
+               return -1;
+
+       rt_runtime_us = tg->rt_bandwidth.rt_runtime;
+       do_div(rt_runtime_us, NSEC_PER_USEC);
+       return rt_runtime_us;
+}
+
+int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
+{
+       u64 rt_runtime, rt_period;
+
+       rt_period = (u64)rt_period_us * NSEC_PER_USEC;
+       rt_runtime = tg->rt_bandwidth.rt_runtime;
+
+       if (rt_period == 0)
+               return -EINVAL;
+
+       return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
+}
+
+long sched_group_rt_period(struct task_group *tg)
+{
+       u64 rt_period_us;
+
+       rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
+       do_div(rt_period_us, NSEC_PER_USEC);
+       return rt_period_us;
+}
+
+static int sched_rt_global_constraints(void)
+{
+       u64 runtime, period;
+       int ret = 0;
+
+       if (sysctl_sched_rt_period <= 0)
+               return -EINVAL;
+
+       runtime = global_rt_runtime();
+       period = global_rt_period();
+
+       /*
+        * Sanity check on the sysctl variables.
+        */
+       if (runtime > period && runtime != RUNTIME_INF)
+               return -EINVAL;
+
+       mutex_lock(&rt_constraints_mutex);
+       read_lock(&tasklist_lock);
+       ret = __rt_schedulable(NULL, 0, 0);
+       read_unlock(&tasklist_lock);
+       mutex_unlock(&rt_constraints_mutex);
+
+       return ret;
+}
+
+int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
+{
+       /* Don't accept realtime tasks when there is no way for them to run */
+       if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
+               return 0;
+
+       return 1;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+static int sched_rt_global_constraints(void)
+{
+       unsigned long flags;
+       int i;
+
+       if (sysctl_sched_rt_period <= 0)
+               return -EINVAL;
+
+       /*
+        * There's always some RT tasks in the root group
+        * -- migration, kstopmachine etc..
+        */
+       if (sysctl_sched_rt_runtime == 0)
+               return -EBUSY;
+
+       raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
+       for_each_possible_cpu(i) {
+               struct rt_rq *rt_rq = &cpu_rq(i)->rt;
+
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               rt_rq->rt_runtime = global_rt_runtime();
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+       }
+       raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
+
+       return 0;
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+int sched_rt_handler(struct ctl_table *table, int write,
+               void __user *buffer, size_t *lenp,
+               loff_t *ppos)
+{
+       int ret;
+       int old_period, old_runtime;
+       static DEFINE_MUTEX(mutex);
+
+       mutex_lock(&mutex);
+       old_period = sysctl_sched_rt_period;
+       old_runtime = sysctl_sched_rt_runtime;
+
+       ret = proc_dointvec(table, write, buffer, lenp, ppos);
+
+       if (!ret && write) {
+               ret = sched_rt_global_constraints();
+               if (ret) {
+                       sysctl_sched_rt_period = old_period;
+                       sysctl_sched_rt_runtime = old_runtime;
+               } else {
+                       def_rt_bandwidth.rt_runtime = global_rt_runtime();
+                       def_rt_bandwidth.rt_period =
+                               ns_to_ktime(global_rt_period());
+               }
+       }
+       mutex_unlock(&mutex);
+
+       return ret;
+}
+
+#ifdef CONFIG_CGROUP_SCHED
+
+/* return corresponding task_group object of a cgroup */
+static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
+{
+       return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
+                           struct task_group, css);
+}
+
+static struct cgroup_subsys_state *
+cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
+{
+       struct task_group *tg, *parent;
+
+       if (!cgrp->parent) {
+               /* This is early initialization for the top cgroup */
+               return &root_task_group.css;
+       }
+
+       parent = cgroup_tg(cgrp->parent);
+       tg = sched_create_group(parent);
+       if (IS_ERR(tg))
+               return ERR_PTR(-ENOMEM);
+
+       return &tg->css;
+}
+
+static void
+cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
+{
+       struct task_group *tg = cgroup_tg(cgrp);
+
+       sched_destroy_group(tg);
+}
+
+static int
+cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+       if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
+               return -EINVAL;
+#else
+       /* We don't support RT-tasks being in separate groups */
+       if (tsk->sched_class != &fair_sched_class)
+               return -EINVAL;
+#endif
+       return 0;
+}
+
+static void
+cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
+{
+       sched_move_task(tsk);
+}
+
+static void
+cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
+               struct cgroup *old_cgrp, struct task_struct *task)
+{
+       /*
+        * cgroup_exit() is called in the copy_process() failure path.
+        * Ignore this case since the task hasn't ran yet, this avoids
+        * trying to poke a half freed task state from generic code.
+        */
+       if (!(task->flags & PF_EXITING))
+               return;
+
+       sched_move_task(task);
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
+                               u64 shareval)
+{
+       return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
+}
+
+static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
+{
+       struct task_group *tg = cgroup_tg(cgrp);
+
+       return (u64) scale_load_down(tg->shares);
+}
+
+#ifdef CONFIG_CFS_BANDWIDTH
+static DEFINE_MUTEX(cfs_constraints_mutex);
+
+const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
+const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
+
+static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
+
+static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
+{
+       int i, ret = 0, runtime_enabled, runtime_was_enabled;
+       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
+
+       if (tg == &root_task_group)
+               return -EINVAL;
+
+       /*
+        * Ensure we have at some amount of bandwidth every period.  This is
+        * to prevent reaching a state of large arrears when throttled via
+        * entity_tick() resulting in prolonged exit starvation.
+        */
+       if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
+               return -EINVAL;
+
+       /*
+        * Likewise, bound things on the otherside by preventing insane quota
+        * periods.  This also allows us to normalize in computing quota
+        * feasibility.
+        */
+       if (period > max_cfs_quota_period)
+               return -EINVAL;
+
+       mutex_lock(&cfs_constraints_mutex);
+       ret = __cfs_schedulable(tg, period, quota);
+       if (ret)
+               goto out_unlock;
+
+       runtime_enabled = quota != RUNTIME_INF;
+       runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
+       account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
+       raw_spin_lock_irq(&cfs_b->lock);
+       cfs_b->period = ns_to_ktime(period);
+       cfs_b->quota = quota;
+
+       __refill_cfs_bandwidth_runtime(cfs_b);
+       /* restart the period timer (if active) to handle new period expiry */
+       if (runtime_enabled && cfs_b->timer_active) {
+               /* force a reprogram */
+               cfs_b->timer_active = 0;
+               __start_cfs_bandwidth(cfs_b);
+       }
+       raw_spin_unlock_irq(&cfs_b->lock);
+
+       for_each_possible_cpu(i) {
+               struct cfs_rq *cfs_rq = tg->cfs_rq[i];
+               struct rq *rq = cfs_rq->rq;
+
+               raw_spin_lock_irq(&rq->lock);
+               cfs_rq->runtime_enabled = runtime_enabled;
+               cfs_rq->runtime_remaining = 0;
+
+               if (cfs_rq->throttled)
+                       unthrottle_cfs_rq(cfs_rq);
+               raw_spin_unlock_irq(&rq->lock);
+       }
+out_unlock:
+       mutex_unlock(&cfs_constraints_mutex);
+
+       return ret;
+}
+
+int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
+{
+       u64 quota, period;
+
+       period = ktime_to_ns(tg->cfs_bandwidth.period);
+       if (cfs_quota_us < 0)
+               quota = RUNTIME_INF;
+       else
+               quota = (u64)cfs_quota_us * NSEC_PER_USEC;
+
+       return tg_set_cfs_bandwidth(tg, period, quota);
+}
+
+long tg_get_cfs_quota(struct task_group *tg)
+{
+       u64 quota_us;
+
+       if (tg->cfs_bandwidth.quota == RUNTIME_INF)
+               return -1;
+
+       quota_us = tg->cfs_bandwidth.quota;
+       do_div(quota_us, NSEC_PER_USEC);
+
+       return quota_us;
+}
+
+int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
+{
+       u64 quota, period;
+
+       period = (u64)cfs_period_us * NSEC_PER_USEC;
+       quota = tg->cfs_bandwidth.quota;
+
+       if (period <= 0)
+               return -EINVAL;
+
+       return tg_set_cfs_bandwidth(tg, period, quota);
+}
+
+long tg_get_cfs_period(struct task_group *tg)
+{
+       u64 cfs_period_us;
+
+       cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
+       do_div(cfs_period_us, NSEC_PER_USEC);
+
+       return cfs_period_us;
+}
+
+static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
+{
+       return tg_get_cfs_quota(cgroup_tg(cgrp));
+}
+
+static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
+                               s64 cfs_quota_us)
+{
+       return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
+}
+
+static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
+{
+       return tg_get_cfs_period(cgroup_tg(cgrp));
+}
+
+static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
+                               u64 cfs_period_us)
+{
+       return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
+}
+
+struct cfs_schedulable_data {
+       struct task_group *tg;
+       u64 period, quota;
+};
+
+/*
+ * normalize group quota/period to be quota/max_period
+ * note: units are usecs
+ */
+static u64 normalize_cfs_quota(struct task_group *tg,
+                              struct cfs_schedulable_data *d)
+{
+       u64 quota, period;
+
+       if (tg == d->tg) {
+               period = d->period;
+               quota = d->quota;
+       } else {
+               period = tg_get_cfs_period(tg);
+               quota = tg_get_cfs_quota(tg);
+       }
+
+       /* note: these should typically be equivalent */
+       if (quota == RUNTIME_INF || quota == -1)
+               return RUNTIME_INF;
+
+       return to_ratio(period, quota);
+}
+
+static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
+{
+       struct cfs_schedulable_data *d = data;
+       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
+       s64 quota = 0, parent_quota = -1;
+
+       if (!tg->parent) {
+               quota = RUNTIME_INF;
+       } else {
+               struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
+
+               quota = normalize_cfs_quota(tg, d);
+               parent_quota = parent_b->hierarchal_quota;
+
+               /*
+                * ensure max(child_quota) <= parent_quota, inherit when no
+                * limit is set
+                */
+               if (quota == RUNTIME_INF)
+                       quota = parent_quota;
+               else if (parent_quota != RUNTIME_INF && quota > parent_quota)
+                       return -EINVAL;
+       }
+       cfs_b->hierarchal_quota = quota;
+
+       return 0;
+}
+
+static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
+{
+       int ret;
+       struct cfs_schedulable_data data = {
+               .tg = tg,
+               .period = period,
+               .quota = quota,
+       };
+
+       if (quota != RUNTIME_INF) {
+               do_div(data.period, NSEC_PER_USEC);
+               do_div(data.quota, NSEC_PER_USEC);
+       }
+
+       rcu_read_lock();
+       ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
+       rcu_read_unlock();
+
+       return ret;
+}
+
+static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
+               struct cgroup_map_cb *cb)
+{
+       struct task_group *tg = cgroup_tg(cgrp);
+       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
+
+       cb->fill(cb, "nr_periods", cfs_b->nr_periods);
+       cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
+       cb->fill(cb, "throttled_time", cfs_b->throttled_time);
+
+       return 0;
+}
+#endif /* CONFIG_CFS_BANDWIDTH */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+#ifdef CONFIG_RT_GROUP_SCHED
+static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
+                               s64 val)
+{
+       return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
+}
+
+static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
+{
+       return sched_group_rt_runtime(cgroup_tg(cgrp));
+}
+
+static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
+               u64 rt_period_us)
+{
+       return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
+}
+
+static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
+{
+       return sched_group_rt_period(cgroup_tg(cgrp));
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static struct cftype cpu_files[] = {
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       {
+               .name = "shares",
+               .read_u64 = cpu_shares_read_u64,
+               .write_u64 = cpu_shares_write_u64,
+       },
+#endif
+#ifdef CONFIG_CFS_BANDWIDTH
+       {
+               .name = "cfs_quota_us",
+               .read_s64 = cpu_cfs_quota_read_s64,
+               .write_s64 = cpu_cfs_quota_write_s64,
+       },
+       {
+               .name = "cfs_period_us",
+               .read_u64 = cpu_cfs_period_read_u64,
+               .write_u64 = cpu_cfs_period_write_u64,
+       },
+       {
+               .name = "stat",
+               .read_map = cpu_stats_show,
+       },
+#endif
+#ifdef CONFIG_RT_GROUP_SCHED
+       {
+               .name = "rt_runtime_us",
+               .read_s64 = cpu_rt_runtime_read,
+               .write_s64 = cpu_rt_runtime_write,
+       },
+       {
+               .name = "rt_period_us",
+               .read_u64 = cpu_rt_period_read_uint,
+               .write_u64 = cpu_rt_period_write_uint,
+       },
+#endif
+};
+
+static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
+{
+       return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
+}
+
+struct cgroup_subsys cpu_cgroup_subsys = {
+       .name           = "cpu",
+       .create         = cpu_cgroup_create,
+       .destroy        = cpu_cgroup_destroy,
+       .can_attach_task = cpu_cgroup_can_attach_task,
+       .attach_task    = cpu_cgroup_attach_task,
+       .exit           = cpu_cgroup_exit,
+       .populate       = cpu_cgroup_populate,
+       .subsys_id      = cpu_cgroup_subsys_id,
+       .early_init     = 1,
+};
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+#ifdef CONFIG_CGROUP_CPUACCT
+
+/*
+ * CPU accounting code for task groups.
+ *
+ * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
+ * (balbir@in.ibm.com).
+ */
+
+/* track cpu usage of a group of tasks and its child groups */
+struct cpuacct {
+       struct cgroup_subsys_state css;
+       /* cpuusage holds pointer to a u64-type object on every cpu */
+       u64 __percpu *cpuusage;
+       struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
+       struct cpuacct *parent;
+};
+
+struct cgroup_subsys cpuacct_subsys;
+
+/* return cpu accounting group corresponding to this container */
+static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
+{
+       return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
+                           struct cpuacct, css);
+}
+
+/* return cpu accounting group to which this task belongs */
+static inline struct cpuacct *task_ca(struct task_struct *tsk)
+{
+       return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
+                           struct cpuacct, css);
+}
+
+/* create a new cpu accounting group */
+static struct cgroup_subsys_state *cpuacct_create(
+       struct cgroup_subsys *ss, struct cgroup *cgrp)
+{
+       struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
+       int i;
+
+       if (!ca)
+               goto out;
+
+       ca->cpuusage = alloc_percpu(u64);
+       if (!ca->cpuusage)
+               goto out_free_ca;
+
+       for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
+               if (percpu_counter_init(&ca->cpustat[i], 0))
+                       goto out_free_counters;
+
+       if (cgrp->parent)
+               ca->parent = cgroup_ca(cgrp->parent);
+
+       return &ca->css;
+
+out_free_counters:
+       while (--i >= 0)
+               percpu_counter_destroy(&ca->cpustat[i]);
+       free_percpu(ca->cpuusage);
+out_free_ca:
+       kfree(ca);
+out:
+       return ERR_PTR(-ENOMEM);
+}
+
+/* destroy an existing cpu accounting group */
+static void
+cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
+{
+       struct cpuacct *ca = cgroup_ca(cgrp);
+       int i;
+
+       for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
+               percpu_counter_destroy(&ca->cpustat[i]);
+       free_percpu(ca->cpuusage);
+       kfree(ca);
+}
+
+static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
+{
+       u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
+       u64 data;
+
+#ifndef CONFIG_64BIT
+       /*
+        * Take rq->lock to make 64-bit read safe on 32-bit platforms.
+        */
+       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
+       data = *cpuusage;
+       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
+#else
+       data = *cpuusage;
+#endif
+
+       return data;
+}
+
+static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
+{
+       u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
+
+#ifndef CONFIG_64BIT
+       /*
+        * Take rq->lock to make 64-bit write safe on 32-bit platforms.
+        */
+       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
+       *cpuusage = val;
+       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
+#else
+       *cpuusage = val;
+#endif
+}
+
+/* return total cpu usage (in nanoseconds) of a group */
+static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
+{
+       struct cpuacct *ca = cgroup_ca(cgrp);
+       u64 totalcpuusage = 0;
+       int i;
+
+       for_each_present_cpu(i)
+               totalcpuusage += cpuacct_cpuusage_read(ca, i);
+
+       return totalcpuusage;
+}
+
+static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
+                                                               u64 reset)
+{
+       struct cpuacct *ca = cgroup_ca(cgrp);
+       int err = 0;
+       int i;
+
+       if (reset) {
+               err = -EINVAL;
+               goto out;
+       }
+
+       for_each_present_cpu(i)
+               cpuacct_cpuusage_write(ca, i, 0);
+
+out:
+       return err;
+}
+
+static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
+                                  struct seq_file *m)
+{
+       struct cpuacct *ca = cgroup_ca(cgroup);
+       u64 percpu;
+       int i;
+
+       for_each_present_cpu(i) {
+               percpu = cpuacct_cpuusage_read(ca, i);
+               seq_printf(m, "%llu ", (unsigned long long) percpu);
+       }
+       seq_printf(m, "\n");
+       return 0;
+}
+
+static const char *cpuacct_stat_desc[] = {
+       [CPUACCT_STAT_USER] = "user",
+       [CPUACCT_STAT_SYSTEM] = "system",
+};
+
+static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
+               struct cgroup_map_cb *cb)
+{
+       struct cpuacct *ca = cgroup_ca(cgrp);
+       int i;
+
+       for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
+               s64 val = percpu_counter_read(&ca->cpustat[i]);
+               val = cputime64_to_clock_t(val);
+               cb->fill(cb, cpuacct_stat_desc[i], val);
+       }
+       return 0;
+}
+
+static struct cftype files[] = {
+       {
+               .name = "usage",
+               .read_u64 = cpuusage_read,
+               .write_u64 = cpuusage_write,
+       },
+       {
+               .name = "usage_percpu",
+               .read_seq_string = cpuacct_percpu_seq_read,
+       },
+       {
+               .name = "stat",
+               .read_map = cpuacct_stats_show,
+       },
+};
+
+static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
+{
+       return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
+}
+
+/*
+ * charge this task's execution time to its accounting group.
+ *
+ * called with rq->lock held.
+ */
+void cpuacct_charge(struct task_struct *tsk, u64 cputime)
+{
+       struct cpuacct *ca;
+       int cpu;
+
+       if (unlikely(!cpuacct_subsys.active))
+               return;
+
+       cpu = task_cpu(tsk);
+
+       rcu_read_lock();
+
+       ca = task_ca(tsk);
+
+       for (; ca; ca = ca->parent) {
+               u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
+               *cpuusage += cputime;
+       }
+
+       rcu_read_unlock();
+}
+
+/*
+ * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
+ * in cputime_t units. As a result, cpuacct_update_stats calls
+ * percpu_counter_add with values large enough to always overflow the
+ * per cpu batch limit causing bad SMP scalability.
+ *
+ * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
+ * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
+ * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
+ */
+#ifdef CONFIG_SMP
+#define CPUACCT_BATCH  \
+       min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
+#else
+#define CPUACCT_BATCH  0
+#endif
+
+/*
+ * Charge the system/user time to the task's accounting group.
+ */
+void cpuacct_update_stats(struct task_struct *tsk,
+               enum cpuacct_stat_index idx, cputime_t val)
+{
+       struct cpuacct *ca;
+       int batch = CPUACCT_BATCH;
+
+       if (unlikely(!cpuacct_subsys.active))
+               return;
+
+       rcu_read_lock();
+       ca = task_ca(tsk);
+
+       do {
+               __percpu_counter_add(&ca->cpustat[idx], val, batch);
+               ca = ca->parent;
+       } while (ca);
+       rcu_read_unlock();
+}
+
+struct cgroup_subsys cpuacct_subsys = {
+       .name = "cpuacct",
+       .create = cpuacct_create,
+       .destroy = cpuacct_destroy,
+       .populate = cpuacct_populate,
+       .subsys_id = cpuacct_subsys_id,
+};
+#endif /* CONFIG_CGROUP_CPUACCT */
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
new file mode 100644 (file)
index 0000000..b0d798e
--- /dev/null
@@ -0,0 +1,241 @@
+/*
+ *  kernel/sched/cpupri.c
+ *
+ *  CPU priority management
+ *
+ *  Copyright (C) 2007-2008 Novell
+ *
+ *  Author: Gregory Haskins <ghaskins@novell.com>
+ *
+ *  This code tracks the priority of each CPU so that global migration
+ *  decisions are easy to calculate.  Each CPU can be in a state as follows:
+ *
+ *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
+ *
+ *  going from the lowest priority to the highest.  CPUs in the INVALID state
+ *  are not eligible for routing.  The system maintains this state with
+ *  a 2 dimensional bitmap (the first for priority class, the second for cpus
+ *  in that class).  Therefore a typical application without affinity
+ *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
+ *  searches).  For tasks with affinity restrictions, the algorithm has a
+ *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
+ *  yields the worst case search is fairly contrived.
+ *
+ *  This program is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU General Public License
+ *  as published by the Free Software Foundation; version 2
+ *  of the License.
+ */
+
+#include <linux/gfp.h>
+#include "cpupri.h"
+
+/* Convert between a 140 based task->prio, and our 102 based cpupri */
+static int convert_prio(int prio)
+{
+       int cpupri;
+
+       if (prio == CPUPRI_INVALID)
+               cpupri = CPUPRI_INVALID;
+       else if (prio == MAX_PRIO)
+               cpupri = CPUPRI_IDLE;
+       else if (prio >= MAX_RT_PRIO)
+               cpupri = CPUPRI_NORMAL;
+       else
+               cpupri = MAX_RT_PRIO - prio + 1;
+
+       return cpupri;
+}
+
+/**
+ * cpupri_find - find the best (lowest-pri) CPU in the system
+ * @cp: The cpupri context
+ * @p: The task
+ * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
+ *
+ * Note: This function returns the recommended CPUs as calculated during the
+ * current invocation.  By the time the call returns, the CPUs may have in
+ * fact changed priorities any number of times.  While not ideal, it is not
+ * an issue of correctness since the normal rebalancer logic will correct
+ * any discrepancies created by racing against the uncertainty of the current
+ * priority configuration.
+ *
+ * Returns: (int)bool - CPUs were found
+ */
+int cpupri_find(struct cpupri *cp, struct task_struct *p,
+               struct cpumask *lowest_mask)
+{
+       int                  idx      = 0;
+       int                  task_pri = convert_prio(p->prio);
+
+       if (task_pri >= MAX_RT_PRIO)
+               return 0;
+
+       for (idx = 0; idx < task_pri; idx++) {
+               struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
+               int skip = 0;
+
+               if (!atomic_read(&(vec)->count))
+                       skip = 1;
+               /*
+                * When looking at the vector, we need to read the counter,
+                * do a memory barrier, then read the mask.
+                *
+                * Note: This is still all racey, but we can deal with it.
+                *  Ideally, we only want to look at masks that are set.
+                *
+                *  If a mask is not set, then the only thing wrong is that we
+                *  did a little more work than necessary.
+                *
+                *  If we read a zero count but the mask is set, because of the
+                *  memory barriers, that can only happen when the highest prio
+                *  task for a run queue has left the run queue, in which case,
+                *  it will be followed by a pull. If the task we are processing
+                *  fails to find a proper place to go, that pull request will
+                *  pull this task if the run queue is running at a lower
+                *  priority.
+                */
+               smp_rmb();
+
+               /* Need to do the rmb for every iteration */
+               if (skip)
+                       continue;
+
+               if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
+                       continue;
+
+               if (lowest_mask) {
+                       cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
+
+                       /*
+                        * We have to ensure that we have at least one bit
+                        * still set in the array, since the map could have
+                        * been concurrently emptied between the first and
+                        * second reads of vec->mask.  If we hit this
+                        * condition, simply act as though we never hit this
+                        * priority level and continue on.
+                        */
+                       if (cpumask_any(lowest_mask) >= nr_cpu_ids)
+                               continue;
+               }
+
+               return 1;
+       }
+
+       return 0;
+}
+
+/**
+ * cpupri_set - update the cpu priority setting
+ * @cp: The cpupri context
+ * @cpu: The target cpu
+ * @pri: The priority (INVALID-RT99) to assign to this CPU
+ *
+ * Note: Assumes cpu_rq(cpu)->lock is locked
+ *
+ * Returns: (void)
+ */
+void cpupri_set(struct cpupri *cp, int cpu, int newpri)
+{
+       int                 *currpri = &cp->cpu_to_pri[cpu];
+       int                  oldpri  = *currpri;
+       int                  do_mb = 0;
+
+       newpri = convert_prio(newpri);
+
+       BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
+
+       if (newpri == oldpri)
+               return;
+
+       /*
+        * If the cpu was currently mapped to a different value, we
+        * need to map it to the new value then remove the old value.
+        * Note, we must add the new value first, otherwise we risk the
+        * cpu being missed by the priority loop in cpupri_find.
+        */
+       if (likely(newpri != CPUPRI_INVALID)) {
+               struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
+
+               cpumask_set_cpu(cpu, vec->mask);
+               /*
+                * When adding a new vector, we update the mask first,
+                * do a write memory barrier, and then update the count, to
+                * make sure the vector is visible when count is set.
+                */
+               smp_mb__before_atomic_inc();
+               atomic_inc(&(vec)->count);
+               do_mb = 1;
+       }
+       if (likely(oldpri != CPUPRI_INVALID)) {
+               struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
+
+               /*
+                * Because the order of modification of the vec->count
+                * is important, we must make sure that the update
+                * of the new prio is seen before we decrement the
+                * old prio. This makes sure that the loop sees
+                * one or the other when we raise the priority of
+                * the run queue. We don't care about when we lower the
+                * priority, as that will trigger an rt pull anyway.
+                *
+                * We only need to do a memory barrier if we updated
+                * the new priority vec.
+                */
+               if (do_mb)
+                       smp_mb__after_atomic_inc();
+
+               /*
+                * When removing from the vector, we decrement the counter first
+                * do a memory barrier and then clear the mask.
+                */
+               atomic_dec(&(vec)->count);
+               smp_mb__after_atomic_inc();
+               cpumask_clear_cpu(cpu, vec->mask);
+       }
+
+       *currpri = newpri;
+}
+
+/**
+ * cpupri_init - initialize the cpupri structure
+ * @cp: The cpupri context
+ * @bootmem: true if allocations need to use bootmem
+ *
+ * Returns: -ENOMEM if memory fails.
+ */
+int cpupri_init(struct cpupri *cp)
+{
+       int i;
+
+       memset(cp, 0, sizeof(*cp));
+
+       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
+               struct cpupri_vec *vec = &cp->pri_to_cpu[i];
+
+               atomic_set(&vec->count, 0);
+               if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
+                       goto cleanup;
+       }
+
+       for_each_possible_cpu(i)
+               cp->cpu_to_pri[i] = CPUPRI_INVALID;
+       return 0;
+
+cleanup:
+       for (i--; i >= 0; i--)
+               free_cpumask_var(cp->pri_to_cpu[i].mask);
+       return -ENOMEM;
+}
+
+/**
+ * cpupri_cleanup - clean up the cpupri structure
+ * @cp: The cpupri context
+ */
+void cpupri_cleanup(struct cpupri *cp)
+{
+       int i;
+
+       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
+               free_cpumask_var(cp->pri_to_cpu[i].mask);
+}
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
new file mode 100644 (file)
index 0000000..f6d7561
--- /dev/null
@@ -0,0 +1,34 @@
+#ifndef _LINUX_CPUPRI_H
+#define _LINUX_CPUPRI_H
+
+#include <linux/sched.h>
+
+#define CPUPRI_NR_PRIORITIES   (MAX_RT_PRIO + 2)
+
+#define CPUPRI_INVALID -1
+#define CPUPRI_IDLE     0
+#define CPUPRI_NORMAL   1
+/* values 2-101 are RT priorities 0-99 */
+
+struct cpupri_vec {
+       atomic_t        count;
+       cpumask_var_t   mask;
+};
+
+struct cpupri {
+       struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];
+       int               cpu_to_pri[NR_CPUS];
+};
+
+#ifdef CONFIG_SMP
+int  cpupri_find(struct cpupri *cp,
+                struct task_struct *p, struct cpumask *lowest_mask);
+void cpupri_set(struct cpupri *cp, int cpu, int pri);
+int cpupri_init(struct cpupri *cp);
+void cpupri_cleanup(struct cpupri *cp);
+#else
+#define cpupri_set(cp, cpu, pri) do { } while (0)
+#define cpupri_init() do { } while (0)
+#endif
+
+#endif /* _LINUX_CPUPRI_H */
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
new file mode 100644 (file)
index 0000000..2a075e1
--- /dev/null
@@ -0,0 +1,510 @@
+/*
+ * kernel/sched/debug.c
+ *
+ * Print the CFS rbtree
+ *
+ * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/proc_fs.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/kallsyms.h>
+#include <linux/utsname.h>
+
+#include "sched.h"
+
+static DEFINE_SPINLOCK(sched_debug_lock);
+
+/*
+ * This allows printing both to /proc/sched_debug and
+ * to the console
+ */
+#define SEQ_printf(m, x...)                    \
+ do {                                          \
+       if (m)                                  \
+               seq_printf(m, x);               \
+       else                                    \
+               printk(x);                      \
+ } while (0)
+
+/*
+ * Ease the printing of nsec fields:
+ */
+static long long nsec_high(unsigned long long nsec)
+{
+       if ((long long)nsec < 0) {
+               nsec = -nsec;
+               do_div(nsec, 1000000);
+               return -nsec;
+       }
+       do_div(nsec, 1000000);
+
+       return nsec;
+}
+
+static unsigned long nsec_low(unsigned long long nsec)
+{
+       if ((long long)nsec < 0)
+               nsec = -nsec;
+
+       return do_div(nsec, 1000000);
+}
+
+#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
+{
+       struct sched_entity *se = tg->se[cpu];
+       if (!se)
+               return;
+
+#define P(F) \
+       SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
+#define PN(F) \
+       SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
+
+       PN(se->exec_start);
+       PN(se->vruntime);
+       PN(se->sum_exec_runtime);
+#ifdef CONFIG_SCHEDSTATS
+       PN(se->statistics.wait_start);
+       PN(se->statistics.sleep_start);
+       PN(se->statistics.block_start);
+       PN(se->statistics.sleep_max);
+       PN(se->statistics.block_max);
+       PN(se->statistics.exec_max);
+       PN(se->statistics.slice_max);
+       PN(se->statistics.wait_max);
+       PN(se->statistics.wait_sum);
+       P(se->statistics.wait_count);
+#endif
+       P(se->load.weight);
+#undef PN
+#undef P
+}
+#endif
+
+#ifdef CONFIG_CGROUP_SCHED
+static char group_path[PATH_MAX];
+
+static char *task_group_path(struct task_group *tg)
+{
+       if (autogroup_path(tg, group_path, PATH_MAX))
+               return group_path;
+
+       /*
+        * May be NULL if the underlying cgroup isn't fully-created yet
+        */
+       if (!tg->css.cgroup) {
+               group_path[0] = '\0';
+               return group_path;
+       }
+       cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
+       return group_path;
+}
+#endif
+
+static void
+print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
+{
+       if (rq->curr == p)
+               SEQ_printf(m, "R");
+       else
+               SEQ_printf(m, " ");
+
+       SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
+               p->comm, p->pid,
+               SPLIT_NS(p->se.vruntime),
+               (long long)(p->nvcsw + p->nivcsw),
+               p->prio);
+#ifdef CONFIG_SCHEDSTATS
+       SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
+               SPLIT_NS(p->se.vruntime),
+               SPLIT_NS(p->se.sum_exec_runtime),
+               SPLIT_NS(p->se.statistics.sum_sleep_runtime));
+#else
+       SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
+               0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
+#endif
+#ifdef CONFIG_CGROUP_SCHED
+       SEQ_printf(m, " %s", task_group_path(task_group(p)));
+#endif
+
+       SEQ_printf(m, "\n");
+}
+
+static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
+{
+       struct task_struct *g, *p;
+       unsigned long flags;
+
+       SEQ_printf(m,
+       "\nrunnable tasks:\n"
+       "            task   PID         tree-key  switches  prio"
+       "     exec-runtime         sum-exec        sum-sleep\n"
+       "------------------------------------------------------"
+       "----------------------------------------------------\n");
+
+       read_lock_irqsave(&tasklist_lock, flags);
+
+       do_each_thread(g, p) {
+               if (!p->on_rq || task_cpu(p) != rq_cpu)
+                       continue;
+
+               print_task(m, rq, p);
+       } while_each_thread(g, p);
+
+       read_unlock_irqrestore(&tasklist_lock, flags);
+}
+
+void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
+{
+       s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
+               spread, rq0_min_vruntime, spread0;
+       struct rq *rq = cpu_rq(cpu);
+       struct sched_entity *last;
+       unsigned long flags;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
+#else
+       SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
+#endif
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
+                       SPLIT_NS(cfs_rq->exec_clock));
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+       if (cfs_rq->rb_leftmost)
+               MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
+       last = __pick_last_entity(cfs_rq);
+       if (last)
+               max_vruntime = last->vruntime;
+       min_vruntime = cfs_rq->min_vruntime;
+       rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
+                       SPLIT_NS(MIN_vruntime));
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
+                       SPLIT_NS(min_vruntime));
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
+                       SPLIT_NS(max_vruntime));
+       spread = max_vruntime - MIN_vruntime;
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
+                       SPLIT_NS(spread));
+       spread0 = min_vruntime - rq0_min_vruntime;
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
+                       SPLIT_NS(spread0));
+       SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
+                       cfs_rq->nr_spread_over);
+       SEQ_printf(m, "  .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
+       SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
+#ifdef CONFIG_FAIR_GROUP_SCHED
+#ifdef CONFIG_SMP
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "load_avg",
+                       SPLIT_NS(cfs_rq->load_avg));
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "load_period",
+                       SPLIT_NS(cfs_rq->load_period));
+       SEQ_printf(m, "  .%-30s: %ld\n", "load_contrib",
+                       cfs_rq->load_contribution);
+       SEQ_printf(m, "  .%-30s: %d\n", "load_tg",
+                       atomic_read(&cfs_rq->tg->load_weight));
+#endif
+
+       print_cfs_group_stats(m, cpu, cfs_rq->tg);
+#endif
+}
+
+void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+       SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
+#else
+       SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
+#endif
+
+#define P(x) \
+       SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
+#define PN(x) \
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
+
+       P(rt_nr_running);
+       P(rt_throttled);
+       PN(rt_time);
+       PN(rt_runtime);
+
+#undef PN
+#undef P
+}
+
+extern __read_mostly int sched_clock_running;
+
+static void print_cpu(struct seq_file *m, int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long flags;
+
+#ifdef CONFIG_X86
+       {
+               unsigned int freq = cpu_khz ? : 1;
+
+               SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
+                          cpu, freq / 1000, (freq % 1000));
+       }
+#else
+       SEQ_printf(m, "\ncpu#%d\n", cpu);
+#endif
+
+#define P(x) \
+       SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x))
+#define PN(x) \
+       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
+
+       P(nr_running);
+       SEQ_printf(m, "  .%-30s: %lu\n", "load",
+                  rq->load.weight);
+       P(nr_switches);
+       P(nr_load_updates);
+       P(nr_uninterruptible);
+       PN(next_balance);
+       P(curr->pid);
+       PN(clock);
+       P(cpu_load[0]);
+       P(cpu_load[1]);
+       P(cpu_load[2]);
+       P(cpu_load[3]);
+       P(cpu_load[4]);
+#undef P
+#undef PN
+
+#ifdef CONFIG_SCHEDSTATS
+#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
+#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
+
+       P(yld_count);
+
+       P(sched_switch);
+       P(sched_count);
+       P(sched_goidle);
+#ifdef CONFIG_SMP
+       P64(avg_idle);
+#endif
+
+       P(ttwu_count);
+       P(ttwu_local);
+
+#undef P
+#undef P64
+#endif
+       spin_lock_irqsave(&sched_debug_lock, flags);
+       print_cfs_stats(m, cpu);
+       print_rt_stats(m, cpu);
+
+       rcu_read_lock();
+       print_rq(m, rq, cpu);
+       rcu_read_unlock();
+       spin_unlock_irqrestore(&sched_debug_lock, flags);
+}
+
+static const char *sched_tunable_scaling_names[] = {
+       "none",
+       "logaritmic",
+       "linear"
+};
+
+static int sched_debug_show(struct seq_file *m, void *v)
+{
+       u64 ktime, sched_clk, cpu_clk;
+       unsigned long flags;
+       int cpu;
+
+       local_irq_save(flags);
+       ktime = ktime_to_ns(ktime_get());
+       sched_clk = sched_clock();
+       cpu_clk = local_clock();
+       local_irq_restore(flags);
+
+       SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
+               init_utsname()->release,
+               (int)strcspn(init_utsname()->version, " "),
+               init_utsname()->version);
+
+#define P(x) \
+       SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
+#define PN(x) \
+       SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
+       PN(ktime);
+       PN(sched_clk);
+       PN(cpu_clk);
+       P(jiffies);
+#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
+       P(sched_clock_stable);
+#endif
+#undef PN
+#undef P
+
+       SEQ_printf(m, "\n");
+       SEQ_printf(m, "sysctl_sched\n");
+
+#define P(x) \
+       SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
+#define PN(x) \
+       SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
+       PN(sysctl_sched_latency);
+       PN(sysctl_sched_min_granularity);
+       PN(sysctl_sched_wakeup_granularity);
+       P(sysctl_sched_child_runs_first);
+       P(sysctl_sched_features);
+#undef PN
+#undef P
+
+       SEQ_printf(m, "  .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling",
+               sysctl_sched_tunable_scaling,
+               sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
+
+       for_each_online_cpu(cpu)
+               print_cpu(m, cpu);
+
+       SEQ_printf(m, "\n");
+
+       return 0;
+}
+
+void sysrq_sched_debug_show(void)
+{
+       sched_debug_show(NULL, NULL);
+}
+
+static int sched_debug_open(struct inode *inode, struct file *filp)
+{
+       return single_open(filp, sched_debug_show, NULL);
+}
+
+static const struct file_operations sched_debug_fops = {
+       .open           = sched_debug_open,
+       .read           = seq_read,
+       .llseek         = seq_lseek,
+       .release        = single_release,
+};
+
+static int __init init_sched_debug_procfs(void)
+{
+       struct proc_dir_entry *pe;
+
+       pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
+       if (!pe)
+               return -ENOMEM;
+       return 0;
+}
+
+__initcall(init_sched_debug_procfs);
+
+void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
+{
+       unsigned long nr_switches;
+
+       SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid,
+                                               get_nr_threads(p));
+       SEQ_printf(m,
+               "---------------------------------------------------------\n");
+#define __P(F) \
+       SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
+#define P(F) \
+       SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
+#define __PN(F) \
+       SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
+#define PN(F) \
+       SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
+
+       PN(se.exec_start);
+       PN(se.vruntime);
+       PN(se.sum_exec_runtime);
+
+       nr_switches = p->nvcsw + p->nivcsw;
+
+#ifdef CONFIG_SCHEDSTATS
+       PN(se.statistics.wait_start);
+       PN(se.statistics.sleep_start);
+       PN(se.statistics.block_start);
+       PN(se.statistics.sleep_max);
+       PN(se.statistics.block_max);
+       PN(se.statistics.exec_max);
+       PN(se.statistics.slice_max);
+       PN(se.statistics.wait_max);
+       PN(se.statistics.wait_sum);
+       P(se.statistics.wait_count);
+       PN(se.statistics.iowait_sum);
+       P(se.statistics.iowait_count);
+       P(se.nr_migrations);
+       P(se.statistics.nr_migrations_cold);
+       P(se.statistics.nr_failed_migrations_affine);
+       P(se.statistics.nr_failed_migrations_running);
+       P(se.statistics.nr_failed_migrations_hot);
+       P(se.statistics.nr_forced_migrations);
+       P(se.statistics.nr_wakeups);
+       P(se.statistics.nr_wakeups_sync);
+       P(se.statistics.nr_wakeups_migrate);
+       P(se.statistics.nr_wakeups_local);
+       P(se.statistics.nr_wakeups_remote);
+       P(se.statistics.nr_wakeups_affine);
+       P(se.statistics.nr_wakeups_affine_attempts);
+       P(se.statistics.nr_wakeups_passive);
+       P(se.statistics.nr_wakeups_idle);
+
+       {
+               u64 avg_atom, avg_per_cpu;
+
+               avg_atom = p->se.sum_exec_runtime;
+               if (nr_switches)
+                       do_div(avg_atom, nr_switches);
+               else
+                       avg_atom = -1LL;
+
+               avg_per_cpu = p->se.sum_exec_runtime;
+               if (p->se.nr_migrations) {
+                       avg_per_cpu = div64_u64(avg_per_cpu,
+                                               p->se.nr_migrations);
+               } else {
+                       avg_per_cpu = -1LL;
+               }
+
+               __PN(avg_atom);
+               __PN(avg_per_cpu);
+       }
+#endif
+       __P(nr_switches);
+       SEQ_printf(m, "%-35s:%21Ld\n",
+                  "nr_voluntary_switches", (long long)p->nvcsw);
+       SEQ_printf(m, "%-35s:%21Ld\n",
+                  "nr_involuntary_switches", (long long)p->nivcsw);
+
+       P(se.load.weight);
+       P(policy);
+       P(prio);
+#undef PN
+#undef __PN
+#undef P
+#undef __P
+
+       {
+               unsigned int this_cpu = raw_smp_processor_id();
+               u64 t0, t1;
+
+               t0 = cpu_clock(this_cpu);
+               t1 = cpu_clock(this_cpu);
+               SEQ_printf(m, "%-35s:%21Ld\n",
+                          "clock-delta", (long long)(t1-t0));
+       }
+}
+
+void proc_sched_set_task(struct task_struct *p)
+{
+#ifdef CONFIG_SCHEDSTATS
+       memset(&p->se.statistics, 0, sizeof(p->se.statistics));
+#endif
+}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
new file mode 100644 (file)
index 0000000..cd3b642
--- /dev/null
@@ -0,0 +1,5601 @@
+/*
+ * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
+ *
+ *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *
+ *  Interactivity improvements by Mike Galbraith
+ *  (C) 2007 Mike Galbraith <efault@gmx.de>
+ *
+ *  Various enhancements by Dmitry Adamushko.
+ *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
+ *
+ *  Group scheduling enhancements by Srivatsa Vaddagiri
+ *  Copyright IBM Corporation, 2007
+ *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
+ *
+ *  Scaled math optimizations by Thomas Gleixner
+ *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
+ *
+ *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
+ *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ */
+
+#include <linux/latencytop.h>
+#include <linux/sched.h>
+#include <linux/cpumask.h>
+#include <linux/slab.h>
+#include <linux/profile.h>
+#include <linux/interrupt.h>
+
+#include <trace/events/sched.h>
+
+#include "sched.h"
+
+/*
+ * Targeted preemption latency for CPU-bound tasks:
+ * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
+ *
+ * NOTE: this latency value is not the same as the concept of
+ * 'timeslice length' - timeslices in CFS are of variable length
+ * and have no persistent notion like in traditional, time-slice
+ * based scheduling concepts.
+ *
+ * (to see the precise effective timeslice length of your workload,
+ *  run vmstat and monitor the context-switches (cs) field)
+ */
+unsigned int sysctl_sched_latency = 6000000ULL;
+unsigned int normalized_sysctl_sched_latency = 6000000ULL;
+
+/*
+ * The initial- and re-scaling of tunables is configurable
+ * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
+ *
+ * Options are:
+ * SCHED_TUNABLESCALING_NONE - unscaled, always *1
+ * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
+ * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
+ */
+enum sched_tunable_scaling sysctl_sched_tunable_scaling
+       = SCHED_TUNABLESCALING_LOG;
+
+/*
+ * Minimal preemption granularity for CPU-bound tasks:
+ * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ */
+unsigned int sysctl_sched_min_granularity = 750000ULL;
+unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
+
+/*
+ * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
+ */
+static unsigned int sched_nr_latency = 8;
+
+/*
+ * After fork, child runs first. If set to 0 (default) then
+ * parent will (try to) run first.
+ */
+unsigned int sysctl_sched_child_runs_first __read_mostly;
+
+/*
+ * SCHED_OTHER wake-up granularity.
+ * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ *
+ * This option delays the preemption effects of decoupled workloads
+ * and reduces their over-scheduling. Synchronous workloads will still
+ * have immediate wakeup/sleep latencies.
+ */
+unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
+unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
+
+const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+
+/*
+ * The exponential sliding  window over which load is averaged for shares
+ * distribution.
+ * (default: 10msec)
+ */
+unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
+
+#ifdef CONFIG_CFS_BANDWIDTH
+/*
+ * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
+ * each time a cfs_rq requests quota.
+ *
+ * Note: in the case that the slice exceeds the runtime remaining (either due
+ * to consumption or the quota being specified to be smaller than the slice)
+ * we will always only issue the remaining available time.
+ *
+ * default: 5 msec, units: microseconds
+  */
+unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
+#endif
+
+/*
+ * Increase the granularity value when there are more CPUs,
+ * because with more CPUs the 'effective latency' as visible
+ * to users decreases. But the relationship is not linear,
+ * so pick a second-best guess by going with the log2 of the
+ * number of CPUs.
+ *
+ * This idea comes from the SD scheduler of Con Kolivas:
+ */
+static int get_update_sysctl_factor(void)
+{
+       unsigned int cpus = min_t(int, num_online_cpus(), 8);
+       unsigned int factor;
+
+       switch (sysctl_sched_tunable_scaling) {
+       case SCHED_TUNABLESCALING_NONE:
+               factor = 1;
+               break;
+       case SCHED_TUNABLESCALING_LINEAR:
+               factor = cpus;
+               break;
+       case SCHED_TUNABLESCALING_LOG:
+       default:
+               factor = 1 + ilog2(cpus);
+               break;
+       }
+
+       return factor;
+}
+
+static void update_sysctl(void)
+{
+       unsigned int factor = get_update_sysctl_factor();
+
+#define SET_SYSCTL(name) \
+       (sysctl_##name = (factor) * normalized_sysctl_##name)
+       SET_SYSCTL(sched_min_granularity);
+       SET_SYSCTL(sched_latency);
+       SET_SYSCTL(sched_wakeup_granularity);
+#undef SET_SYSCTL
+}
+
+void sched_init_granularity(void)
+{
+       update_sysctl();
+}
+
+#if BITS_PER_LONG == 32
+# define WMULT_CONST   (~0UL)
+#else
+# define WMULT_CONST   (1UL << 32)
+#endif
+
+#define WMULT_SHIFT    32
+
+/*
+ * Shift right and round:
+ */
+#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
+
+/*
+ * delta *= weight / lw
+ */
+static unsigned long
+calc_delta_mine(unsigned long delta_exec, unsigned long weight,
+               struct load_weight *lw)
+{
+       u64 tmp;
+
+       /*
+        * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
+        * entities since MIN_SHARES = 2. Treat weight as 1 if less than
+        * 2^SCHED_LOAD_RESOLUTION.
+        */
+       if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
+               tmp = (u64)delta_exec * scale_load_down(weight);
+       else
+               tmp = (u64)delta_exec;
+
+       if (!lw->inv_weight) {
+               unsigned long w = scale_load_down(lw->weight);
+
+               if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
+                       lw->inv_weight = 1;
+               else if (unlikely(!w))
+                       lw->inv_weight = WMULT_CONST;
+               else
+                       lw->inv_weight = WMULT_CONST / w;
+       }
+
+       /*
+        * Check whether we'd overflow the 64-bit multiplication:
+        */
+       if (unlikely(tmp > WMULT_CONST))
+               tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
+                       WMULT_SHIFT/2);
+       else
+               tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
+
+       return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
+}
+
+
+const struct sched_class fair_sched_class;
+
+/**************************************************************
+ * CFS operations on generic schedulable entities:
+ */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* cpu runqueue to which this cfs_rq is attached */
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+       return cfs_rq->rq;
+}
+
+/* An entity is a task if it doesn't "own" a runqueue */
+#define entity_is_task(se)     (!se->my_q)
+
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       WARN_ON_ONCE(!entity_is_task(se));
+#endif
+       return container_of(se, struct task_struct, se);
+}
+
+/* Walk up scheduling entities hierarchy */
+#define for_each_sched_entity(se) \
+               for (; se; se = se->parent)
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+       return p->se.cfs_rq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+       return se->cfs_rq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+       return grp->my_q;
+}
+
+static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       if (!cfs_rq->on_list) {
+               /*
+                * Ensure we either appear before our parent (if already
+                * enqueued) or force our parent to appear after us when it is
+                * enqueued.  The fact that we always enqueue bottom-up
+                * reduces this to two cases.
+                */
+               if (cfs_rq->tg->parent &&
+                   cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
+                       list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
+                               &rq_of(cfs_rq)->leaf_cfs_rq_list);
+               } else {
+                       list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
+                               &rq_of(cfs_rq)->leaf_cfs_rq_list);
+               }
+
+               cfs_rq->on_list = 1;
+       }
+}
+
+static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       if (cfs_rq->on_list) {
+               list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
+               cfs_rq->on_list = 0;
+       }
+}
+
+/* Iterate thr' all leaf cfs_rq's on a runqueue */
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+       list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
+
+/* Do the two (enqueued) entities belong to the same group ? */
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
+{
+       if (se->cfs_rq == pse->cfs_rq)
+               return 1;
+
+       return 0;
+}
+
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return se->parent;
+}
+
+/* return depth at which a sched entity is present in the hierarchy */
+static inline int depth_se(struct sched_entity *se)
+{
+       int depth = 0;
+
+       for_each_sched_entity(se)
+               depth++;
+
+       return depth;
+}
+
+static void
+find_matching_se(struct sched_entity **se, struct sched_entity **pse)
+{
+       int se_depth, pse_depth;
+
+       /*
+        * preemption test can be made between sibling entities who are in the
+        * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
+        * both tasks until we find their ancestors who are siblings of common
+        * parent.
+        */
+
+       /* First walk up until both entities are at same depth */
+       se_depth = depth_se(*se);
+       pse_depth = depth_se(*pse);
+
+       while (se_depth > pse_depth) {
+               se_depth--;
+               *se = parent_entity(*se);
+       }
+
+       while (pse_depth > se_depth) {
+               pse_depth--;
+               *pse = parent_entity(*pse);
+       }
+
+       while (!is_same_group(*se, *pse)) {
+               *se = parent_entity(*se);
+               *pse = parent_entity(*pse);
+       }
+}
+
+#else  /* !CONFIG_FAIR_GROUP_SCHED */
+
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+       return container_of(se, struct task_struct, se);
+}
+
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+       return container_of(cfs_rq, struct rq, cfs);
+}
+
+#define entity_is_task(se)     1
+
+#define for_each_sched_entity(se) \
+               for (; se; se = NULL)
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+       return &task_rq(p)->cfs;
+}
+
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+       struct task_struct *p = task_of(se);
+       struct rq *rq = task_rq(p);
+
+       return &rq->cfs;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+       return NULL;
+}
+
+static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+}
+
+static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+}
+
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+               for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
+
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
+{
+       return 1;
+}
+
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+       return NULL;
+}
+
+static inline void
+find_matching_se(struct sched_entity **se, struct sched_entity **pse)
+{
+}
+
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
+                                  unsigned long delta_exec);
+
+/**************************************************************
+ * Scheduling class tree data structure manipulation methods:
+ */
+
+static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
+{
+       s64 delta = (s64)(vruntime - min_vruntime);
+       if (delta > 0)
+               min_vruntime = vruntime;
+
+       return min_vruntime;
+}
+
+static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
+{
+       s64 delta = (s64)(vruntime - min_vruntime);
+       if (delta < 0)
+               min_vruntime = vruntime;
+
+       return min_vruntime;
+}
+
+static inline int entity_before(struct sched_entity *a,
+                               struct sched_entity *b)
+{
+       return (s64)(a->vruntime - b->vruntime) < 0;
+}
+
+static void update_min_vruntime(struct cfs_rq *cfs_rq)
+{
+       u64 vruntime = cfs_rq->min_vruntime;
+
+       if (cfs_rq->curr)
+               vruntime = cfs_rq->curr->vruntime;
+
+       if (cfs_rq->rb_leftmost) {
+               struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
+                                                  struct sched_entity,
+                                                  run_node);
+
+               if (!cfs_rq->curr)
+                       vruntime = se->vruntime;
+               else
+                       vruntime = min_vruntime(vruntime, se->vruntime);
+       }
+
+       cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
+#ifndef CONFIG_64BIT
+       smp_wmb();
+       cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
+#endif
+}
+
+/*
+ * Enqueue an entity into the rb-tree:
+ */
+static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
+       struct rb_node *parent = NULL;
+       struct sched_entity *entry;
+       int leftmost = 1;
+
+       /*
+        * Find the right place in the rbtree:
+        */
+       while (*link) {
+               parent = *link;
+               entry = rb_entry(parent, struct sched_entity, run_node);
+               /*
+                * We dont care about collisions. Nodes with
+                * the same key stay together.
+                */
+               if (entity_before(se, entry)) {
+                       link = &parent->rb_left;
+               } else {
+                       link = &parent->rb_right;
+                       leftmost = 0;
+               }
+       }
+
+       /*
+        * Maintain a cache of leftmost tree entries (it is frequently
+        * used):
+        */
+       if (leftmost)
+               cfs_rq->rb_leftmost = &se->run_node;
+
+       rb_link_node(&se->run_node, parent, link);
+       rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
+}
+
+static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       if (cfs_rq->rb_leftmost == &se->run_node) {
+               struct rb_node *next_node;
+
+               next_node = rb_next(&se->run_node);
+               cfs_rq->rb_leftmost = next_node;
+       }
+
+       rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
+}
+
+struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
+{
+       struct rb_node *left = cfs_rq->rb_leftmost;
+
+       if (!left)
+               return NULL;
+
+       return rb_entry(left, struct sched_entity, run_node);
+}
+
+static struct sched_entity *__pick_next_entity(struct sched_entity *se)
+{
+       struct rb_node *next = rb_next(&se->run_node);
+
+       if (!next)
+               return NULL;
+
+       return rb_entry(next, struct sched_entity, run_node);
+}
+
+#ifdef CONFIG_SCHED_DEBUG
+struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
+{
+       struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
+
+       if (!last)
+               return NULL;
+
+       return rb_entry(last, struct sched_entity, run_node);
+}
+
+/**************************************************************
+ * Scheduling class statistics methods:
+ */
+
+int sched_proc_update_handler(struct ctl_table *table, int write,
+               void __user *buffer, size_t *lenp,
+               loff_t *ppos)
+{
+       int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+       int factor = get_update_sysctl_factor();
+
+       if (ret || !write)
+               return ret;
+
+       sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
+                                       sysctl_sched_min_granularity);
+
+#define WRT_SYSCTL(name) \
+       (normalized_sysctl_##name = sysctl_##name / (factor))
+       WRT_SYSCTL(sched_min_granularity);
+       WRT_SYSCTL(sched_latency);
+       WRT_SYSCTL(sched_wakeup_granularity);
+#undef WRT_SYSCTL
+
+       return 0;
+}
+#endif
+
+/*
+ * delta /= w
+ */
+static inline unsigned long
+calc_delta_fair(unsigned long delta, struct sched_entity *se)
+{
+       if (unlikely(se->load.weight != NICE_0_LOAD))
+               delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
+
+       return delta;
+}
+
+/*
+ * The idea is to set a period in which each task runs once.
+ *
+ * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
+ * this period because otherwise the slices get too small.
+ *
+ * p = (nr <= nl) ? l : l*nr/nl
+ */
+static u64 __sched_period(unsigned long nr_running)
+{
+       u64 period = sysctl_sched_latency;
+       unsigned long nr_latency = sched_nr_latency;
+
+       if (unlikely(nr_running > nr_latency)) {
+               period = sysctl_sched_min_granularity;
+               period *= nr_running;
+       }
+
+       return period;
+}
+
+/*
+ * We calculate the wall-time slice from the period by taking a part
+ * proportional to the weight.
+ *
+ * s = p*P[w/rw]
+ */
+static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
+
+       for_each_sched_entity(se) {
+               struct load_weight *load;
+               struct load_weight lw;
+
+               cfs_rq = cfs_rq_of(se);
+               load = &cfs_rq->load;
+
+               if (unlikely(!se->on_rq)) {
+                       lw = cfs_rq->load;
+
+                       update_load_add(&lw, se->load.weight);
+                       load = &lw;
+               }
+               slice = calc_delta_mine(slice, se->load.weight, load);
+       }
+       return slice;
+}
+
+/*
+ * We calculate the vruntime slice of a to be inserted task
+ *
+ * vs = s/w
+ */
+static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       return calc_delta_fair(sched_slice(cfs_rq, se), se);
+}
+
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
+static void update_cfs_shares(struct cfs_rq *cfs_rq);
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static inline void
+__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
+             unsigned long delta_exec)
+{
+       unsigned long delta_exec_weighted;
+
+       schedstat_set(curr->statistics.exec_max,
+                     max((u64)delta_exec, curr->statistics.exec_max));
+
+       curr->sum_exec_runtime += delta_exec;
+       schedstat_add(cfs_rq, exec_clock, delta_exec);
+       delta_exec_weighted = calc_delta_fair(delta_exec, curr);
+
+       curr->vruntime += delta_exec_weighted;
+       update_min_vruntime(cfs_rq);
+
+#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
+       cfs_rq->load_unacc_exec_time += delta_exec;
+#endif
+}
+
+static void update_curr(struct cfs_rq *cfs_rq)
+{
+       struct sched_entity *curr = cfs_rq->curr;
+       u64 now = rq_of(cfs_rq)->clock_task;
+       unsigned long delta_exec;
+
+       if (unlikely(!curr))
+               return;
+
+       /*
+        * Get the amount of time the current task was running
+        * since the last time we changed load (this cannot
+        * overflow on 32 bits):
+        */
+       delta_exec = (unsigned long)(now - curr->exec_start);
+       if (!delta_exec)
+               return;
+
+       __update_curr(cfs_rq, curr, delta_exec);
+       curr->exec_start = now;
+
+       if (entity_is_task(curr)) {
+               struct task_struct *curtask = task_of(curr);
+
+               trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
+               cpuacct_charge(curtask, delta_exec);
+               account_group_exec_runtime(curtask, delta_exec);
+       }
+
+       account_cfs_rq_runtime(cfs_rq, delta_exec);
+}
+
+static inline void
+update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
+}
+
+/*
+ * Task is being enqueued - update stats:
+ */
+static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       /*
+        * Are we enqueueing a waiting task? (for current tasks
+        * a dequeue/enqueue event is a NOP)
+        */
+       if (se != cfs_rq->curr)
+               update_stats_wait_start(cfs_rq, se);
+}
+
+static void
+update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
+                       rq_of(cfs_rq)->clock - se->statistics.wait_start));
+       schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
+       schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
+                       rq_of(cfs_rq)->clock - se->statistics.wait_start);
+#ifdef CONFIG_SCHEDSTATS
+       if (entity_is_task(se)) {
+               trace_sched_stat_wait(task_of(se),
+                       rq_of(cfs_rq)->clock - se->statistics.wait_start);
+       }
+#endif
+       schedstat_set(se->statistics.wait_start, 0);
+}
+
+static inline void
+update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       /*
+        * Mark the end of the wait period if dequeueing a
+        * waiting task:
+        */
+       if (se != cfs_rq->curr)
+               update_stats_wait_end(cfs_rq, se);
+}
+
+/*
+ * We are picking a new current task - update its stats:
+ */
+static inline void
+update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       /*
+        * We are starting a new run period:
+        */
+       se->exec_start = rq_of(cfs_rq)->clock_task;
+}
+
+/**************************************************
+ * Scheduling class queueing methods:
+ */
+
+#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
+static void
+add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
+{
+       cfs_rq->task_weight += weight;
+}
+#else
+static inline void
+add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
+{
+}
+#endif
+
+static void
+account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       update_load_add(&cfs_rq->load, se->load.weight);
+       if (!parent_entity(se))
+               update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
+       if (entity_is_task(se)) {
+               add_cfs_task_weight(cfs_rq, se->load.weight);
+               list_add(&se->group_node, &cfs_rq->tasks);
+       }
+       cfs_rq->nr_running++;
+}
+
+static void
+account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       update_load_sub(&cfs_rq->load, se->load.weight);
+       if (!parent_entity(se))
+               update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
+       if (entity_is_task(se)) {
+               add_cfs_task_weight(cfs_rq, -se->load.weight);
+               list_del_init(&se->group_node);
+       }
+       cfs_rq->nr_running--;
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/* we need this in update_cfs_load and load-balance functions below */
+static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
+# ifdef CONFIG_SMP
+static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
+                                           int global_update)
+{
+       struct task_group *tg = cfs_rq->tg;
+       long load_avg;
+
+       load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
+       load_avg -= cfs_rq->load_contribution;
+
+       if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
+               atomic_add(load_avg, &tg->load_weight);
+               cfs_rq->load_contribution += load_avg;
+       }
+}
+
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+{
+       u64 period = sysctl_sched_shares_window;
+       u64 now, delta;
+       unsigned long load = cfs_rq->load.weight;
+
+       if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
+               return;
+
+       now = rq_of(cfs_rq)->clock_task;
+       delta = now - cfs_rq->load_stamp;
+
+       /* truncate load history at 4 idle periods */
+       if (cfs_rq->load_stamp > cfs_rq->load_last &&
+           now - cfs_rq->load_last > 4 * period) {
+               cfs_rq->load_period = 0;
+               cfs_rq->load_avg = 0;
+               delta = period - 1;
+       }
+
+       cfs_rq->load_stamp = now;
+       cfs_rq->load_unacc_exec_time = 0;
+       cfs_rq->load_period += delta;
+       if (load) {
+               cfs_rq->load_last = now;
+               cfs_rq->load_avg += delta * load;
+       }
+
+       /* consider updating load contribution on each fold or truncate */
+       if (global_update || cfs_rq->load_period > period
+           || !cfs_rq->load_period)
+               update_cfs_rq_load_contribution(cfs_rq, global_update);
+
+       while (cfs_rq->load_period > period) {
+               /*
+                * Inline assembly required to prevent the compiler
+                * optimising this loop into a divmod call.
+                * See __iter_div_u64_rem() for another example of this.
+                */
+               asm("" : "+rm" (cfs_rq->load_period));
+               cfs_rq->load_period /= 2;
+               cfs_rq->load_avg /= 2;
+       }
+
+       if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
+               list_del_leaf_cfs_rq(cfs_rq);
+}
+
+static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
+{
+       long tg_weight;
+
+       /*
+        * Use this CPU's actual weight instead of the last load_contribution
+        * to gain a more accurate current total weight. See
+        * update_cfs_rq_load_contribution().
+        */
+       tg_weight = atomic_read(&tg->load_weight);
+       tg_weight -= cfs_rq->load_contribution;
+       tg_weight += cfs_rq->load.weight;
+
+       return tg_weight;
+}
+
+static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
+{
+       long tg_weight, load, shares;
+
+       tg_weight = calc_tg_weight(tg, cfs_rq);
+       load = cfs_rq->load.weight;
+
+       shares = (tg->shares * load);
+       if (tg_weight)
+               shares /= tg_weight;
+
+       if (shares < MIN_SHARES)
+               shares = MIN_SHARES;
+       if (shares > tg->shares)
+               shares = tg->shares;
+
+       return shares;
+}
+
+static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+{
+       if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
+               update_cfs_load(cfs_rq, 0);
+               update_cfs_shares(cfs_rq);
+       }
+}
+# else /* CONFIG_SMP */
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+{
+}
+
+static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
+{
+       return tg->shares;
+}
+
+static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+{
+}
+# endif /* CONFIG_SMP */
+static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
+                           unsigned long weight)
+{
+       if (se->on_rq) {
+               /* commit outstanding execution time */
+               if (cfs_rq->curr == se)
+                       update_curr(cfs_rq);
+               account_entity_dequeue(cfs_rq, se);
+       }
+
+       update_load_set(&se->load, weight);
+
+       if (se->on_rq)
+               account_entity_enqueue(cfs_rq, se);
+}
+
+static void update_cfs_shares(struct cfs_rq *cfs_rq)
+{
+       struct task_group *tg;
+       struct sched_entity *se;
+       long shares;
+
+       tg = cfs_rq->tg;
+       se = tg->se[cpu_of(rq_of(cfs_rq))];
+       if (!se || throttled_hierarchy(cfs_rq))
+               return;
+#ifndef CONFIG_SMP
+       if (likely(se->load.weight == tg->shares))
+               return;
+#endif
+       shares = calc_cfs_shares(cfs_rq, tg);
+
+       reweight_entity(cfs_rq_of(se), se, shares);
+}
+#else /* CONFIG_FAIR_GROUP_SCHED */
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+{
+}
+
+static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
+{
+}
+
+static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+{
+}
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+#ifdef CONFIG_SCHEDSTATS
+       struct task_struct *tsk = NULL;
+
+       if (entity_is_task(se))
+               tsk = task_of(se);
+
+       if (se->statistics.sleep_start) {
+               u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
+
+               if ((s64)delta < 0)
+                       delta = 0;
+
+               if (unlikely(delta > se->statistics.sleep_max))
+                       se->statistics.sleep_max = delta;
+
+               se->statistics.sleep_start = 0;
+               se->statistics.sum_sleep_runtime += delta;
+
+               if (tsk) {
+                       account_scheduler_latency(tsk, delta >> 10, 1);
+                       trace_sched_stat_sleep(tsk, delta);
+               }
+       }
+       if (se->statistics.block_start) {
+               u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
+
+               if ((s64)delta < 0)
+                       delta = 0;
+
+               if (unlikely(delta > se->statistics.block_max))
+                       se->statistics.block_max = delta;
+
+               se->statistics.block_start = 0;
+               se->statistics.sum_sleep_runtime += delta;
+
+               if (tsk) {
+                       if (tsk->in_iowait) {
+                               se->statistics.iowait_sum += delta;
+                               se->statistics.iowait_count++;
+                               trace_sched_stat_iowait(tsk, delta);
+                       }
+
+                       /*
+                        * Blocking time is in units of nanosecs, so shift by
+                        * 20 to get a milliseconds-range estimation of the
+                        * amount of time that the task spent sleeping:
+                        */
+                       if (unlikely(prof_on == SLEEP_PROFILING)) {
+                               profile_hits(SLEEP_PROFILING,
+                                               (void *)get_wchan(tsk),
+                                               delta >> 20);
+                       }
+                       account_scheduler_latency(tsk, delta >> 10, 0);
+               }
+       }
+#endif
+}
+
+static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       s64 d = se->vruntime - cfs_rq->min_vruntime;
+
+       if (d < 0)
+               d = -d;
+
+       if (d > 3*sysctl_sched_latency)
+               schedstat_inc(cfs_rq, nr_spread_over);
+#endif
+}
+
+static void
+place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
+{
+       u64 vruntime = cfs_rq->min_vruntime;
+
+       /*
+        * The 'current' period is already promised to the current tasks,
+        * however the extra weight of the new task will slow them down a
+        * little, place the new task so that it fits in the slot that
+        * stays open at the end.
+        */
+       if (initial && sched_feat(START_DEBIT))
+               vruntime += sched_vslice(cfs_rq, se);
+
+       /* sleeps up to a single latency don't count. */
+       if (!initial) {
+               unsigned long thresh = sysctl_sched_latency;
+
+               /*
+                * Halve their sleep time's effect, to allow
+                * for a gentler effect of sleepers:
+                */
+               if (sched_feat(GENTLE_FAIR_SLEEPERS))
+                       thresh >>= 1;
+
+               vruntime -= thresh;
+       }
+
+       /* ensure we never gain time by being placed backwards. */
+       vruntime = max_vruntime(se->vruntime, vruntime);
+
+       se->vruntime = vruntime;
+}
+
+static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
+
+static void
+enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
+{
+       /*
+        * Update the normalized vruntime before updating min_vruntime
+        * through callig update_curr().
+        */
+       if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
+               se->vruntime += cfs_rq->min_vruntime;
+
+       /*
+        * Update run-time statistics of the 'current'.
+        */
+       update_curr(cfs_rq);
+       update_cfs_load(cfs_rq, 0);
+       account_entity_enqueue(cfs_rq, se);
+       update_cfs_shares(cfs_rq);
+
+       if (flags & ENQUEUE_WAKEUP) {
+               place_entity(cfs_rq, se, 0);
+               enqueue_sleeper(cfs_rq, se);
+       }
+
+       update_stats_enqueue(cfs_rq, se);
+       check_spread(cfs_rq, se);
+       if (se != cfs_rq->curr)
+               __enqueue_entity(cfs_rq, se);
+       se->on_rq = 1;
+
+       if (cfs_rq->nr_running == 1) {
+               list_add_leaf_cfs_rq(cfs_rq);
+               check_enqueue_throttle(cfs_rq);
+       }
+}
+
+static void __clear_buddies_last(struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+               if (cfs_rq->last == se)
+                       cfs_rq->last = NULL;
+               else
+                       break;
+       }
+}
+
+static void __clear_buddies_next(struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+               if (cfs_rq->next == se)
+                       cfs_rq->next = NULL;
+               else
+                       break;
+       }
+}
+
+static void __clear_buddies_skip(struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+               if (cfs_rq->skip == se)
+                       cfs_rq->skip = NULL;
+               else
+                       break;
+       }
+}
+
+static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       if (cfs_rq->last == se)
+               __clear_buddies_last(se);
+
+       if (cfs_rq->next == se)
+               __clear_buddies_next(se);
+
+       if (cfs_rq->skip == se)
+               __clear_buddies_skip(se);
+}
+
+static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
+
+static void
+dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
+{
+       /*
+        * Update run-time statistics of the 'current'.
+        */
+       update_curr(cfs_rq);
+
+       update_stats_dequeue(cfs_rq, se);
+       if (flags & DEQUEUE_SLEEP) {
+#ifdef CONFIG_SCHEDSTATS
+               if (entity_is_task(se)) {
+                       struct task_struct *tsk = task_of(se);
+
+                       if (tsk->state & TASK_INTERRUPTIBLE)
+                               se->statistics.sleep_start = rq_of(cfs_rq)->clock;
+                       if (tsk->state & TASK_UNINTERRUPTIBLE)
+                               se->statistics.block_start = rq_of(cfs_rq)->clock;
+               }
+#endif
+       }
+
+       clear_buddies(cfs_rq, se);
+
+       if (se != cfs_rq->curr)
+               __dequeue_entity(cfs_rq, se);
+       se->on_rq = 0;
+       update_cfs_load(cfs_rq, 0);
+       account_entity_dequeue(cfs_rq, se);
+
+       /*
+        * Normalize the entity after updating the min_vruntime because the
+        * update can refer to the ->curr item and we need to reflect this
+        * movement in our normalized position.
+        */
+       if (!(flags & DEQUEUE_SLEEP))
+               se->vruntime -= cfs_rq->min_vruntime;
+
+       /* return excess runtime on last dequeue */
+       return_cfs_rq_runtime(cfs_rq);
+
+       update_min_vruntime(cfs_rq);
+       update_cfs_shares(cfs_rq);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void
+check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
+{
+       unsigned long ideal_runtime, delta_exec;
+       struct sched_entity *se;
+       s64 delta;
+
+       ideal_runtime = sched_slice(cfs_rq, curr);
+       delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
+       if (delta_exec > ideal_runtime) {
+               resched_task(rq_of(cfs_rq)->curr);
+               /*
+                * The current task ran long enough, ensure it doesn't get
+                * re-elected due to buddy favours.
+                */
+               clear_buddies(cfs_rq, curr);
+               return;
+       }
+
+       /*
+        * Ensure that a task that missed wakeup preemption by a
+        * narrow margin doesn't have to wait for a full slice.
+        * This also mitigates buddy induced latencies under load.
+        */
+       if (delta_exec < sysctl_sched_min_granularity)
+               return;
+
+       se = __pick_first_entity(cfs_rq);
+       delta = curr->vruntime - se->vruntime;
+
+       if (delta < 0)
+               return;
+
+       if (delta > ideal_runtime)
+               resched_task(rq_of(cfs_rq)->curr);
+}
+
+static void
+set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+       /* 'current' is not kept within the tree. */
+       if (se->on_rq) {
+               /*
+                * Any task has to be enqueued before it get to execute on
+                * a CPU. So account for the time it spent waiting on the
+                * runqueue.
+                */
+               update_stats_wait_end(cfs_rq, se);
+               __dequeue_entity(cfs_rq, se);
+       }
+
+       update_stats_curr_start(cfs_rq, se);
+       cfs_rq->curr = se;
+#ifdef CONFIG_SCHEDSTATS
+       /*
+        * Track our maximum slice length, if the CPU's load is at
+        * least twice that of our own weight (i.e. dont track it
+        * when there are only lesser-weight tasks around):
+        */
+       if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
+               se->statistics.slice_max = max(se->statistics.slice_max,
+                       se->sum_exec_runtime - se->prev_sum_exec_runtime);
+       }
+#endif
+       se->prev_sum_exec_runtime = se->sum_exec_runtime;
+}
+
+static int
+wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
+
+/*
+ * Pick the next process, keeping these things in mind, in this order:
+ * 1) keep things fair between processes/task groups
+ * 2) pick the "next" process, since someone really wants that to run
+ * 3) pick the "last" process, for cache locality
+ * 4) do not run the "skip" process, if something else is available
+ */
+static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
+{
+       struct sched_entity *se = __pick_first_entity(cfs_rq);
+       struct sched_entity *left = se;
+
+       /*
+        * Avoid running the skip buddy, if running something else can
+        * be done without getting too unfair.
+        */
+       if (cfs_rq->skip == se) {
+               struct sched_entity *second = __pick_next_entity(se);
+               if (second && wakeup_preempt_entity(second, left) < 1)
+                       se = second;
+       }
+
+       /*
+        * Prefer last buddy, try to return the CPU to a preempted task.
+        */
+       if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
+               se = cfs_rq->last;
+
+       /*
+        * Someone really wants this to run. If it's not unfair, run it.
+        */
+       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
+               se = cfs_rq->next;
+
+       clear_buddies(cfs_rq, se);
+
+       return se;
+}
+
+static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
+
+static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
+{
+       /*
+        * If still on the runqueue then deactivate_task()
+        * was not called and update_curr() has to be done:
+        */
+       if (prev->on_rq)
+               update_curr(cfs_rq);
+
+       /* throttle cfs_rqs exceeding runtime */
+       check_cfs_rq_runtime(cfs_rq);
+
+       check_spread(cfs_rq, prev);
+       if (prev->on_rq) {
+               update_stats_wait_start(cfs_rq, prev);
+               /* Put 'current' back into the tree. */
+               __enqueue_entity(cfs_rq, prev);
+       }
+       cfs_rq->curr = NULL;
+}
+
+static void
+entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
+{
+       /*
+        * Update run-time statistics of the 'current'.
+        */
+       update_curr(cfs_rq);
+
+       /*
+        * Update share accounting for long-running entities.
+        */
+       update_entity_shares_tick(cfs_rq);
+
+#ifdef CONFIG_SCHED_HRTICK
+       /*
+        * queued ticks are scheduled to match the slice, so don't bother
+        * validating it and just reschedule.
+        */
+       if (queued) {
+               resched_task(rq_of(cfs_rq)->curr);
+               return;
+       }
+       /*
+        * don't let the period tick interfere with the hrtick preemption
+        */
+       if (!sched_feat(DOUBLE_TICK) &&
+                       hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
+               return;
+#endif
+
+       if (cfs_rq->nr_running > 1)
+               check_preempt_tick(cfs_rq, curr);
+}
+
+
+/**************************************************
+ * CFS bandwidth control machinery
+ */
+
+#ifdef CONFIG_CFS_BANDWIDTH
+
+#ifdef HAVE_JUMP_LABEL
+static struct jump_label_key __cfs_bandwidth_used;
+
+static inline bool cfs_bandwidth_used(void)
+{
+       return static_branch(&__cfs_bandwidth_used);
+}
+
+void account_cfs_bandwidth_used(int enabled, int was_enabled)
+{
+       /* only need to count groups transitioning between enabled/!enabled */
+       if (enabled && !was_enabled)
+               jump_label_inc(&__cfs_bandwidth_used);
+       else if (!enabled && was_enabled)
+               jump_label_dec(&__cfs_bandwidth_used);
+}
+#else /* HAVE_JUMP_LABEL */
+static bool cfs_bandwidth_used(void)
+{
+       return true;
+}
+
+void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
+#endif /* HAVE_JUMP_LABEL */
+
+/*
+ * default period for cfs group bandwidth.
+ * default: 0.1s, units: nanoseconds
+ */
+static inline u64 default_cfs_period(void)
+{
+       return 100000000ULL;
+}
+
+static inline u64 sched_cfs_bandwidth_slice(void)
+{
+       return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
+}
+
+/*
+ * Replenish runtime according to assigned quota and update expiration time.
+ * We use sched_clock_cpu directly instead of rq->clock to avoid adding
+ * additional synchronization around rq->lock.
+ *
+ * requires cfs_b->lock
+ */
+void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
+{
+       u64 now;
+
+       if (cfs_b->quota == RUNTIME_INF)
+               return;
+
+       now = sched_clock_cpu(smp_processor_id());
+       cfs_b->runtime = cfs_b->quota;
+       cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
+}
+
+static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
+{
+       return &tg->cfs_bandwidth;
+}
+
+/* returns 0 on failure to allocate runtime */
+static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+{
+       struct task_group *tg = cfs_rq->tg;
+       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
+       u64 amount = 0, min_amount, expires;
+
+       /* note: this is a positive sum as runtime_remaining <= 0 */
+       min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
+
+       raw_spin_lock(&cfs_b->lock);
+       if (cfs_b->quota == RUNTIME_INF)
+               amount = min_amount;
+       else {
+               /*
+                * If the bandwidth pool has become inactive, then at least one
+                * period must have elapsed since the last consumption.
+                * Refresh the global state and ensure bandwidth timer becomes
+                * active.
+                */
+               if (!cfs_b->timer_active) {
+                       __refill_cfs_bandwidth_runtime(cfs_b);
+                       __start_cfs_bandwidth(cfs_b);
+               }
+
+               if (cfs_b->runtime > 0) {
+                       amount = min(cfs_b->runtime, min_amount);
+                       cfs_b->runtime -= amount;
+                       cfs_b->idle = 0;
+               }
+       }
+       expires = cfs_b->runtime_expires;
+       raw_spin_unlock(&cfs_b->lock);
+
+       cfs_rq->runtime_remaining += amount;
+       /*
+        * we may have advanced our local expiration to account for allowed
+        * spread between our sched_clock and the one on which runtime was
+        * issued.
+        */
+       if ((s64)(expires - cfs_rq->runtime_expires) > 0)
+               cfs_rq->runtime_expires = expires;
+
+       return cfs_rq->runtime_remaining > 0;
+}
+
+/*
+ * Note: This depends on the synchronization provided by sched_clock and the
+ * fact that rq->clock snapshots this value.
+ */
+static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+{
+       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
+       struct rq *rq = rq_of(cfs_rq);
+
+       /* if the deadline is ahead of our clock, nothing to do */
+       if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
+               return;
+
+       if (cfs_rq->runtime_remaining < 0)
+               return;
+
+       /*
+        * If the local deadline has passed we have to consider the
+        * possibility that our sched_clock is 'fast' and the global deadline
+        * has not truly expired.
+        *
+        * Fortunately we can check determine whether this the case by checking
+        * whether the global deadline has advanced.
+        */
+
+       if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
+               /* extend local deadline, drift is bounded above by 2 ticks */
+               cfs_rq->runtime_expires += TICK_NSEC;
+       } else {
+               /* global deadline is ahead, expiration has passed */
+               cfs_rq->runtime_remaining = 0;
+       }
+}
+
+static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
+                                    unsigned long delta_exec)
+{
+       /* dock delta_exec before expiring quota (as it could span periods) */
+       cfs_rq->runtime_remaining -= delta_exec;
+       expire_cfs_rq_runtime(cfs_rq);
+
+       if (likely(cfs_rq->runtime_remaining > 0))
+               return;
+
+       /*
+        * if we're unable to extend our runtime we resched so that the active
+        * hierarchy can be throttled
+        */
+       if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
+               resched_task(rq_of(cfs_rq)->curr);
+}
+
+static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
+                                                  unsigned long delta_exec)
+{
+       if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
+               return;
+
+       __account_cfs_rq_runtime(cfs_rq, delta_exec);
+}
+
+static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
+{
+       return cfs_bandwidth_used() && cfs_rq->throttled;
+}
+
+/* check whether cfs_rq, or any parent, is throttled */
+static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
+{
+       return cfs_bandwidth_used() && cfs_rq->throttle_count;
+}
+
+/*
+ * Ensure that neither of the group entities corresponding to src_cpu or
+ * dest_cpu are members of a throttled hierarchy when performing group
+ * load-balance operations.
+ */
+static inline int throttled_lb_pair(struct task_group *tg,
+                                   int src_cpu, int dest_cpu)
+{
+       struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
+
+       src_cfs_rq = tg->cfs_rq[src_cpu];
+       dest_cfs_rq = tg->cfs_rq[dest_cpu];
+
+       return throttled_hierarchy(src_cfs_rq) ||
+              throttled_hierarchy(dest_cfs_rq);
+}
+
+/* updated child weight may affect parent so we have to do this bottom up */
+static int tg_unthrottle_up(struct task_group *tg, void *data)
+{
+       struct rq *rq = data;
+       struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+
+       cfs_rq->throttle_count--;
+#ifdef CONFIG_SMP
+       if (!cfs_rq->throttle_count) {
+               u64 delta = rq->clock_task - cfs_rq->load_stamp;
+
+               /* leaving throttled state, advance shares averaging windows */
+               cfs_rq->load_stamp += delta;
+               cfs_rq->load_last += delta;
+
+               /* update entity weight now that we are on_rq again */
+               update_cfs_shares(cfs_rq);
+       }
+#endif
+
+       return 0;
+}
+
+static int tg_throttle_down(struct task_group *tg, void *data)
+{
+       struct rq *rq = data;
+       struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+
+       /* group is entering throttled state, record last load */
+       if (!cfs_rq->throttle_count)
+               update_cfs_load(cfs_rq, 0);
+       cfs_rq->throttle_count++;
+
+       return 0;
+}
+
+static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       struct rq *rq = rq_of(cfs_rq);
+       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
+       struct sched_entity *se;
+       long task_delta, dequeue = 1;
+
+       se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
+
+       /* account load preceding throttle */
+       rcu_read_lock();
+       walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
+       rcu_read_unlock();
+
+       task_delta = cfs_rq->h_nr_running;
+       for_each_sched_entity(se) {
+               struct cfs_rq *qcfs_rq = cfs_rq_of(se);
+               /* throttled entity or throttle-on-deactivate */
+               if (!se->on_rq)
+                       break;
+
+               if (dequeue)
+                       dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
+               qcfs_rq->h_nr_running -= task_delta;
+
+               if (qcfs_rq->load.weight)
+                       dequeue = 0;
+       }
+
+       if (!se)
+               rq->nr_running -= task_delta;
+
+       cfs_rq->throttled = 1;
+       cfs_rq->throttled_timestamp = rq->clock;
+       raw_spin_lock(&cfs_b->lock);
+       list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
+       raw_spin_unlock(&cfs_b->lock);
+}
+
+void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       struct rq *rq = rq_of(cfs_rq);
+       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
+       struct sched_entity *se;
+       int enqueue = 1;
+       long task_delta;
+
+       se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
+
+       cfs_rq->throttled = 0;
+       raw_spin_lock(&cfs_b->lock);
+       cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
+       list_del_rcu(&cfs_rq->throttled_list);
+       raw_spin_unlock(&cfs_b->lock);
+       cfs_rq->throttled_timestamp = 0;
+
+       update_rq_clock(rq);
+       /* update hierarchical throttle state */
+       walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
+
+       if (!cfs_rq->load.weight)
+               return;
+
+       task_delta = cfs_rq->h_nr_running;
+       for_each_sched_entity(se) {
+               if (se->on_rq)
+                       enqueue = 0;
+
+               cfs_rq = cfs_rq_of(se);
+               if (enqueue)
+                       enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
+               cfs_rq->h_nr_running += task_delta;
+
+               if (cfs_rq_throttled(cfs_rq))
+                       break;
+       }
+
+       if (!se)
+               rq->nr_running += task_delta;
+
+       /* determine whether we need to wake up potentially idle cpu */
+       if (rq->curr == rq->idle && rq->cfs.nr_running)
+               resched_task(rq->curr);
+}
+
+static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
+               u64 remaining, u64 expires)
+{
+       struct cfs_rq *cfs_rq;
+       u64 runtime = remaining;
+
+       rcu_read_lock();
+       list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
+                               throttled_list) {
+               struct rq *rq = rq_of(cfs_rq);
+
+               raw_spin_lock(&rq->lock);
+               if (!cfs_rq_throttled(cfs_rq))
+                       goto next;
+
+               runtime = -cfs_rq->runtime_remaining + 1;
+               if (runtime > remaining)
+                       runtime = remaining;
+               remaining -= runtime;
+
+               cfs_rq->runtime_remaining += runtime;
+               cfs_rq->runtime_expires = expires;
+
+               /* we check whether we're throttled above */
+               if (cfs_rq->runtime_remaining > 0)
+                       unthrottle_cfs_rq(cfs_rq);
+
+next:
+               raw_spin_unlock(&rq->lock);
+
+               if (!remaining)
+                       break;
+       }
+       rcu_read_unlock();
+
+       return remaining;
+}
+
+/*
+ * Responsible for refilling a task_group's bandwidth and unthrottling its
+ * cfs_rqs as appropriate. If there has been no activity within the last
+ * period the timer is deactivated until scheduling resumes; cfs_b->idle is
+ * used to track this state.
+ */
+static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
+{
+       u64 runtime, runtime_expires;
+       int idle = 1, throttled;
+
+       raw_spin_lock(&cfs_b->lock);
+       /* no need to continue the timer with no bandwidth constraint */
+       if (cfs_b->quota == RUNTIME_INF)
+               goto out_unlock;
+
+       throttled = !list_empty(&cfs_b->throttled_cfs_rq);
+       /* idle depends on !throttled (for the case of a large deficit) */
+       idle = cfs_b->idle && !throttled;
+       cfs_b->nr_periods += overrun;
+
+       /* if we're going inactive then everything else can be deferred */
+       if (idle)
+               goto out_unlock;
+
+       __refill_cfs_bandwidth_runtime(cfs_b);
+
+       if (!throttled) {
+               /* mark as potentially idle for the upcoming period */
+               cfs_b->idle = 1;
+               goto out_unlock;
+       }
+
+       /* account preceding periods in which throttling occurred */
+       cfs_b->nr_throttled += overrun;
+
+       /*
+        * There are throttled entities so we must first use the new bandwidth
+        * to unthrottle them before making it generally available.  This
+        * ensures that all existing debts will be paid before a new cfs_rq is
+        * allowed to run.
+        */
+       runtime = cfs_b->runtime;
+       runtime_expires = cfs_b->runtime_expires;
+       cfs_b->runtime = 0;
+
+       /*
+        * This check is repeated as we are holding onto the new bandwidth
+        * while we unthrottle.  This can potentially race with an unthrottled
+        * group trying to acquire new bandwidth from the global pool.
+        */
+       while (throttled && runtime > 0) {
+               raw_spin_unlock(&cfs_b->lock);
+               /* we can't nest cfs_b->lock while distributing bandwidth */
+               runtime = distribute_cfs_runtime(cfs_b, runtime,
+                                                runtime_expires);
+               raw_spin_lock(&cfs_b->lock);
+
+               throttled = !list_empty(&cfs_b->throttled_cfs_rq);
+       }
+
+       /* return (any) remaining runtime */
+       cfs_b->runtime = runtime;
+       /*
+        * While we are ensured activity in the period following an
+        * unthrottle, this also covers the case in which the new bandwidth is
+        * insufficient to cover the existing bandwidth deficit.  (Forcing the
+        * timer to remain active while there are any throttled entities.)
+        */
+       cfs_b->idle = 0;
+out_unlock:
+       if (idle)
+               cfs_b->timer_active = 0;
+       raw_spin_unlock(&cfs_b->lock);
+
+       return idle;
+}
+
+/* a cfs_rq won't donate quota below this amount */
+static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
+/* minimum remaining period time to redistribute slack quota */
+static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
+/* how long we wait to gather additional slack before distributing */
+static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
+
+/* are we near the end of the current quota period? */
+static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
+{
+       struct hrtimer *refresh_timer = &cfs_b->period_timer;
+       u64 remaining;
+
+       /* if the call-back is running a quota refresh is already occurring */
+       if (hrtimer_callback_running(refresh_timer))
+               return 1;
+
+       /* is a quota refresh about to occur? */
+       remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
+       if (remaining < min_expire)
+               return 1;
+
+       return 0;
+}
+
+static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
+{
+       u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
+
+       /* if there's a quota refresh soon don't bother with slack */
+       if (runtime_refresh_within(cfs_b, min_left))
+               return;
+
+       start_bandwidth_timer(&cfs_b->slack_timer,
+                               ns_to_ktime(cfs_bandwidth_slack_period));
+}
+
+/* we know any runtime found here is valid as update_curr() precedes return */
+static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+{
+       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
+       s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
+
+       if (slack_runtime <= 0)
+               return;
+
+       raw_spin_lock(&cfs_b->lock);
+       if (cfs_b->quota != RUNTIME_INF &&
+           cfs_rq->runtime_expires == cfs_b->runtime_expires) {
+               cfs_b->runtime += slack_runtime;
+
+               /* we are under rq->lock, defer unthrottling using a timer */
+               if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
+                   !list_empty(&cfs_b->throttled_cfs_rq))
+                       start_cfs_slack_bandwidth(cfs_b);
+       }
+       raw_spin_unlock(&cfs_b->lock);
+
+       /* even if it's not valid for return we don't want to try again */
+       cfs_rq->runtime_remaining -= slack_runtime;
+}
+
+static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+{
+       if (!cfs_bandwidth_used())
+               return;
+
+       if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
+               return;
+
+       __return_cfs_rq_runtime(cfs_rq);
+}
+
+/*
+ * This is done with a timer (instead of inline with bandwidth return) since
+ * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
+ */
+static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
+{
+       u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
+       u64 expires;
+
+       /* confirm we're still not at a refresh boundary */
+       if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
+               return;
+
+       raw_spin_lock(&cfs_b->lock);
+       if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
+               runtime = cfs_b->runtime;
+               cfs_b->runtime = 0;
+       }
+       expires = cfs_b->runtime_expires;
+       raw_spin_unlock(&cfs_b->lock);
+
+       if (!runtime)
+               return;
+
+       runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
+
+       raw_spin_lock(&cfs_b->lock);
+       if (expires == cfs_b->runtime_expires)
+               cfs_b->runtime = runtime;
+       raw_spin_unlock(&cfs_b->lock);
+}
+
+/*
+ * When a group wakes up we want to make sure that its quota is not already
+ * expired/exceeded, otherwise it may be allowed to steal additional ticks of
+ * runtime as update_curr() throttling can not not trigger until it's on-rq.
+ */
+static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
+{
+       if (!cfs_bandwidth_used())
+               return;
+
+       /* an active group must be handled by the update_curr()->put() path */
+       if (!cfs_rq->runtime_enabled || cfs_rq->curr)
+               return;
+
+       /* ensure the group is not already throttled */
+       if (cfs_rq_throttled(cfs_rq))
+               return;
+
+       /* update runtime allocation */
+       account_cfs_rq_runtime(cfs_rq, 0);
+       if (cfs_rq->runtime_remaining <= 0)
+               throttle_cfs_rq(cfs_rq);
+}
+
+/* conditionally throttle active cfs_rq's from put_prev_entity() */
+static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+{
+       if (!cfs_bandwidth_used())
+               return;
+
+       if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
+               return;
+
+       /*
+        * it's possible for a throttled entity to be forced into a running
+        * state (e.g. set_curr_task), in this case we're finished.
+        */
+       if (cfs_rq_throttled(cfs_rq))
+               return;
+
+       throttle_cfs_rq(cfs_rq);
+}
+
+static inline u64 default_cfs_period(void);
+static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
+static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
+
+static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
+{
+       struct cfs_bandwidth *cfs_b =
+               container_of(timer, struct cfs_bandwidth, slack_timer);
+       do_sched_cfs_slack_timer(cfs_b);
+
+       return HRTIMER_NORESTART;
+}
+
+static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
+{
+       struct cfs_bandwidth *cfs_b =
+               container_of(timer, struct cfs_bandwidth, period_timer);
+       ktime_t now;
+       int overrun;
+       int idle = 0;
+
+       for (;;) {
+               now = hrtimer_cb_get_time(timer);
+               overrun = hrtimer_forward(timer, now, cfs_b->period);
+
+               if (!overrun)
+                       break;
+
+               idle = do_sched_cfs_period_timer(cfs_b, overrun);
+       }
+
+       return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
+}
+
+void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
+{
+       raw_spin_lock_init(&cfs_b->lock);
+       cfs_b->runtime = 0;
+       cfs_b->quota = RUNTIME_INF;
+       cfs_b->period = ns_to_ktime(default_cfs_period());
+
+       INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
+       hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       cfs_b->period_timer.function = sched_cfs_period_timer;
+       hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       cfs_b->slack_timer.function = sched_cfs_slack_timer;
+}
+
+static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+{
+       cfs_rq->runtime_enabled = 0;
+       INIT_LIST_HEAD(&cfs_rq->throttled_list);
+}
+
+/* requires cfs_b->lock, may release to reprogram timer */
+void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
+{
+       /*
+        * The timer may be active because we're trying to set a new bandwidth
+        * period or because we're racing with the tear-down path
+        * (timer_active==0 becomes visible before the hrtimer call-back
+        * terminates).  In either case we ensure that it's re-programmed
+        */
+       while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
+               raw_spin_unlock(&cfs_b->lock);
+               /* ensure cfs_b->lock is available while we wait */
+               hrtimer_cancel(&cfs_b->period_timer);
+
+               raw_spin_lock(&cfs_b->lock);
+               /* if someone else restarted the timer then we're done */
+               if (cfs_b->timer_active)
+                       return;
+       }
+
+       cfs_b->timer_active = 1;
+       start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
+}
+
+static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
+{
+       hrtimer_cancel(&cfs_b->period_timer);
+       hrtimer_cancel(&cfs_b->slack_timer);
+}
+
+void unthrottle_offline_cfs_rqs(struct rq *rq)
+{
+       struct cfs_rq *cfs_rq;
+
+       for_each_leaf_cfs_rq(rq, cfs_rq) {
+               struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
+
+               if (!cfs_rq->runtime_enabled)
+                       continue;
+
+               /*
+                * clock_task is not advancing so we just need to make sure
+                * there's some valid quota amount
+                */
+               cfs_rq->runtime_remaining = cfs_b->quota;
+               if (cfs_rq_throttled(cfs_rq))
+                       unthrottle_cfs_rq(cfs_rq);
+       }
+}
+
+#else /* CONFIG_CFS_BANDWIDTH */
+static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
+                                    unsigned long delta_exec) {}
+static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
+static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
+static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
+
+static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
+{
+       return 0;
+}
+
+static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
+{
+       return 0;
+}
+
+static inline int throttled_lb_pair(struct task_group *tg,
+                                   int src_cpu, int dest_cpu)
+{
+       return 0;
+}
+
+void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
+#endif
+
+static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
+{
+       return NULL;
+}
+static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
+void unthrottle_offline_cfs_rqs(struct rq *rq) {}
+
+#endif /* CONFIG_CFS_BANDWIDTH */
+
+/**************************************************
+ * CFS operations on tasks:
+ */
+
+#ifdef CONFIG_SCHED_HRTICK
+static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
+{
+       struct sched_entity *se = &p->se;
+       struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+       WARN_ON(task_rq(p) != rq);
+
+       if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
+               u64 slice = sched_slice(cfs_rq, se);
+               u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
+               s64 delta = slice - ran;
+
+               if (delta < 0) {
+                       if (rq->curr == p)
+                               resched_task(p);
+                       return;
+               }
+
+               /*
+                * Don't schedule slices shorter than 10000ns, that just
+                * doesn't make sense. Rely on vruntime for fairness.
+                */
+               if (rq->curr != p)
+                       delta = max_t(s64, 10000LL, delta);
+
+               hrtick_start(rq, delta);
+       }
+}
+
+/*
+ * called from enqueue/dequeue and updates the hrtick when the
+ * current task is from our class and nr_running is low enough
+ * to matter.
+ */
+static void hrtick_update(struct rq *rq)
+{
+       struct task_struct *curr = rq->curr;
+
+       if (curr->sched_class != &fair_sched_class)
+               return;
+
+       if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
+               hrtick_start_fair(rq, curr);
+}
+#else /* !CONFIG_SCHED_HRTICK */
+static inline void
+hrtick_start_fair(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline void hrtick_update(struct rq *rq)
+{
+}
+#endif
+
+/*
+ * The enqueue_task method is called before nr_running is
+ * increased. Here we update the fair scheduling stats and
+ * then put the task into the rbtree:
+ */
+static void
+enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct cfs_rq *cfs_rq;
+       struct sched_entity *se = &p->se;
+
+       for_each_sched_entity(se) {
+               if (se->on_rq)
+                       break;
+               cfs_rq = cfs_rq_of(se);
+               enqueue_entity(cfs_rq, se, flags);
+
+               /*
+                * end evaluation on encountering a throttled cfs_rq
+                *
+                * note: in the case of encountering a throttled cfs_rq we will
+                * post the final h_nr_running increment below.
+               */
+               if (cfs_rq_throttled(cfs_rq))
+                       break;
+               cfs_rq->h_nr_running++;
+
+               flags = ENQUEUE_WAKEUP;
+       }
+
+       for_each_sched_entity(se) {
+               cfs_rq = cfs_rq_of(se);
+               cfs_rq->h_nr_running++;
+
+               if (cfs_rq_throttled(cfs_rq))
+                       break;
+
+               update_cfs_load(cfs_rq, 0);
+               update_cfs_shares(cfs_rq);
+       }
+
+       if (!se)
+               inc_nr_running(rq);
+       hrtick_update(rq);
+}
+
+static void set_next_buddy(struct sched_entity *se);
+
+/*
+ * The dequeue_task method is called before nr_running is
+ * decreased. We remove the task from the rbtree and
+ * update the fair scheduling stats:
+ */
+static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct cfs_rq *cfs_rq;
+       struct sched_entity *se = &p->se;
+       int task_sleep = flags & DEQUEUE_SLEEP;
+
+       for_each_sched_entity(se) {
+               cfs_rq = cfs_rq_of(se);
+               dequeue_entity(cfs_rq, se, flags);
+
+               /*
+                * end evaluation on encountering a throttled cfs_rq
+                *
+                * note: in the case of encountering a throttled cfs_rq we will
+                * post the final h_nr_running decrement below.
+               */
+               if (cfs_rq_throttled(cfs_rq))
+                       break;
+               cfs_rq->h_nr_running--;
+
+               /* Don't dequeue parent if it has other entities besides us */
+               if (cfs_rq->load.weight) {
+                       /*
+                        * Bias pick_next to pick a task from this cfs_rq, as
+                        * p is sleeping when it is within its sched_slice.
+                        */
+                       if (task_sleep && parent_entity(se))
+                               set_next_buddy(parent_entity(se));
+
+                       /* avoid re-evaluating load for this entity */
+                       se = parent_entity(se);
+                       break;
+               }
+               flags |= DEQUEUE_SLEEP;
+       }
+
+       for_each_sched_entity(se) {
+               cfs_rq = cfs_rq_of(se);
+               cfs_rq->h_nr_running--;
+
+               if (cfs_rq_throttled(cfs_rq))
+                       break;
+
+               update_cfs_load(cfs_rq, 0);
+               update_cfs_shares(cfs_rq);
+       }
+
+       if (!se)
+               dec_nr_running(rq);
+       hrtick_update(rq);
+}
+
+#ifdef CONFIG_SMP
+/* Used instead of source_load when we know the type == 0 */
+static unsigned long weighted_cpuload(const int cpu)
+{
+       return cpu_rq(cpu)->load.weight;
+}
+
+/*
+ * Return a low guess at the load of a migration-source cpu weighted
+ * according to the scheduling class and "nice" value.
+ *
+ * We want to under-estimate the load of migration sources, to
+ * balance conservatively.
+ */
+static unsigned long source_load(int cpu, int type)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long total = weighted_cpuload(cpu);
+
+       if (type == 0 || !sched_feat(LB_BIAS))
+               return total;
+
+       return min(rq->cpu_load[type-1], total);
+}
+
+/*
+ * Return a high guess at the load of a migration-target cpu weighted
+ * according to the scheduling class and "nice" value.
+ */
+static unsigned long target_load(int cpu, int type)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long total = weighted_cpuload(cpu);
+
+       if (type == 0 || !sched_feat(LB_BIAS))
+               return total;
+
+       return max(rq->cpu_load[type-1], total);
+}
+
+static unsigned long power_of(int cpu)
+{
+       return cpu_rq(cpu)->cpu_power;
+}
+
+static unsigned long cpu_avg_load_per_task(int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
+
+       if (nr_running)
+               return rq->load.weight / nr_running;
+
+       return 0;
+}
+
+
+static void task_waking_fair(struct task_struct *p)
+{
+       struct sched_entity *se = &p->se;
+       struct cfs_rq *cfs_rq = cfs_rq_of(se);
+       u64 min_vruntime;
+
+#ifndef CONFIG_64BIT
+       u64 min_vruntime_copy;
+
+       do {
+               min_vruntime_copy = cfs_rq->min_vruntime_copy;
+               smp_rmb();
+               min_vruntime = cfs_rq->min_vruntime;
+       } while (min_vruntime != min_vruntime_copy);
+#else
+       min_vruntime = cfs_rq->min_vruntime;
+#endif
+
+       se->vruntime -= min_vruntime;
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * effective_load() calculates the load change as seen from the root_task_group
+ *
+ * Adding load to a group doesn't make a group heavier, but can cause movement
+ * of group shares between cpus. Assuming the shares were perfectly aligned one
+ * can calculate the shift in shares.
+ *
+ * Calculate the effective load difference if @wl is added (subtracted) to @tg
+ * on this @cpu and results in a total addition (subtraction) of @wg to the
+ * total group weight.
+ *
+ * Given a runqueue weight distribution (rw_i) we can compute a shares
+ * distribution (s_i) using:
+ *
+ *   s_i = rw_i / \Sum rw_j                                            (1)
+ *
+ * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
+ * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
+ * shares distribution (s_i):
+ *
+ *   rw_i = {   2,   4,   1,   0 }
+ *   s_i  = { 2/7, 4/7, 1/7,   0 }
+ *
+ * As per wake_affine() we're interested in the load of two CPUs (the CPU the
+ * task used to run on and the CPU the waker is running on), we need to
+ * compute the effect of waking a task on either CPU and, in case of a sync
+ * wakeup, compute the effect of the current task going to sleep.
+ *
+ * So for a change of @wl to the local @cpu with an overall group weight change
+ * of @wl we can compute the new shares distribution (s'_i) using:
+ *
+ *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                           (2)
+ *
+ * Suppose we're interested in CPUs 0 and 1, and want to compute the load
+ * differences in waking a task to CPU 0. The additional task changes the
+ * weight and shares distributions like:
+ *
+ *   rw'_i = {   3,   4,   1,   0 }
+ *   s'_i  = { 3/8, 4/8, 1/8,   0 }
+ *
+ * We can then compute the difference in effective weight by using:
+ *
+ *   dw_i = S * (s'_i - s_i)                                           (3)
+ *
+ * Where 'S' is the group weight as seen by its parent.
+ *
+ * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
+ * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
+ * 4/7) times the weight of the group.
+ */
+static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
+{
+       struct sched_entity *se = tg->se[cpu];
+
+       if (!tg->parent)        /* the trivial, non-cgroup case */
+               return wl;
+
+       for_each_sched_entity(se) {
+               long w, W;
+
+               tg = se->my_q->tg;
+
+               /*
+                * W = @wg + \Sum rw_j
+                */
+               W = wg + calc_tg_weight(tg, se->my_q);
+
+               /*
+                * w = rw_i + @wl
+                */
+               w = se->my_q->load.weight + wl;
+
+               /*
+                * wl = S * s'_i; see (2)
+                */
+               if (W > 0 && w < W)
+                       wl = (w * tg->shares) / W;
+               else
+                       wl = tg->shares;
+
+               /*
+                * Per the above, wl is the new se->load.weight value; since
+                * those are clipped to [MIN_SHARES, ...) do so now. See
+                * calc_cfs_shares().
+                */
+               if (wl < MIN_SHARES)
+                       wl = MIN_SHARES;
+
+               /*
+                * wl = dw_i = S * (s'_i - s_i); see (3)
+                */
+               wl -= se->load.weight;
+
+               /*
+                * Recursively apply this logic to all parent groups to compute
+                * the final effective load change on the root group. Since
+                * only the @tg group gets extra weight, all parent groups can
+                * only redistribute existing shares. @wl is the shift in shares
+                * resulting from this level per the above.
+                */
+               wg = 0;
+       }
+
+       return wl;
+}
+#else
+
+static inline unsigned long effective_load(struct task_group *tg, int cpu,
+               unsigned long wl, unsigned long wg)
+{
+       return wl;
+}
+
+#endif
+
+static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
+{
+       s64 this_load, load;
+       int idx, this_cpu, prev_cpu;
+       unsigned long tl_per_task;
+       struct task_group *tg;
+       unsigned long weight;
+       int balanced;
+
+       idx       = sd->wake_idx;
+       this_cpu  = smp_processor_id();
+       prev_cpu  = task_cpu(p);
+       load      = source_load(prev_cpu, idx);
+       this_load = target_load(this_cpu, idx);
+
+       /*
+        * If sync wakeup then subtract the (maximum possible)
+        * effect of the currently running task from the load
+        * of the current CPU:
+        */
+       if (sync) {
+               tg = task_group(current);
+               weight = current->se.load.weight;
+
+               this_load += effective_load(tg, this_cpu, -weight, -weight);
+               load += effective_load(tg, prev_cpu, 0, -weight);
+       }
+
+       tg = task_group(p);
+       weight = p->se.load.weight;
+
+       /*
+        * In low-load situations, where prev_cpu is idle and this_cpu is idle
+        * due to the sync cause above having dropped this_load to 0, we'll
+        * always have an imbalance, but there's really nothing you can do
+        * about that, so that's good too.
+        *
+        * Otherwise check if either cpus are near enough in load to allow this
+        * task to be woken on this_cpu.
+        */
+       if (this_load > 0) {
+               s64 this_eff_load, prev_eff_load;
+
+               this_eff_load = 100;
+               this_eff_load *= power_of(prev_cpu);
+               this_eff_load *= this_load +
+                       effective_load(tg, this_cpu, weight, weight);
+
+               prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
+               prev_eff_load *= power_of(this_cpu);
+               prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
+
+               balanced = this_eff_load <= prev_eff_load;
+       } else
+               balanced = true;
+
+       /*
+        * If the currently running task will sleep within
+        * a reasonable amount of time then attract this newly
+        * woken task:
+        */
+       if (sync && balanced)
+               return 1;
+
+       schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
+       tl_per_task = cpu_avg_load_per_task(this_cpu);
+
+       if (balanced ||
+           (this_load <= load &&
+            this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
+               /*
+                * This domain has SD_WAKE_AFFINE and
+                * p is cache cold in this domain, and
+                * there is no bad imbalance.
+                */
+               schedstat_inc(sd, ttwu_move_affine);
+               schedstat_inc(p, se.statistics.nr_wakeups_affine);
+
+               return 1;
+       }
+       return 0;
+}
+
+/*
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p,
+                 int this_cpu, int load_idx)
+{
+       struct sched_group *idlest = NULL, *group = sd->groups;
+       unsigned long min_load = ULONG_MAX, this_load = 0;
+       int imbalance = 100 + (sd->imbalance_pct-100)/2;
+
+       do {
+               unsigned long load, avg_load;
+               int local_group;
+               int i;
+
+               /* Skip over this group if it has no CPUs allowed */
+               if (!cpumask_intersects(sched_group_cpus(group),
+                                       tsk_cpus_allowed(p)))
+                       continue;
+
+               local_group = cpumask_test_cpu(this_cpu,
+                                              sched_group_cpus(group));
+
+               /* Tally up the load of all CPUs in the group */
+               avg_load = 0;
+
+               for_each_cpu(i, sched_group_cpus(group)) {
+                       /* Bias balancing toward cpus of our domain */
+                       if (local_group)
+                               load = source_load(i, load_idx);
+                       else
+                               load = target_load(i, load_idx);
+
+                       avg_load += load;
+               }
+
+               /* Adjust by relative CPU power of the group */
+               avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
+
+               if (local_group) {
+                       this_load = avg_load;
+               } else if (avg_load < min_load) {
+                       min_load = avg_load;
+                       idlest = group;
+               }
+       } while (group = group->next, group != sd->groups);
+
+       if (!idlest || 100*this_load < imbalance*min_load)
+               return NULL;
+       return idlest;
+}
+
+/*
+ * find_idlest_cpu - find the idlest cpu among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+       unsigned long load, min_load = ULONG_MAX;
+       int idlest = -1;
+       int i;
+
+       /* Traverse only the allowed CPUs */
+       for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
+               load = weighted_cpuload(i);
+
+               if (load < min_load || (load == min_load && i == this_cpu)) {
+                       min_load = load;
+                       idlest = i;
+               }
+       }
+
+       return idlest;
+}
+
+/*
+ * Try and locate an idle CPU in the sched_domain.
+ */
+static int select_idle_sibling(struct task_struct *p, int target)
+{
+       int cpu = smp_processor_id();
+       int prev_cpu = task_cpu(p);
+       struct sched_domain *sd;
+       struct sched_group *sg;
+       int i, smt = 0;
+
+       /*
+        * If the task is going to be woken-up on this cpu and if it is
+        * already idle, then it is the right target.
+        */
+       if (target == cpu && idle_cpu(cpu))
+               return cpu;
+
+       /*
+        * If the task is going to be woken-up on the cpu where it previously
+        * ran and if it is currently idle, then it the right target.
+        */
+       if (target == prev_cpu && idle_cpu(prev_cpu))
+               return prev_cpu;
+
+       /*
+        * Otherwise, iterate the domains and find an elegible idle cpu.
+        */
+       rcu_read_lock();
+again:
+       for_each_domain(target, sd) {
+               if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
+                       continue;
+
+               if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) {
+                       if (!smt) {
+                               smt = 1;
+                               goto again;
+                       }
+                       break;
+               }
+
+               sg = sd->groups;
+               do {
+                       if (!cpumask_intersects(sched_group_cpus(sg),
+                                               tsk_cpus_allowed(p)))
+                               goto next;
+
+                       for_each_cpu(i, sched_group_cpus(sg)) {
+                               if (!idle_cpu(i))
+                                       goto next;
+                       }
+
+                       target = cpumask_first_and(sched_group_cpus(sg),
+                                       tsk_cpus_allowed(p));
+                       goto done;
+next:
+                       sg = sg->next;
+               } while (sg != sd->groups);
+       }
+done:
+       rcu_read_unlock();
+
+       return target;
+}
+
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int
+select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
+{
+       struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
+       int cpu = smp_processor_id();
+       int prev_cpu = task_cpu(p);
+       int new_cpu = cpu;
+       int want_affine = 0;
+       int want_sd = 1;
+       int sync = wake_flags & WF_SYNC;
+
+       if (sd_flag & SD_BALANCE_WAKE) {
+               if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
+                       want_affine = 1;
+               new_cpu = prev_cpu;
+       }
+
+       rcu_read_lock();
+       for_each_domain(cpu, tmp) {
+               if (!(tmp->flags & SD_LOAD_BALANCE))
+                       continue;
+
+               /*
+                * If power savings logic is enabled for a domain, see if we
+                * are not overloaded, if so, don't balance wider.
+                */
+               if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
+                       unsigned long power = 0;
+                       unsigned long nr_running = 0;
+                       unsigned long capacity;
+                       int i;
+
+                       for_each_cpu(i, sched_domain_span(tmp)) {
+                               power += power_of(i);
+                               nr_running += cpu_rq(i)->cfs.nr_running;
+                       }
+
+                       capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
+
+                       if (tmp->flags & SD_POWERSAVINGS_BALANCE)
+                               nr_running /= 2;
+
+                       if (nr_running < capacity)
+                               want_sd = 0;
+               }
+
+               /*
+                * If both cpu and prev_cpu are part of this domain,
+                * cpu is a valid SD_WAKE_AFFINE target.
+                */
+               if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
+                   cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
+                       affine_sd = tmp;
+                       want_affine = 0;
+               }
+
+               if (!want_sd && !want_affine)
+                       break;
+
+               if (!(tmp->flags & sd_flag))
+                       continue;
+
+               if (want_sd)
+                       sd = tmp;
+       }
+
+       if (affine_sd) {
+               if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
+                       prev_cpu = cpu;
+
+               new_cpu = select_idle_sibling(p, prev_cpu);
+               goto unlock;
+       }
+
+       while (sd) {
+               int load_idx = sd->forkexec_idx;
+               struct sched_group *group;
+               int weight;
+
+               if (!(sd->flags & sd_flag)) {
+                       sd = sd->child;
+                       continue;
+               }
+
+               if (sd_flag & SD_BALANCE_WAKE)
+                       load_idx = sd->wake_idx;
+
+               group = find_idlest_group(sd, p, cpu, load_idx);
+               if (!group) {
+                       sd = sd->child;
+                       continue;
+               }
+
+               new_cpu = find_idlest_cpu(group, p, cpu);
+               if (new_cpu == -1 || new_cpu == cpu) {
+                       /* Now try balancing at a lower domain level of cpu */
+                       sd = sd->child;
+                       continue;
+               }
+
+               /* Now try balancing at a lower domain level of new_cpu */
+               cpu = new_cpu;
+               weight = sd->span_weight;
+               sd = NULL;
+               for_each_domain(cpu, tmp) {
+                       if (weight <= tmp->span_weight)
+                               break;
+                       if (tmp->flags & sd_flag)
+                               sd = tmp;
+               }
+               /* while loop will break here if sd == NULL */
+       }
+unlock:
+       rcu_read_unlock();
+
+       return new_cpu;
+}
+#endif /* CONFIG_SMP */
+
+static unsigned long
+wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
+{
+       unsigned long gran = sysctl_sched_wakeup_granularity;
+
+       /*
+        * Since its curr running now, convert the gran from real-time
+        * to virtual-time in his units.
+        *
+        * By using 'se' instead of 'curr' we penalize light tasks, so
+        * they get preempted easier. That is, if 'se' < 'curr' then
+        * the resulting gran will be larger, therefore penalizing the
+        * lighter, if otoh 'se' > 'curr' then the resulting gran will
+        * be smaller, again penalizing the lighter task.
+        *
+        * This is especially important for buddies when the leftmost
+        * task is higher priority than the buddy.
+        */
+       return calc_delta_fair(gran, se);
+}
+
+/*
+ * Should 'se' preempt 'curr'.
+ *
+ *             |s1
+ *        |s2
+ *   |s3
+ *         g
+ *      |<--->|c
+ *
+ *  w(c, s1) = -1
+ *  w(c, s2) =  0
+ *  w(c, s3) =  1
+ *
+ */
+static int
+wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
+{
+       s64 gran, vdiff = curr->vruntime - se->vruntime;
+
+       if (vdiff <= 0)
+               return -1;
+
+       gran = wakeup_gran(curr, se);
+       if (vdiff > gran)
+               return 1;
+
+       return 0;
+}
+
+static void set_last_buddy(struct sched_entity *se)
+{
+       if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
+               return;
+
+       for_each_sched_entity(se)
+               cfs_rq_of(se)->last = se;
+}
+
+static void set_next_buddy(struct sched_entity *se)
+{
+       if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
+               return;
+
+       for_each_sched_entity(se)
+               cfs_rq_of(se)->next = se;
+}
+
+static void set_skip_buddy(struct sched_entity *se)
+{
+       for_each_sched_entity(se)
+               cfs_rq_of(se)->skip = se;
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+       struct task_struct *curr = rq->curr;
+       struct sched_entity *se = &curr->se, *pse = &p->se;
+       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       int scale = cfs_rq->nr_running >= sched_nr_latency;
+       int next_buddy_marked = 0;
+
+       if (unlikely(se == pse))
+               return;
+
+       /*
+        * This is possible from callers such as pull_task(), in which we
+        * unconditionally check_prempt_curr() after an enqueue (which may have
+        * lead to a throttle).  This both saves work and prevents false
+        * next-buddy nomination below.
+        */
+       if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
+               return;
+
+       if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
+               set_next_buddy(pse);
+               next_buddy_marked = 1;
+       }
+
+       /*
+        * We can come here with TIF_NEED_RESCHED already set from new task
+        * wake up path.
+        *
+        * Note: this also catches the edge-case of curr being in a throttled
+        * group (e.g. via set_curr_task), since update_curr() (in the
+        * enqueue of curr) will have resulted in resched being set.  This
+        * prevents us from potentially nominating it as a false LAST_BUDDY
+        * below.
+        */
+       if (test_tsk_need_resched(curr))
+               return;
+
+       /* Idle tasks are by definition preempted by non-idle tasks. */
+       if (unlikely(curr->policy == SCHED_IDLE) &&
+           likely(p->policy != SCHED_IDLE))
+               goto preempt;
+
+       /*
+        * Batch and idle tasks do not preempt non-idle tasks (their preemption
+        * is driven by the tick):
+        */
+       if (unlikely(p->policy != SCHED_NORMAL))
+               return;
+
+       find_matching_se(&se, &pse);
+       update_curr(cfs_rq_of(se));
+       BUG_ON(!pse);
+       if (wakeup_preempt_entity(se, pse) == 1) {
+               /*
+                * Bias pick_next to pick the sched entity that is
+                * triggering this preemption.
+                */
+               if (!next_buddy_marked)
+                       set_next_buddy(pse);
+               goto preempt;
+       }
+
+       return;
+
+preempt:
+       resched_task(curr);
+       /*
+        * Only set the backward buddy when the current task is still
+        * on the rq. This can happen when a wakeup gets interleaved
+        * with schedule on the ->pre_schedule() or idle_balance()
+        * point, either of which can * drop the rq lock.
+        *
+        * Also, during early boot the idle thread is in the fair class,
+        * for obvious reasons its a bad idea to schedule back to it.
+        */
+       if (unlikely(!se->on_rq || curr == rq->idle))
+               return;
+
+       if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
+               set_last_buddy(se);
+}
+
+static struct task_struct *pick_next_task_fair(struct rq *rq)
+{
+       struct task_struct *p;
+       struct cfs_rq *cfs_rq = &rq->cfs;
+       struct sched_entity *se;
+
+       if (!cfs_rq->nr_running)
+               return NULL;
+
+       do {
+               se = pick_next_entity(cfs_rq);
+               set_next_entity(cfs_rq, se);
+               cfs_rq = group_cfs_rq(se);
+       } while (cfs_rq);
+
+       p = task_of(se);
+       hrtick_start_fair(rq, p);
+
+       return p;
+}
+
+/*
+ * Account for a descheduled task:
+ */
+static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
+{
+       struct sched_entity *se = &prev->se;
+       struct cfs_rq *cfs_rq;
+
+       for_each_sched_entity(se) {
+               cfs_rq = cfs_rq_of(se);
+               put_prev_entity(cfs_rq, se);
+       }
+}
+
+/*
+ * sched_yield() is very simple
+ *
+ * The magic of dealing with the ->skip buddy is in pick_next_entity.
+ */
+static void yield_task_fair(struct rq *rq)
+{
+       struct task_struct *curr = rq->curr;
+       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       struct sched_entity *se = &curr->se;
+
+       /*
+        * Are we the only task in the tree?
+        */
+       if (unlikely(rq->nr_running == 1))
+               return;
+
+       clear_buddies(cfs_rq, se);
+
+       if (curr->policy != SCHED_BATCH) {
+               update_rq_clock(rq);
+               /*
+                * Update run-time statistics of the 'current'.
+                */
+               update_curr(cfs_rq);
+       }
+
+       set_skip_buddy(se);
+}
+
+static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
+{
+       struct sched_entity *se = &p->se;
+
+       /* throttled hierarchies are not runnable */
+       if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
+               return false;
+
+       /* Tell the scheduler that we'd really like pse to run next. */
+       set_next_buddy(se);
+
+       yield_task_fair(rq);
+
+       return true;
+}
+
+#ifdef CONFIG_SMP
+/**************************************************
+ * Fair scheduling class load-balancing methods:
+ */
+
+/*
+ * pull_task - move a task from a remote runqueue to the local runqueue.
+ * Both runqueues must be locked.
+ */
+static void pull_task(struct rq *src_rq, struct task_struct *p,
+                     struct rq *this_rq, int this_cpu)
+{
+       deactivate_task(src_rq, p, 0);
+       set_task_cpu(p, this_cpu);
+       activate_task(this_rq, p, 0);
+       check_preempt_curr(this_rq, p, 0);
+}
+
+/*
+ * Is this task likely cache-hot:
+ */
+static int
+task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
+{
+       s64 delta;
+
+       if (p->sched_class != &fair_sched_class)
+               return 0;
+
+       if (unlikely(p->policy == SCHED_IDLE))
+               return 0;
+
+       /*
+        * Buddy candidates are cache hot:
+        */
+       if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
+                       (&p->se == cfs_rq_of(&p->se)->next ||
+                        &p->se == cfs_rq_of(&p->se)->last))
+               return 1;
+
+       if (sysctl_sched_migration_cost == -1)
+               return 1;
+       if (sysctl_sched_migration_cost == 0)
+               return 0;
+
+       delta = now - p->se.exec_start;
+
+       return delta < (s64)sysctl_sched_migration_cost;
+}
+
+/*
+ * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
+ */
+static
+int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
+                    struct sched_domain *sd, enum cpu_idle_type idle,
+                    int *all_pinned)
+{
+       int tsk_cache_hot = 0;
+       /*
+        * We do not migrate tasks that are:
+        * 1) running (obviously), or
+        * 2) cannot be migrated to this CPU due to cpus_allowed, or
+        * 3) are cache-hot on their current CPU.
+        */
+       if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
+               schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
+               return 0;
+       }
+       *all_pinned = 0;
+
+       if (task_running(rq, p)) {
+               schedstat_inc(p, se.statistics.nr_failed_migrations_running);
+               return 0;
+       }
+
+       /*
+        * Aggressive migration if:
+        * 1) task is cache cold, or
+        * 2) too many balance attempts have failed.
+        */
+
+       tsk_cache_hot = task_hot(p, rq->clock_task, sd);
+       if (!tsk_cache_hot ||
+               sd->nr_balance_failed > sd->cache_nice_tries) {
+#ifdef CONFIG_SCHEDSTATS
+               if (tsk_cache_hot) {
+                       schedstat_inc(sd, lb_hot_gained[idle]);
+                       schedstat_inc(p, se.statistics.nr_forced_migrations);
+               }
+#endif
+               return 1;
+       }
+
+       if (tsk_cache_hot) {
+               schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
+               return 0;
+       }
+       return 1;
+}
+
+/*
+ * move_one_task tries to move exactly one task from busiest to this_rq, as
+ * part of active balancing operations within "domain".
+ * Returns 1 if successful and 0 otherwise.
+ *
+ * Called with both runqueues locked.
+ */
+static int
+move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
+             struct sched_domain *sd, enum cpu_idle_type idle)
+{
+       struct task_struct *p, *n;
+       struct cfs_rq *cfs_rq;
+       int pinned = 0;
+
+       for_each_leaf_cfs_rq(busiest, cfs_rq) {
+               list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
+                       if (throttled_lb_pair(task_group(p),
+                                             busiest->cpu, this_cpu))
+                               break;
+
+                       if (!can_migrate_task(p, busiest, this_cpu,
+                                               sd, idle, &pinned))
+                               continue;
+
+                       pull_task(busiest, p, this_rq, this_cpu);
+                       /*
+                        * Right now, this is only the second place pull_task()
+                        * is called, so we can safely collect pull_task()
+                        * stats here rather than inside pull_task().
+                        */
+                       schedstat_inc(sd, lb_gained[idle]);
+                       return 1;
+               }
+       }
+
+       return 0;
+}
+
+static unsigned long
+balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+             unsigned long max_load_move, struct sched_domain *sd,
+             enum cpu_idle_type idle, int *all_pinned,
+             struct cfs_rq *busiest_cfs_rq)
+{
+       int loops = 0, pulled = 0;
+       long rem_load_move = max_load_move;
+       struct task_struct *p, *n;
+
+       if (max_load_move == 0)
+               goto out;
+
+       list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
+               if (loops++ > sysctl_sched_nr_migrate)
+                       break;
+
+               if ((p->se.load.weight >> 1) > rem_load_move ||
+                   !can_migrate_task(p, busiest, this_cpu, sd, idle,
+                                     all_pinned))
+                       continue;
+
+               pull_task(busiest, p, this_rq, this_cpu);
+               pulled++;
+               rem_load_move -= p->se.load.weight;
+
+#ifdef CONFIG_PREEMPT
+               /*
+                * NEWIDLE balancing is a source of latency, so preemptible
+                * kernels will stop after the first task is pulled to minimize
+                * the critical section.
+                */
+               if (idle == CPU_NEWLY_IDLE)
+                       break;
+#endif
+
+               /*
+                * We only want to steal up to the prescribed amount of
+                * weighted load.
+                */
+               if (rem_load_move <= 0)
+                       break;
+       }
+out:
+       /*
+        * Right now, this is one of only two places pull_task() is called,
+        * so we can safely collect pull_task() stats here rather than
+        * inside pull_task().
+        */
+       schedstat_add(sd, lb_gained[idle], pulled);
+
+       return max_load_move - rem_load_move;
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * update tg->load_weight by folding this cpu's load_avg
+ */
+static int update_shares_cpu(struct task_group *tg, int cpu)
+{
+       struct cfs_rq *cfs_rq;
+       unsigned long flags;
+       struct rq *rq;
+
+       if (!tg->se[cpu])
+               return 0;
+
+       rq = cpu_rq(cpu);
+       cfs_rq = tg->cfs_rq[cpu];
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       update_rq_clock(rq);
+       update_cfs_load(cfs_rq, 1);
+
+       /*
+        * We need to update shares after updating tg->load_weight in
+        * order to adjust the weight of groups with long running tasks.
+        */
+       update_cfs_shares(cfs_rq);
+
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+       return 0;
+}
+
+static void update_shares(int cpu)
+{
+       struct cfs_rq *cfs_rq;
+       struct rq *rq = cpu_rq(cpu);
+
+       rcu_read_lock();
+       /*
+        * Iterates the task_group tree in a bottom up fashion, see
+        * list_add_leaf_cfs_rq() for details.
+        */
+       for_each_leaf_cfs_rq(rq, cfs_rq) {
+               /* throttled entities do not contribute to load */
+               if (throttled_hierarchy(cfs_rq))
+                       continue;
+
+               update_shares_cpu(cfs_rq->tg, cpu);
+       }
+       rcu_read_unlock();
+}
+
+/*
+ * Compute the cpu's hierarchical load factor for each task group.
+ * This needs to be done in a top-down fashion because the load of a child
+ * group is a fraction of its parents load.
+ */
+static int tg_load_down(struct task_group *tg, void *data)
+{
+       unsigned long load;
+       long cpu = (long)data;
+
+       if (!tg->parent) {
+               load = cpu_rq(cpu)->load.weight;
+       } else {
+               load = tg->parent->cfs_rq[cpu]->h_load;
+               load *= tg->se[cpu]->load.weight;
+               load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
+       }
+
+       tg->cfs_rq[cpu]->h_load = load;
+
+       return 0;
+}
+
+static void update_h_load(long cpu)
+{
+       walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
+}
+
+static unsigned long
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                 unsigned long max_load_move,
+                 struct sched_domain *sd, enum cpu_idle_type idle,
+                 int *all_pinned)
+{
+       long rem_load_move = max_load_move;
+       struct cfs_rq *busiest_cfs_rq;
+
+       rcu_read_lock();
+       update_h_load(cpu_of(busiest));
+
+       for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
+               unsigned long busiest_h_load = busiest_cfs_rq->h_load;
+               unsigned long busiest_weight = busiest_cfs_rq->load.weight;
+               u64 rem_load, moved_load;
+
+               /*
+                * empty group or part of a throttled hierarchy
+                */
+               if (!busiest_cfs_rq->task_weight ||
+                   throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
+                       continue;
+
+               rem_load = (u64)rem_load_move * busiest_weight;
+               rem_load = div_u64(rem_load, busiest_h_load + 1);
+
+               moved_load = balance_tasks(this_rq, this_cpu, busiest,
+                               rem_load, sd, idle, all_pinned,
+                               busiest_cfs_rq);
+
+               if (!moved_load)
+                       continue;
+
+               moved_load *= busiest_h_load;
+               moved_load = div_u64(moved_load, busiest_weight + 1);
+
+               rem_load_move -= moved_load;
+               if (rem_load_move < 0)
+                       break;
+       }
+       rcu_read_unlock();
+
+       return max_load_move - rem_load_move;
+}
+#else
+static inline void update_shares(int cpu)
+{
+}
+
+static unsigned long
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                 unsigned long max_load_move,
+                 struct sched_domain *sd, enum cpu_idle_type idle,
+                 int *all_pinned)
+{
+       return balance_tasks(this_rq, this_cpu, busiest,
+                       max_load_move, sd, idle, all_pinned,
+                       &busiest->cfs);
+}
+#endif
+
+/*
+ * move_tasks tries to move up to max_load_move weighted load from busiest to
+ * this_rq, as part of a balancing operation within domain "sd".
+ * Returns 1 if successful and 0 otherwise.
+ *
+ * Called with both runqueues locked.
+ */
+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+                     unsigned long max_load_move,
+                     struct sched_domain *sd, enum cpu_idle_type idle,
+                     int *all_pinned)
+{
+       unsigned long total_load_moved = 0, load_moved;
+
+       do {
+               load_moved = load_balance_fair(this_rq, this_cpu, busiest,
+                               max_load_move - total_load_moved,
+                               sd, idle, all_pinned);
+
+               total_load_moved += load_moved;
+
+#ifdef CONFIG_PREEMPT
+               /*
+                * NEWIDLE balancing is a source of latency, so preemptible
+                * kernels will stop after the first task is pulled to minimize
+                * the critical section.
+                */
+               if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
+                       break;
+
+               if (raw_spin_is_contended(&this_rq->lock) ||
+                               raw_spin_is_contended(&busiest->lock))
+                       break;
+#endif
+       } while (load_moved && max_load_move > total_load_moved);
+
+       return total_load_moved > 0;
+}
+
+/********** Helpers for find_busiest_group ************************/
+/*
+ * sd_lb_stats - Structure to store the statistics of a sched_domain
+ *             during load balancing.
+ */
+struct sd_lb_stats {
+       struct sched_group *busiest; /* Busiest group in this sd */
+       struct sched_group *this;  /* Local group in this sd */
+       unsigned long total_load;  /* Total load of all groups in sd */
+       unsigned long total_pwr;   /*   Total power of all groups in sd */
+       unsigned long avg_load;    /* Average load across all groups in sd */
+
+       /** Statistics of this group */
+       unsigned long this_load;
+       unsigned long this_load_per_task;
+       unsigned long this_nr_running;
+       unsigned long this_has_capacity;
+       unsigned int  this_idle_cpus;
+
+       /* Statistics of the busiest group */
+       unsigned int  busiest_idle_cpus;
+       unsigned long max_load;
+       unsigned long busiest_load_per_task;
+       unsigned long busiest_nr_running;
+       unsigned long busiest_group_capacity;
+       unsigned long busiest_has_capacity;
+       unsigned int  busiest_group_weight;
+
+       int group_imb; /* Is there imbalance in this sd */
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+       int power_savings_balance; /* Is powersave balance needed for this sd */
+       struct sched_group *group_min; /* Least loaded group in sd */
+       struct sched_group *group_leader; /* Group which relieves group_min */
+       unsigned long min_load_per_task; /* load_per_task in group_min */
+       unsigned long leader_nr_running; /* Nr running of group_leader */
+       unsigned long min_nr_running; /* Nr running of group_min */
+#endif
+};
+
+/*
+ * sg_lb_stats - stats of a sched_group required for load_balancing
+ */
+struct sg_lb_stats {
+       unsigned long avg_load; /*Avg load across the CPUs of the group */
+       unsigned long group_load; /* Total load over the CPUs of the group */
+       unsigned long sum_nr_running; /* Nr tasks running in the group */
+       unsigned long sum_weighted_load; /* Weighted load of group's tasks */
+       unsigned long group_capacity;
+       unsigned long idle_cpus;
+       unsigned long group_weight;
+       int group_imb; /* Is there an imbalance in the group ? */
+       int group_has_capacity; /* Is there extra capacity in the group? */
+};
+
+/**
+ * get_sd_load_idx - Obtain the load index for a given sched domain.
+ * @sd: The sched_domain whose load_idx is to be obtained.
+ * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
+ */
+static inline int get_sd_load_idx(struct sched_domain *sd,
+                                       enum cpu_idle_type idle)
+{
+       int load_idx;
+
+       switch (idle) {
+       case CPU_NOT_IDLE:
+               load_idx = sd->busy_idx;
+               break;
+
+       case CPU_NEWLY_IDLE:
+               load_idx = sd->newidle_idx;
+               break;
+       default:
+               load_idx = sd->idle_idx;
+               break;
+       }
+
+       return load_idx;
+}
+
+
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+/**
+ * init_sd_power_savings_stats - Initialize power savings statistics for
+ * the given sched_domain, during load balancing.
+ *
+ * @sd: Sched domain whose power-savings statistics are to be initialized.
+ * @sds: Variable containing the statistics for sd.
+ * @idle: Idle status of the CPU at which we're performing load-balancing.
+ */
+static inline void init_sd_power_savings_stats(struct sched_domain *sd,
+       struct sd_lb_stats *sds, enum cpu_idle_type idle)
+{
+       /*
+        * Busy processors will not participate in power savings
+        * balance.
+        */
+       if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
+               sds->power_savings_balance = 0;
+       else {
+               sds->power_savings_balance = 1;
+               sds->min_nr_running = ULONG_MAX;
+               sds->leader_nr_running = 0;
+       }
+}
+
+/**
+ * update_sd_power_savings_stats - Update the power saving stats for a
+ * sched_domain while performing load balancing.
+ *
+ * @group: sched_group belonging to the sched_domain under consideration.
+ * @sds: Variable containing the statistics of the sched_domain
+ * @local_group: Does group contain the CPU for which we're performing
+ *             load balancing ?
+ * @sgs: Variable containing the statistics of the group.
+ */
+static inline void update_sd_power_savings_stats(struct sched_group *group,
+       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
+{
+
+       if (!sds->power_savings_balance)
+               return;
+
+       /*
+        * If the local group is idle or completely loaded
+        * no need to do power savings balance at this domain
+        */
+       if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
+                               !sds->this_nr_running))
+               sds->power_savings_balance = 0;
+
+       /*
+        * If a group is already running at full capacity or idle,
+        * don't include that group in power savings calculations
+        */
+       if (!sds->power_savings_balance ||
+               sgs->sum_nr_running >= sgs->group_capacity ||
+               !sgs->sum_nr_running)
+               return;
+
+       /*
+        * Calculate the group which has the least non-idle load.
+        * This is the group from where we need to pick up the load
+        * for saving power
+        */
+       if ((sgs->sum_nr_running < sds->min_nr_running) ||
+           (sgs->sum_nr_running == sds->min_nr_running &&
+            group_first_cpu(group) > group_first_cpu(sds->group_min))) {
+               sds->group_min = group;
+               sds->min_nr_running = sgs->sum_nr_running;
+               sds->min_load_per_task = sgs->sum_weighted_load /
+                                               sgs->sum_nr_running;
+       }
+
+       /*
+        * Calculate the group which is almost near its
+        * capacity but still has some space to pick up some load
+        * from other group and save more power
+        */
+       if (sgs->sum_nr_running + 1 > sgs->group_capacity)
+               return;
+
+       if (sgs->sum_nr_running > sds->leader_nr_running ||
+           (sgs->sum_nr_running == sds->leader_nr_running &&
+            group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
+               sds->group_leader = group;
+               sds->leader_nr_running = sgs->sum_nr_running;
+       }
+}
+
+/**
+ * check_power_save_busiest_group - see if there is potential for some power-savings balance
+ * @sds: Variable containing the statistics of the sched_domain
+ *     under consideration.
+ * @this_cpu: Cpu at which we're currently performing load-balancing.
+ * @imbalance: Variable to store the imbalance.
+ *
+ * Description:
+ * Check if we have potential to perform some power-savings balance.
+ * If yes, set the busiest group to be the least loaded group in the
+ * sched_domain, so that it's CPUs can be put to idle.
+ *
+ * Returns 1 if there is potential to perform power-savings balance.
+ * Else returns 0.
+ */
+static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
+                                       int this_cpu, unsigned long *imbalance)
+{
+       if (!sds->power_savings_balance)
+               return 0;
+
+       if (sds->this != sds->group_leader ||
+                       sds->group_leader == sds->group_min)
+               return 0;
+
+       *imbalance = sds->min_load_per_task;
+       sds->busiest = sds->group_min;
+
+       return 1;
+
+}
+#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
+static inline void init_sd_power_savings_stats(struct sched_domain *sd,
+       struct sd_lb_stats *sds, enum cpu_idle_type idle)
+{
+       return;
+}
+
+static inline void update_sd_power_savings_stats(struct sched_group *group,
+       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
+{
+       return;
+}
+
+static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
+                                       int this_cpu, unsigned long *imbalance)
+{
+       return 0;
+}
+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
+
+
+unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
+{
+       return SCHED_POWER_SCALE;
+}
+
+unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
+{
+       return default_scale_freq_power(sd, cpu);
+}
+
+unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
+{
+       unsigned long weight = sd->span_weight;
+       unsigned long smt_gain = sd->smt_gain;
+
+       smt_gain /= weight;
+
+       return smt_gain;
+}
+
+unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
+{
+       return default_scale_smt_power(sd, cpu);
+}
+
+unsigned long scale_rt_power(int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       u64 total, available;
+
+       total = sched_avg_period() + (rq->clock - rq->age_stamp);
+
+       if (unlikely(total < rq->rt_avg)) {
+               /* Ensures that power won't end up being negative */
+               available = 0;
+       } else {
+               available = total - rq->rt_avg;
+       }
+
+       if (unlikely((s64)total < SCHED_POWER_SCALE))
+               total = SCHED_POWER_SCALE;
+
+       total >>= SCHED_POWER_SHIFT;
+
+       return div_u64(available, total);
+}
+
+static void update_cpu_power(struct sched_domain *sd, int cpu)
+{
+       unsigned long weight = sd->span_weight;
+       unsigned long power = SCHED_POWER_SCALE;
+       struct sched_group *sdg = sd->groups;
+
+       if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
+               if (sched_feat(ARCH_POWER))
+                       power *= arch_scale_smt_power(sd, cpu);
+               else
+                       power *= default_scale_smt_power(sd, cpu);
+
+               power >>= SCHED_POWER_SHIFT;
+       }
+
+       sdg->sgp->power_orig = power;
+
+       if (sched_feat(ARCH_POWER))
+               power *= arch_scale_freq_power(sd, cpu);
+       else
+               power *= default_scale_freq_power(sd, cpu);
+
+       power >>= SCHED_POWER_SHIFT;
+
+       power *= scale_rt_power(cpu);
+       power >>= SCHED_POWER_SHIFT;
+
+       if (!power)
+               power = 1;
+
+       cpu_rq(cpu)->cpu_power = power;
+       sdg->sgp->power = power;
+}
+
+void update_group_power(struct sched_domain *sd, int cpu)
+{
+       struct sched_domain *child = sd->child;
+       struct sched_group *group, *sdg = sd->groups;
+       unsigned long power;
+
+       if (!child) {
+               update_cpu_power(sd, cpu);
+               return;
+       }
+
+       power = 0;
+
+       group = child->groups;
+       do {
+               power += group->sgp->power;
+               group = group->next;
+       } while (group != child->groups);
+
+       sdg->sgp->power = power;
+}
+
+/*
+ * Try and fix up capacity for tiny siblings, this is needed when
+ * things like SD_ASYM_PACKING need f_b_g to select another sibling
+ * which on its own isn't powerful enough.
+ *
+ * See update_sd_pick_busiest() and check_asym_packing().
+ */
+static inline int
+fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
+{
+       /*
+        * Only siblings can have significantly less than SCHED_POWER_SCALE
+        */
+       if (!(sd->flags & SD_SHARE_CPUPOWER))
+               return 0;
+
+       /*
+        * If ~90% of the cpu_power is still there, we're good.
+        */
+       if (group->sgp->power * 32 > group->sgp->power_orig * 29)
+               return 1;
+
+       return 0;
+}
+
+/**
+ * update_sg_lb_stats - Update sched_group's statistics for load balancing.
+ * @sd: The sched_domain whose statistics are to be updated.
+ * @group: sched_group whose statistics are to be updated.
+ * @this_cpu: Cpu for which load balance is currently performed.
+ * @idle: Idle status of this_cpu
+ * @load_idx: Load index of sched_domain of this_cpu for load calc.
+ * @local_group: Does group contain this_cpu.
+ * @cpus: Set of cpus considered for load balancing.
+ * @balance: Should we balance.
+ * @sgs: variable to hold the statistics for this group.
+ */
+static inline void update_sg_lb_stats(struct sched_domain *sd,
+                       struct sched_group *group, int this_cpu,
+                       enum cpu_idle_type idle, int load_idx,
+                       int local_group, const struct cpumask *cpus,
+                       int *balance, struct sg_lb_stats *sgs)
+{
+       unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
+       int i;
+       unsigned int balance_cpu = -1, first_idle_cpu = 0;
+       unsigned long avg_load_per_task = 0;
+
+       if (local_group)
+               balance_cpu = group_first_cpu(group);
+
+       /* Tally up the load of all CPUs in the group */
+       max_cpu_load = 0;
+       min_cpu_load = ~0UL;
+       max_nr_running = 0;
+
+       for_each_cpu_and(i, sched_group_cpus(group), cpus) {
+               struct rq *rq = cpu_rq(i);
+
+               /* Bias balancing toward cpus of our domain */
+               if (local_group) {
+                       if (idle_cpu(i) && !first_idle_cpu) {
+                               first_idle_cpu = 1;
+                               balance_cpu = i;
+                       }
+
+                       load = target_load(i, load_idx);
+               } else {
+                       load = source_load(i, load_idx);
+                       if (load > max_cpu_load) {
+                               max_cpu_load = load;
+                               max_nr_running = rq->nr_running;
+                       }
+                       if (min_cpu_load > load)
+                               min_cpu_load = load;
+               }
+
+               sgs->group_load += load;
+               sgs->sum_nr_running += rq->nr_running;
+               sgs->sum_weighted_load += weighted_cpuload(i);
+               if (idle_cpu(i))
+                       sgs->idle_cpus++;
+       }
+
+       /*
+        * First idle cpu or the first cpu(busiest) in this sched group
+        * is eligible for doing load balancing at this and above
+        * domains. In the newly idle case, we will allow all the cpu's
+        * to do the newly idle load balance.
+        */
+       if (idle != CPU_NEWLY_IDLE && local_group) {
+               if (balance_cpu != this_cpu) {
+                       *balance = 0;
+                       return;
+               }
+               update_group_power(sd, this_cpu);
+       }
+
+       /* Adjust by relative CPU power of the group */
+       sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
+
+       /*
+        * Consider the group unbalanced when the imbalance is larger
+        * than the average weight of a task.
+        *
+        * APZ: with cgroup the avg task weight can vary wildly and
+        *      might not be a suitable number - should we keep a
+        *      normalized nr_running number somewhere that negates
+        *      the hierarchy?
+        */
+       if (sgs->sum_nr_running)
+               avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
+
+       if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
+               sgs->group_imb = 1;
+
+       sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
+                                               SCHED_POWER_SCALE);
+       if (!sgs->group_capacity)
+               sgs->group_capacity = fix_small_capacity(sd, group);
+       sgs->group_weight = group->group_weight;
+
+       if (sgs->group_capacity > sgs->sum_nr_running)
+               sgs->group_has_capacity = 1;
+}
+
+/**
+ * update_sd_pick_busiest - return 1 on busiest group
+ * @sd: sched_domain whose statistics are to be checked
+ * @sds: sched_domain statistics
+ * @sg: sched_group candidate to be checked for being the busiest
+ * @sgs: sched_group statistics
+ * @this_cpu: the current cpu
+ *
+ * Determine if @sg is a busier group than the previously selected
+ * busiest group.
+ */
+static bool update_sd_pick_busiest(struct sched_domain *sd,
+                                  struct sd_lb_stats *sds,
+                                  struct sched_group *sg,
+                                  struct sg_lb_stats *sgs,
+                                  int this_cpu)
+{
+       if (sgs->avg_load <= sds->max_load)
+               return false;
+
+       if (sgs->sum_nr_running > sgs->group_capacity)
+               return true;
+
+       if (sgs->group_imb)
+               return true;
+
+       /*
+        * ASYM_PACKING needs to move all the work to the lowest
+        * numbered CPUs in the group, therefore mark all groups
+        * higher than ourself as busy.
+        */
+       if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
+           this_cpu < group_first_cpu(sg)) {
+               if (!sds->busiest)
+                       return true;
+
+               if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
+                       return true;
+       }
+
+       return false;
+}
+
+/**
+ * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
+ * @sd: sched_domain whose statistics are to be updated.
+ * @this_cpu: Cpu for which load balance is currently performed.
+ * @idle: Idle status of this_cpu
+ * @cpus: Set of cpus considered for load balancing.
+ * @balance: Should we balance.
+ * @sds: variable to hold the statistics for this sched_domain.
+ */
+static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
+                       enum cpu_idle_type idle, const struct cpumask *cpus,
+                       int *balance, struct sd_lb_stats *sds)
+{
+       struct sched_domain *child = sd->child;
+       struct sched_group *sg = sd->groups;
+       struct sg_lb_stats sgs;
+       int load_idx, prefer_sibling = 0;
+
+       if (child && child->flags & SD_PREFER_SIBLING)
+               prefer_sibling = 1;
+
+       init_sd_power_savings_stats(sd, sds, idle);
+       load_idx = get_sd_load_idx(sd, idle);
+
+       do {
+               int local_group;
+
+               local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
+               memset(&sgs, 0, sizeof(sgs));
+               update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
+                               local_group, cpus, balance, &sgs);
+
+               if (local_group && !(*balance))
+                       return;
+
+               sds->total_load += sgs.group_load;
+               sds->total_pwr += sg->sgp->power;
+
+               /*
+                * In case the child domain prefers tasks go to siblings
+                * first, lower the sg capacity to one so that we'll try
+                * and move all the excess tasks away. We lower the capacity
+                * of a group only if the local group has the capacity to fit
+                * these excess tasks, i.e. nr_running < group_capacity. The
+                * extra check prevents the case where you always pull from the
+                * heaviest group when it is already under-utilized (possible
+                * with a large weight task outweighs the tasks on the system).
+                */
+               if (prefer_sibling && !local_group && sds->this_has_capacity)
+                       sgs.group_capacity = min(sgs.group_capacity, 1UL);
+
+               if (local_group) {
+                       sds->this_load = sgs.avg_load;
+                       sds->this = sg;
+                       sds->this_nr_running = sgs.sum_nr_running;
+                       sds->this_load_per_task = sgs.sum_weighted_load;
+                       sds->this_has_capacity = sgs.group_has_capacity;
+                       sds->this_idle_cpus = sgs.idle_cpus;
+               } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
+                       sds->max_load = sgs.avg_load;
+                       sds->busiest = sg;
+                       sds->busiest_nr_running = sgs.sum_nr_running;
+                       sds->busiest_idle_cpus = sgs.idle_cpus;
+                       sds->busiest_group_capacity = sgs.group_capacity;
+                       sds->busiest_load_per_task = sgs.sum_weighted_load;
+                       sds->busiest_has_capacity = sgs.group_has_capacity;
+                       sds->busiest_group_weight = sgs.group_weight;
+                       sds->group_imb = sgs.group_imb;
+               }
+
+               update_sd_power_savings_stats(sg, sds, local_group, &sgs);
+               sg = sg->next;
+       } while (sg != sd->groups);
+}
+
+/**
+ * check_asym_packing - Check to see if the group is packed into the
+ *                     sched doman.
+ *
+ * This is primarily intended to used at the sibling level.  Some
+ * cores like POWER7 prefer to use lower numbered SMT threads.  In the
+ * case of POWER7, it can move to lower SMT modes only when higher
+ * threads are idle.  When in lower SMT modes, the threads will
+ * perform better since they share less core resources.  Hence when we
+ * have idle threads, we want them to be the higher ones.
+ *
+ * This packing function is run on idle threads.  It checks to see if
+ * the busiest CPU in this domain (core in the P7 case) has a higher
+ * CPU number than the packing function is being run on.  Here we are
+ * assuming lower CPU number will be equivalent to lower a SMT thread
+ * number.
+ *
+ * Returns 1 when packing is required and a task should be moved to
+ * this CPU.  The amount of the imbalance is returned in *imbalance.
+ *
+ * @sd: The sched_domain whose packing is to be checked.
+ * @sds: Statistics of the sched_domain which is to be packed
+ * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
+ * @imbalance: returns amount of imbalanced due to packing.
+ */
+static int check_asym_packing(struct sched_domain *sd,
+                             struct sd_lb_stats *sds,
+                             int this_cpu, unsigned long *imbalance)
+{
+       int busiest_cpu;
+
+       if (!(sd->flags & SD_ASYM_PACKING))
+               return 0;
+
+       if (!sds->busiest)
+               return 0;
+
+       busiest_cpu = group_first_cpu(sds->busiest);
+       if (this_cpu > busiest_cpu)
+               return 0;
+
+       *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
+                                      SCHED_POWER_SCALE);
+       return 1;
+}
+
+/**
+ * fix_small_imbalance - Calculate the minor imbalance that exists
+ *                     amongst the groups of a sched_domain, during
+ *                     load balancing.
+ * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
+ * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
+ * @imbalance: Variable to store the imbalance.
+ */
+static inline void fix_small_imbalance(struct sd_lb_stats *sds,
+                               int this_cpu, unsigned long *imbalance)
+{
+       unsigned long tmp, pwr_now = 0, pwr_move = 0;
+       unsigned int imbn = 2;
+       unsigned long scaled_busy_load_per_task;
+
+       if (sds->this_nr_running) {
+               sds->this_load_per_task /= sds->this_nr_running;
+               if (sds->busiest_load_per_task >
+                               sds->this_load_per_task)
+                       imbn = 1;
+       } else
+               sds->this_load_per_task =
+                       cpu_avg_load_per_task(this_cpu);
+
+       scaled_busy_load_per_task = sds->busiest_load_per_task
+                                        * SCHED_POWER_SCALE;
+       scaled_busy_load_per_task /= sds->busiest->sgp->power;
+
+       if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
+                       (scaled_busy_load_per_task * imbn)) {
+               *imbalance = sds->busiest_load_per_task;
+               return;
+       }
+
+       /*
+        * OK, we don't have enough imbalance to justify moving tasks,
+        * however we may be able to increase total CPU power used by
+        * moving them.
+        */
+
+       pwr_now += sds->busiest->sgp->power *
+                       min(sds->busiest_load_per_task, sds->max_load);
+       pwr_now += sds->this->sgp->power *
+                       min(sds->this_load_per_task, sds->this_load);
+       pwr_now /= SCHED_POWER_SCALE;
+
+       /* Amount of load we'd subtract */
+       tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
+               sds->busiest->sgp->power;
+       if (sds->max_load > tmp)
+               pwr_move += sds->busiest->sgp->power *
+                       min(sds->busiest_load_per_task, sds->max_load - tmp);
+
+       /* Amount of load we'd add */
+       if (sds->max_load * sds->busiest->sgp->power <
+               sds->busiest_load_per_task * SCHED_POWER_SCALE)
+               tmp = (sds->max_load * sds->busiest->sgp->power) /
+                       sds->this->sgp->power;
+       else
+               tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
+                       sds->this->sgp->power;
+       pwr_move += sds->this->sgp->power *
+                       min(sds->this_load_per_task, sds->this_load + tmp);
+       pwr_move /= SCHED_POWER_SCALE;
+
+       /* Move if we gain throughput */
+       if (pwr_move > pwr_now)
+               *imbalance = sds->busiest_load_per_task;
+}
+
+/**
+ * calculate_imbalance - Calculate the amount of imbalance present within the
+ *                      groups of a given sched_domain during load balance.
+ * @sds: statistics of the sched_domain whose imbalance is to be calculated.
+ * @this_cpu: Cpu for which currently load balance is being performed.
+ * @imbalance: The variable to store the imbalance.
+ */
+static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
+               unsigned long *imbalance)
+{
+       unsigned long max_pull, load_above_capacity = ~0UL;
+
+       sds->busiest_load_per_task /= sds->busiest_nr_running;
+       if (sds->group_imb) {
+               sds->busiest_load_per_task =
+                       min(sds->busiest_load_per_task, sds->avg_load);
+       }
+
+       /*
+        * In the presence of smp nice balancing, certain scenarios can have
+        * max load less than avg load(as we skip the groups at or below
+        * its cpu_power, while calculating max_load..)
+        */
+       if (sds->max_load < sds->avg_load) {
+               *imbalance = 0;
+               return fix_small_imbalance(sds, this_cpu, imbalance);
+       }
+
+       if (!sds->group_imb) {
+               /*
+                * Don't want to pull so many tasks that a group would go idle.
+                */
+               load_above_capacity = (sds->busiest_nr_running -
+                                               sds->busiest_group_capacity);
+
+               load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
+
+               load_above_capacity /= sds->busiest->sgp->power;
+       }
+
+       /*
+        * We're trying to get all the cpus to the average_load, so we don't
+        * want to push ourselves above the average load, nor do we wish to
+        * reduce the max loaded cpu below the average load. At the same time,
+        * we also don't want to reduce the group load below the group capacity
+        * (so that we can implement power-savings policies etc). Thus we look
+        * for the minimum possible imbalance.
+        * Be careful of negative numbers as they'll appear as very large values
+        * with unsigned longs.
+        */
+       max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
+
+       /* How much load to actually move to equalise the imbalance */
+       *imbalance = min(max_pull * sds->busiest->sgp->power,
+               (sds->avg_load - sds->this_load) * sds->this->sgp->power)
+                       / SCHED_POWER_SCALE;
+
+       /*
+        * if *imbalance is less than the average load per runnable task
+        * there is no guarantee that any tasks will be moved so we'll have
+        * a think about bumping its value to force at least one task to be
+        * moved
+        */
+       if (*imbalance < sds->busiest_load_per_task)
+               return fix_small_imbalance(sds, this_cpu, imbalance);
+
+}
+
+/******* find_busiest_group() helpers end here *********************/
+
+/**
+ * find_busiest_group - Returns the busiest group within the sched_domain
+ * if there is an imbalance. If there isn't an imbalance, and
+ * the user has opted for power-savings, it returns a group whose
+ * CPUs can be put to idle by rebalancing those tasks elsewhere, if
+ * such a group exists.
+ *
+ * Also calculates the amount of weighted load which should be moved
+ * to restore balance.
+ *
+ * @sd: The sched_domain whose busiest group is to be returned.
+ * @this_cpu: The cpu for which load balancing is currently being performed.
+ * @imbalance: Variable which stores amount of weighted load which should
+ *             be moved to restore balance/put a group to idle.
+ * @idle: The idle status of this_cpu.
+ * @cpus: The set of CPUs under consideration for load-balancing.
+ * @balance: Pointer to a variable indicating if this_cpu
+ *     is the appropriate cpu to perform load balancing at this_level.
+ *
+ * Returns:    - the busiest group if imbalance exists.
+ *             - If no imbalance and user has opted for power-savings balance,
+ *                return the least loaded group whose CPUs can be
+ *                put to idle by rebalancing its tasks onto our group.
+ */
+static struct sched_group *
+find_busiest_group(struct sched_domain *sd, int this_cpu,
+                  unsigned long *imbalance, enum cpu_idle_type idle,
+                  const struct cpumask *cpus, int *balance)
+{
+       struct sd_lb_stats sds;
+
+       memset(&sds, 0, sizeof(sds));
+
+       /*
+        * Compute the various statistics relavent for load balancing at
+        * this level.
+        */
+       update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
+
+       /*
+        * this_cpu is not the appropriate cpu to perform load balancing at
+        * this level.
+        */
+       if (!(*balance))
+               goto ret;
+
+       if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
+           check_asym_packing(sd, &sds, this_cpu, imbalance))
+               return sds.busiest;
+
+       /* There is no busy sibling group to pull tasks from */
+       if (!sds.busiest || sds.busiest_nr_running == 0)
+               goto out_balanced;
+
+       sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
+
+       /*
+        * If the busiest group is imbalanced the below checks don't
+        * work because they assumes all things are equal, which typically
+        * isn't true due to cpus_allowed constraints and the like.
+        */
+       if (sds.group_imb)
+               goto force_balance;
+
+       /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
+       if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
+                       !sds.busiest_has_capacity)
+               goto force_balance;
+
+       /*
+        * If the local group is more busy than the selected busiest group
+        * don't try and pull any tasks.
+        */
+       if (sds.this_load >= sds.max_load)
+               goto out_balanced;
+
+       /*
+        * Don't pull any tasks if this group is already above the domain
+        * average load.
+        */
+       if (sds.this_load >= sds.avg_load)
+               goto out_balanced;
+
+       if (idle == CPU_IDLE) {
+               /*
+                * This cpu is idle. If the busiest group load doesn't
+                * have more tasks than the number of available cpu's and
+                * there is no imbalance between this and busiest group
+                * wrt to idle cpu's, it is balanced.
+                */
+               if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
+                   sds.busiest_nr_running <= sds.busiest_group_weight)
+                       goto out_balanced;
+       } else {
+               /*
+                * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
+                * imbalance_pct to be conservative.
+                */
+               if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
+                       goto out_balanced;
+       }
+
+force_balance:
+       /* Looks like there is an imbalance. Compute it */
+       calculate_imbalance(&sds, this_cpu, imbalance);
+       return sds.busiest;
+
+out_balanced:
+       /*
+        * There is no obvious imbalance. But check if we can do some balancing
+        * to save power.
+        */
+       if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
+               return sds.busiest;
+ret:
+       *imbalance = 0;
+       return NULL;
+}
+
+/*
+ * find_busiest_queue - find the busiest runqueue among the cpus in group.
+ */
+static struct rq *
+find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
+                  enum cpu_idle_type idle, unsigned long imbalance,
+                  const struct cpumask *cpus)
+{
+       struct rq *busiest = NULL, *rq;
+       unsigned long max_load = 0;
+       int i;
+
+       for_each_cpu(i, sched_group_cpus(group)) {
+               unsigned long power = power_of(i);
+               unsigned long capacity = DIV_ROUND_CLOSEST(power,
+                                                          SCHED_POWER_SCALE);
+               unsigned long wl;
+
+               if (!capacity)
+                       capacity = fix_small_capacity(sd, group);
+
+               if (!cpumask_test_cpu(i, cpus))
+                       continue;
+
+               rq = cpu_rq(i);
+               wl = weighted_cpuload(i);
+
+               /*
+                * When comparing with imbalance, use weighted_cpuload()
+                * which is not scaled with the cpu power.
+                */
+               if (capacity && rq->nr_running == 1 && wl > imbalance)
+                       continue;
+
+               /*
+                * For the load comparisons with the other cpu's, consider
+                * the weighted_cpuload() scaled with the cpu power, so that
+                * the load can be moved away from the cpu that is potentially
+                * running at a lower capacity.
+                */
+               wl = (wl * SCHED_POWER_SCALE) / power;
+
+               if (wl > max_load) {
+                       max_load = wl;
+                       busiest = rq;
+               }
+       }
+
+       return busiest;
+}
+
+/*
+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
+ * so long as it is large enough.
+ */
+#define MAX_PINNED_INTERVAL    512
+
+/* Working cpumask for load_balance and load_balance_newidle. */
+DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
+
+static int need_active_balance(struct sched_domain *sd, int idle,
+                              int busiest_cpu, int this_cpu)
+{
+       if (idle == CPU_NEWLY_IDLE) {
+
+               /*
+                * ASYM_PACKING needs to force migrate tasks from busy but
+                * higher numbered CPUs in order to pack all tasks in the
+                * lowest numbered CPUs.
+                */
+               if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
+                       return 1;
+
+               /*
+                * The only task running in a non-idle cpu can be moved to this
+                * cpu in an attempt to completely freeup the other CPU
+                * package.
+                *
+                * The package power saving logic comes from
+                * find_busiest_group(). If there are no imbalance, then
+                * f_b_g() will return NULL. However when sched_mc={1,2} then
+                * f_b_g() will select a group from which a running task may be
+                * pulled to this cpu in order to make the other package idle.
+                * If there is no opportunity to make a package idle and if
+                * there are no imbalance, then f_b_g() will return NULL and no
+                * action will be taken in load_balance_newidle().
+                *
+                * Under normal task pull operation due to imbalance, there
+                * will be more than one task in the source run queue and
+                * move_tasks() will succeed.  ld_moved will be true and this
+                * active balance code will not be triggered.
+                */
+               if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
+                       return 0;
+       }
+
+       return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
+}
+
+static int active_load_balance_cpu_stop(void *data);
+
+/*
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ */
+static int load_balance(int this_cpu, struct rq *this_rq,
+                       struct sched_domain *sd, enum cpu_idle_type idle,
+                       int *balance)
+{
+       int ld_moved, all_pinned = 0, active_balance = 0;
+       struct sched_group *group;
+       unsigned long imbalance;
+       struct rq *busiest;
+       unsigned long flags;
+       struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
+
+       cpumask_copy(cpus, cpu_active_mask);
+
+       schedstat_inc(sd, lb_count[idle]);
+
+redo:
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle,
+                                  cpus, balance);
+
+       if (*balance == 0)
+               goto out_balanced;
+
+       if (!group) {
+               schedstat_inc(sd, lb_nobusyg[idle]);
+               goto out_balanced;
+       }
+
+       busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
+       if (!busiest) {
+               schedstat_inc(sd, lb_nobusyq[idle]);
+               goto out_balanced;
+       }
+
+       BUG_ON(busiest == this_rq);
+
+       schedstat_add(sd, lb_imbalance[idle], imbalance);
+
+       ld_moved = 0;
+       if (busiest->nr_running > 1) {
+               /*
+                * Attempt to move tasks. If find_busiest_group has found
+                * an imbalance but busiest->nr_running <= 1, the group is
+                * still unbalanced. ld_moved simply stays zero, so it is
+                * correctly treated as an imbalance.
+                */
+               all_pinned = 1;
+               local_irq_save(flags);
+               double_rq_lock(this_rq, busiest);
+               ld_moved = move_tasks(this_rq, this_cpu, busiest,
+                                     imbalance, sd, idle, &all_pinned);
+               double_rq_unlock(this_rq, busiest);
+               local_irq_restore(flags);
+
+               /*
+                * some other cpu did the load balance for us.
+                */
+               if (ld_moved && this_cpu != smp_processor_id())
+                       resched_cpu(this_cpu);
+
+               /* All tasks on this runqueue were pinned by CPU affinity */
+               if (unlikely(all_pinned)) {
+                       cpumask_clear_cpu(cpu_of(busiest), cpus);
+                       if (!cpumask_empty(cpus))
+                               goto redo;
+                       goto out_balanced;
+               }
+       }
+
+       if (!ld_moved) {
+               schedstat_inc(sd, lb_failed[idle]);
+               /*
+                * Increment the failure counter only on periodic balance.
+                * We do not want newidle balance, which can be very
+                * frequent, pollute the failure counter causing
+                * excessive cache_hot migrations and active balances.
+                */
+               if (idle != CPU_NEWLY_IDLE)
+                       sd->nr_balance_failed++;
+
+               if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
+                       raw_spin_lock_irqsave(&busiest->lock, flags);
+
+                       /* don't kick the active_load_balance_cpu_stop,
+                        * if the curr task on busiest cpu can't be
+                        * moved to this_cpu
+                        */
+                       if (!cpumask_test_cpu(this_cpu,
+                                       tsk_cpus_allowed(busiest->curr))) {
+                               raw_spin_unlock_irqrestore(&busiest->lock,
+                                                           flags);
+                               all_pinned = 1;
+                               goto out_one_pinned;
+                       }
+
+                       /*
+                        * ->active_balance synchronizes accesses to
+                        * ->active_balance_work.  Once set, it's cleared
+                        * only after active load balance is finished.
+                        */
+                       if (!busiest->active_balance) {
+                               busiest->active_balance = 1;
+                               busiest->push_cpu = this_cpu;
+                               active_balance = 1;
+                       }
+                       raw_spin_unlock_irqrestore(&busiest->lock, flags);
+
+                       if (active_balance)
+                               stop_one_cpu_nowait(cpu_of(busiest),
+                                       active_load_balance_cpu_stop, busiest,
+                                       &busiest->active_balance_work);
+
+                       /*
+                        * We've kicked active balancing, reset the failure
+                        * counter.
+                        */
+                       sd->nr_balance_failed = sd->cache_nice_tries+1;
+               }
+       } else
+               sd->nr_balance_failed = 0;
+
+       if (likely(!active_balance)) {
+               /* We were unbalanced, so reset the balancing interval */
+               sd->balance_interval = sd->min_interval;
+       } else {
+               /*
+                * If we've begun active balancing, start to back off. This
+                * case may not be covered by the all_pinned logic if there
+                * is only 1 task on the busy runqueue (because we don't call
+                * move_tasks).
+                */
+               if (sd->balance_interval < sd->max_interval)
+                       sd->balance_interval *= 2;
+       }
+
+       goto out;
+
+out_balanced:
+       schedstat_inc(sd, lb_balanced[idle]);
+
+       sd->nr_balance_failed = 0;
+
+out_one_pinned:
+       /* tune up the balancing interval */
+       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
+                       (sd->balance_interval < sd->max_interval))
+               sd->balance_interval *= 2;
+
+       ld_moved = 0;
+out:
+       return ld_moved;
+}
+
+/*
+ * idle_balance is called by schedule() if this_cpu is about to become
+ * idle. Attempts to pull tasks from other CPUs.
+ */
+void idle_balance(int this_cpu, struct rq *this_rq)
+{
+       struct sched_domain *sd;
+       int pulled_task = 0;
+       unsigned long next_balance = jiffies + HZ;
+
+       this_rq->idle_stamp = this_rq->clock;
+
+       if (this_rq->avg_idle < sysctl_sched_migration_cost)
+               return;
+
+       /*
+        * Drop the rq->lock, but keep IRQ/preempt disabled.
+        */
+       raw_spin_unlock(&this_rq->lock);
+
+       update_shares(this_cpu);
+       rcu_read_lock();
+       for_each_domain(this_cpu, sd) {
+               unsigned long interval;
+               int balance = 1;
+
+               if (!(sd->flags & SD_LOAD_BALANCE))
+                       continue;
+
+               if (sd->flags & SD_BALANCE_NEWIDLE) {
+                       /* If we've pulled tasks over stop searching: */
+                       pulled_task = load_balance(this_cpu, this_rq,
+                                                  sd, CPU_NEWLY_IDLE, &balance);
+               }
+
+               interval = msecs_to_jiffies(sd->balance_interval);
+               if (time_after(next_balance, sd->last_balance + interval))
+                       next_balance = sd->last_balance + interval;
+               if (pulled_task) {
+                       this_rq->idle_stamp = 0;
+                       break;
+               }
+       }
+       rcu_read_unlock();
+
+       raw_spin_lock(&this_rq->lock);
+
+       if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
+               /*
+                * We are going idle. next_balance may be set based on
+                * a busy processor. So reset next_balance.
+                */
+               this_rq->next_balance = next_balance;
+       }
+}
+
+/*
+ * active_load_balance_cpu_stop is run by cpu stopper. It pushes
+ * running tasks off the busiest CPU onto idle CPUs. It requires at
+ * least 1 task to be running on each physical CPU where possible, and
+ * avoids physical / logical imbalances.
+ */
+static int active_load_balance_cpu_stop(void *data)
+{
+       struct rq *busiest_rq = data;
+       int busiest_cpu = cpu_of(busiest_rq);
+       int target_cpu = busiest_rq->push_cpu;
+       struct rq *target_rq = cpu_rq(target_cpu);
+       struct sched_domain *sd;
+
+       raw_spin_lock_irq(&busiest_rq->lock);
+
+       /* make sure the requested cpu hasn't gone down in the meantime */
+       if (unlikely(busiest_cpu != smp_processor_id() ||
+                    !busiest_rq->active_balance))
+               goto out_unlock;
+
+       /* Is there any task to move? */
+       if (busiest_rq->nr_running <= 1)
+               goto out_unlock;
+
+       /*
+        * This condition is "impossible", if it occurs
+        * we need to fix it. Originally reported by
+        * Bjorn Helgaas on a 128-cpu setup.
+        */
+       BUG_ON(busiest_rq == target_rq);
+
+       /* move a task from busiest_rq to target_rq */
+       double_lock_balance(busiest_rq, target_rq);
+
+       /* Search for an sd spanning us and the target CPU. */
+       rcu_read_lock();
+       for_each_domain(target_cpu, sd) {
+               if ((sd->flags & SD_LOAD_BALANCE) &&
+                   cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
+                               break;
+       }
+
+       if (likely(sd)) {
+               schedstat_inc(sd, alb_count);
+
+               if (move_one_task(target_rq, target_cpu, busiest_rq,
+                                 sd, CPU_IDLE))
+                       schedstat_inc(sd, alb_pushed);
+               else
+                       schedstat_inc(sd, alb_failed);
+       }
+       rcu_read_unlock();
+       double_unlock_balance(busiest_rq, target_rq);
+out_unlock:
+       busiest_rq->active_balance = 0;
+       raw_spin_unlock_irq(&busiest_rq->lock);
+       return 0;
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * idle load balancing details
+ * - One of the idle CPUs nominates itself as idle load_balancer, while
+ *   entering idle.
+ * - This idle load balancer CPU will also go into tickless mode when
+ *   it is idle, just like all other idle CPUs
+ * - When one of the busy CPUs notice that there may be an idle rebalancing
+ *   needed, they will kick the idle load balancer, which then does idle
+ *   load balancing for all the idle CPUs.
+ */
+static struct {
+       atomic_t load_balancer;
+       atomic_t first_pick_cpu;
+       atomic_t second_pick_cpu;
+       cpumask_var_t idle_cpus_mask;
+       cpumask_var_t grp_idle_mask;
+       unsigned long next_balance;     /* in jiffy units */
+} nohz ____cacheline_aligned;
+
+int get_nohz_load_balancer(void)
+{
+       return atomic_read(&nohz.load_balancer);
+}
+
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+/**
+ * lowest_flag_domain - Return lowest sched_domain containing flag.
+ * @cpu:       The cpu whose lowest level of sched domain is to
+ *             be returned.
+ * @flag:      The flag to check for the lowest sched_domain
+ *             for the given cpu.
+ *
+ * Returns the lowest sched_domain of a cpu which contains the given flag.
+ */
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+       struct sched_domain *sd;
+
+       for_each_domain(cpu, sd)
+               if (sd->flags & flag)
+                       break;
+
+       return sd;
+}
+
+/**
+ * for_each_flag_domain - Iterates over sched_domains containing the flag.
+ * @cpu:       The cpu whose domains we're iterating over.
+ * @sd:                variable holding the value of the power_savings_sd
+ *             for cpu.
+ * @flag:      The flag to filter the sched_domains to be iterated.
+ *
+ * Iterates over all the scheduler domains for a given cpu that has the 'flag'
+ * set, starting from the lowest sched_domain to the highest.
+ */
+#define for_each_flag_domain(cpu, sd, flag) \
+       for (sd = lowest_flag_domain(cpu, flag); \
+               (sd && (sd->flags & flag)); sd = sd->parent)
+
+/**
+ * is_semi_idle_group - Checks if the given sched_group is semi-idle.
+ * @ilb_group: group to be checked for semi-idleness
+ *
+ * Returns:    1 if the group is semi-idle. 0 otherwise.
+ *
+ * We define a sched_group to be semi idle if it has atleast one idle-CPU
+ * and atleast one non-idle CPU. This helper function checks if the given
+ * sched_group is semi-idle or not.
+ */
+static inline int is_semi_idle_group(struct sched_group *ilb_group)
+{
+       cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
+                                       sched_group_cpus(ilb_group));
+
+       /*
+        * A sched_group is semi-idle when it has atleast one busy cpu
+        * and atleast one idle cpu.
+        */
+       if (cpumask_empty(nohz.grp_idle_mask))
+               return 0;
+
+       if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
+               return 0;
+
+       return 1;
+}
+/**
+ * find_new_ilb - Finds the optimum idle load balancer for nomination.
+ * @cpu:       The cpu which is nominating a new idle_load_balancer.
+ *
+ * Returns:    Returns the id of the idle load balancer if it exists,
+ *             Else, returns >= nr_cpu_ids.
+ *
+ * This algorithm picks the idle load balancer such that it belongs to a
+ * semi-idle powersavings sched_domain. The idea is to try and avoid
+ * completely idle packages/cores just for the purpose of idle load balancing
+ * when there are other idle cpu's which are better suited for that job.
+ */
+static int find_new_ilb(int cpu)
+{
+       struct sched_domain *sd;
+       struct sched_group *ilb_group;
+       int ilb = nr_cpu_ids;
+
+       /*
+        * Have idle load balancer selection from semi-idle packages only
+        * when power-aware load balancing is enabled
+        */
+       if (!(sched_smt_power_savings || sched_mc_power_savings))
+               goto out_done;
+
+       /*
+        * Optimize for the case when we have no idle CPUs or only one
+        * idle CPU. Don't walk the sched_domain hierarchy in such cases
+        */
+       if (cpumask_weight(nohz.idle_cpus_mask) < 2)
+               goto out_done;
+
+       rcu_read_lock();
+       for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
+               ilb_group = sd->groups;
+
+               do {
+                       if (is_semi_idle_group(ilb_group)) {
+                               ilb = cpumask_first(nohz.grp_idle_mask);
+                               goto unlock;
+                       }
+
+                       ilb_group = ilb_group->next;
+
+               } while (ilb_group != sd->groups);
+       }
+unlock:
+       rcu_read_unlock();
+
+out_done:
+       return ilb;
+}
+#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
+static inline int find_new_ilb(int call_cpu)
+{
+       return nr_cpu_ids;
+}
+#endif
+
+/*
+ * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
+ * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
+ * CPU (if there is one).
+ */
+static void nohz_balancer_kick(int cpu)
+{
+       int ilb_cpu;
+
+       nohz.next_balance++;
+
+       ilb_cpu = get_nohz_load_balancer();
+
+       if (ilb_cpu >= nr_cpu_ids) {
+               ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
+               if (ilb_cpu >= nr_cpu_ids)
+                       return;
+       }
+
+       if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
+               cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
+
+               smp_mb();
+               /*
+                * Use smp_send_reschedule() instead of resched_cpu().
+                * This way we generate a sched IPI on the target cpu which
+                * is idle. And the softirq performing nohz idle load balance
+                * will be run before returning from the IPI.
+                */
+               smp_send_reschedule(ilb_cpu);
+       }
+       return;
+}
+
+/*
+ * This routine will try to nominate the ilb (idle load balancing)
+ * owner among the cpus whose ticks are stopped. ilb owner will do the idle
+ * load balancing on behalf of all those cpus.
+ *
+ * When the ilb owner becomes busy, we will not have new ilb owner until some
+ * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
+ * idle load balancing by kicking one of the idle CPUs.
+ *
+ * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
+ * ilb owner CPU in future (when there is a need for idle load balancing on
+ * behalf of all idle CPUs).
+ */
+void select_nohz_load_balancer(int stop_tick)
+{
+       int cpu = smp_processor_id();
+
+       if (stop_tick) {
+               if (!cpu_active(cpu)) {
+                       if (atomic_read(&nohz.load_balancer) != cpu)
+                               return;
+
+                       /*
+                        * If we are going offline and still the leader,
+                        * give up!
+                        */
+                       if (atomic_cmpxchg(&nohz.load_balancer, cpu,
+                                          nr_cpu_ids) != cpu)
+                               BUG();
+
+                       return;
+               }
+
+               cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
+
+               if (atomic_read(&nohz.first_pick_cpu) == cpu)
+                       atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
+               if (atomic_read(&nohz.second_pick_cpu) == cpu)
+                       atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
+
+               if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
+                       int new_ilb;
+
+                       /* make me the ilb owner */
+                       if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
+                                          cpu) != nr_cpu_ids)
+                               return;
+
+                       /*
+                        * Check to see if there is a more power-efficient
+                        * ilb.
+                        */
+                       new_ilb = find_new_ilb(cpu);
+                       if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
+                               atomic_set(&nohz.load_balancer, nr_cpu_ids);
+                               resched_cpu(new_ilb);
+                               return;
+                       }
+                       return;
+               }
+       } else {
+               if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
+                       return;
+
+               cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
+
+               if (atomic_read(&nohz.load_balancer) == cpu)
+                       if (atomic_cmpxchg(&nohz.load_balancer, cpu,
+                                          nr_cpu_ids) != cpu)
+                               BUG();
+       }
+       return;
+}
+#endif
+
+static DEFINE_SPINLOCK(balancing);
+
+static unsigned long __read_mostly max_load_balance_interval = HZ/10;
+
+/*
+ * Scale the max load_balance interval with the number of CPUs in the system.
+ * This trades load-balance latency on larger machines for less cross talk.
+ */
+void update_max_interval(void)
+{
+       max_load_balance_interval = HZ*num_online_cpus()/10;
+}
+
+/*
+ * It checks each scheduling domain to see if it is due to be balanced,
+ * and initiates a balancing operation if so.
+ *
+ * Balancing parameters are set up in arch_init_sched_domains.
+ */
+static void rebalance_domains(int cpu, enum cpu_idle_type idle)
+{
+       int balance = 1;
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long interval;
+       struct sched_domain *sd;
+       /* Earliest time when we have to do rebalance again */
+       unsigned long next_balance = jiffies + 60*HZ;
+       int update_next_balance = 0;
+       int need_serialize;
+
+       update_shares(cpu);
+
+       rcu_read_lock();
+       for_each_domain(cpu, sd) {
+               if (!(sd->flags & SD_LOAD_BALANCE))
+                       continue;
+
+               interval = sd->balance_interval;
+               if (idle != CPU_IDLE)
+                       interval *= sd->busy_factor;
+
+               /* scale ms to jiffies */
+               interval = msecs_to_jiffies(interval);
+               interval = clamp(interval, 1UL, max_load_balance_interval);
+
+               need_serialize = sd->flags & SD_SERIALIZE;
+
+               if (need_serialize) {
+                       if (!spin_trylock(&balancing))
+                               goto out;
+               }
+
+               if (time_after_eq(jiffies, sd->last_balance + interval)) {
+                       if (load_balance(cpu, rq, sd, idle, &balance)) {
+                               /*
+                                * We've pulled tasks over so either we're no
+                                * longer idle.
+                                */
+                               idle = CPU_NOT_IDLE;
+                       }
+                       sd->last_balance = jiffies;
+               }
+               if (need_serialize)
+                       spin_unlock(&balancing);
+out:
+               if (time_after(next_balance, sd->last_balance + interval)) {
+                       next_balance = sd->last_balance + interval;
+                       update_next_balance = 1;
+               }
+
+               /*
+                * Stop the load balance at this level. There is another
+                * CPU in our sched group which is doing load balancing more
+                * actively.
+                */
+               if (!balance)
+                       break;
+       }
+       rcu_read_unlock();
+
+       /*
+        * next_balance will be updated only when there is a need.
+        * When the cpu is attached to null domain for ex, it will not be
+        * updated.
+        */
+       if (likely(update_next_balance))
+               rq->next_balance = next_balance;
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * In CONFIG_NO_HZ case, the idle balance kickee will do the
+ * rebalancing for all the cpus for whom scheduler ticks are stopped.
+ */
+static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
+{
+       struct rq *this_rq = cpu_rq(this_cpu);
+       struct rq *rq;
+       int balance_cpu;
+
+       if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
+               return;
+
+       for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
+               if (balance_cpu == this_cpu)
+                       continue;
+
+               /*
+                * If this cpu gets work to do, stop the load balancing
+                * work being done for other cpus. Next load
+                * balancing owner will pick it up.
+                */
+               if (need_resched()) {
+                       this_rq->nohz_balance_kick = 0;
+                       break;
+               }
+
+               raw_spin_lock_irq(&this_rq->lock);
+               update_rq_clock(this_rq);
+               update_cpu_load(this_rq);
+               raw_spin_unlock_irq(&this_rq->lock);
+
+               rebalance_domains(balance_cpu, CPU_IDLE);
+
+               rq = cpu_rq(balance_cpu);
+               if (time_after(this_rq->next_balance, rq->next_balance))
+                       this_rq->next_balance = rq->next_balance;
+       }
+       nohz.next_balance = this_rq->next_balance;
+       this_rq->nohz_balance_kick = 0;
+}
+
+/*
+ * Current heuristic for kicking the idle load balancer
+ * - first_pick_cpu is the one of the busy CPUs. It will kick
+ *   idle load balancer when it has more than one process active. This
+ *   eliminates the need for idle load balancing altogether when we have
+ *   only one running process in the system (common case).
+ * - If there are more than one busy CPU, idle load balancer may have
+ *   to run for active_load_balance to happen (i.e., two busy CPUs are
+ *   SMT or core siblings and can run better if they move to different
+ *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
+ *   which will kick idle load balancer as soon as it has any load.
+ */
+static inline int nohz_kick_needed(struct rq *rq, int cpu)
+{
+       unsigned long now = jiffies;
+       int ret;
+       int first_pick_cpu, second_pick_cpu;
+
+       if (time_before(now, nohz.next_balance))
+               return 0;
+
+       if (idle_cpu(cpu))
+               return 0;
+
+       first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
+       second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
+
+       if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
+           second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
+               return 0;
+
+       ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
+       if (ret == nr_cpu_ids || ret == cpu) {
+               atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
+               if (rq->nr_running > 1)
+                       return 1;
+       } else {
+               ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
+               if (ret == nr_cpu_ids || ret == cpu) {
+                       if (rq->nr_running)
+                               return 1;
+               }
+       }
+       return 0;
+}
+#else
+static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
+#endif
+
+/*
+ * run_rebalance_domains is triggered when needed from the scheduler tick.
+ * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
+ */
+static void run_rebalance_domains(struct softirq_action *h)
+{
+       int this_cpu = smp_processor_id();
+       struct rq *this_rq = cpu_rq(this_cpu);
+       enum cpu_idle_type idle = this_rq->idle_balance ?
+                                               CPU_IDLE : CPU_NOT_IDLE;
+
+       rebalance_domains(this_cpu, idle);
+
+       /*
+        * If this cpu has a pending nohz_balance_kick, then do the
+        * balancing on behalf of the other idle cpus whose ticks are
+        * stopped.
+        */
+       nohz_idle_balance(this_cpu, idle);
+}
+
+static inline int on_null_domain(int cpu)
+{
+       return !rcu_dereference_sched(cpu_rq(cpu)->sd);
+}
+
+/*
+ * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
+ */
+void trigger_load_balance(struct rq *rq, int cpu)
+{
+       /* Don't need to rebalance while attached to NULL domain */
+       if (time_after_eq(jiffies, rq->next_balance) &&
+           likely(!on_null_domain(cpu)))
+               raise_softirq(SCHED_SOFTIRQ);
+#ifdef CONFIG_NO_HZ
+       else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
+               nohz_balancer_kick(cpu);
+#endif
+}
+
+static void rq_online_fair(struct rq *rq)
+{
+       update_sysctl();
+}
+
+static void rq_offline_fair(struct rq *rq)
+{
+       update_sysctl();
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * scheduler tick hitting a task of our scheduling class:
+ */
+static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
+{
+       struct cfs_rq *cfs_rq;
+       struct sched_entity *se = &curr->se;
+
+       for_each_sched_entity(se) {
+               cfs_rq = cfs_rq_of(se);
+               entity_tick(cfs_rq, se, queued);
+       }
+}
+
+/*
+ * called on fork with the child task as argument from the parent's context
+ *  - child not yet on the tasklist
+ *  - preemption disabled
+ */
+static void task_fork_fair(struct task_struct *p)
+{
+       struct cfs_rq *cfs_rq = task_cfs_rq(current);
+       struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
+       int this_cpu = smp_processor_id();
+       struct rq *rq = this_rq();
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       update_rq_clock(rq);
+
+       if (unlikely(task_cpu(p) != this_cpu)) {
+               rcu_read_lock();
+               __set_task_cpu(p, this_cpu);
+               rcu_read_unlock();
+       }
+
+       update_curr(cfs_rq);
+
+       if (curr)
+               se->vruntime = curr->vruntime;
+       place_entity(cfs_rq, se, 1);
+
+       if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
+               /*
+                * Upon rescheduling, sched_class::put_prev_task() will place
+                * 'current' within the tree based on its new key value.
+                */
+               swap(curr->vruntime, se->vruntime);
+               resched_task(rq->curr);
+       }
+
+       se->vruntime -= cfs_rq->min_vruntime;
+
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+/*
+ * Priority of the task has changed. Check to see if we preempt
+ * the current task.
+ */
+static void
+prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
+{
+       if (!p->se.on_rq)
+               return;
+
+       /*
+        * Reschedule if we are currently running on this runqueue and
+        * our priority decreased, or if we are not currently running on
+        * this runqueue and our priority is higher than the current's
+        */
+       if (rq->curr == p) {
+               if (p->prio > oldprio)
+                       resched_task(rq->curr);
+       } else
+               check_preempt_curr(rq, p, 0);
+}
+
+static void switched_from_fair(struct rq *rq, struct task_struct *p)
+{
+       struct sched_entity *se = &p->se;
+       struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+       /*
+        * Ensure the task's vruntime is normalized, so that when its
+        * switched back to the fair class the enqueue_entity(.flags=0) will
+        * do the right thing.
+        *
+        * If it was on_rq, then the dequeue_entity(.flags=0) will already
+        * have normalized the vruntime, if it was !on_rq, then only when
+        * the task is sleeping will it still have non-normalized vruntime.
+        */
+       if (!se->on_rq && p->state != TASK_RUNNING) {
+               /*
+                * Fix up our vruntime so that the current sleep doesn't
+                * cause 'unlimited' sleep bonus.
+                */
+               place_entity(cfs_rq, se, 0);
+               se->vruntime -= cfs_rq->min_vruntime;
+       }
+}
+
+/*
+ * We switched to the sched_fair class.
+ */
+static void switched_to_fair(struct rq *rq, struct task_struct *p)
+{
+       if (!p->se.on_rq)
+               return;
+
+       /*
+        * We were most likely switched from sched_rt, so
+        * kick off the schedule if running, otherwise just see
+        * if we can still preempt the current task.
+        */
+       if (rq->curr == p)
+               resched_task(rq->curr);
+       else
+               check_preempt_curr(rq, p, 0);
+}
+
+/* Account for a task changing its policy or group.
+ *
+ * This routine is mostly called to set cfs_rq->curr field when a task
+ * migrates between groups/classes.
+ */
+static void set_curr_task_fair(struct rq *rq)
+{
+       struct sched_entity *se = &rq->curr->se;
+
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+               set_next_entity(cfs_rq, se);
+               /* ensure bandwidth has been allocated on our new cfs_rq */
+               account_cfs_rq_runtime(cfs_rq, 0);
+       }
+}
+
+void init_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       cfs_rq->tasks_timeline = RB_ROOT;
+       INIT_LIST_HEAD(&cfs_rq->tasks);
+       cfs_rq->min_vruntime = (u64)(-(1LL << 20));
+#ifndef CONFIG_64BIT
+       cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
+#endif
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static void task_move_group_fair(struct task_struct *p, int on_rq)
+{
+       /*
+        * If the task was not on the rq at the time of this cgroup movement
+        * it must have been asleep, sleeping tasks keep their ->vruntime
+        * absolute on their old rq until wakeup (needed for the fair sleeper
+        * bonus in place_entity()).
+        *
+        * If it was on the rq, we've just 'preempted' it, which does convert
+        * ->vruntime to a relative base.
+        *
+        * Make sure both cases convert their relative position when migrating
+        * to another cgroup's rq. This does somewhat interfere with the
+        * fair sleeper stuff for the first placement, but who cares.
+        */
+       if (!on_rq)
+               p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
+       set_task_rq(p, task_cpu(p));
+       if (!on_rq)
+               p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
+}
+
+void free_fair_sched_group(struct task_group *tg)
+{
+       int i;
+
+       destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
+
+       for_each_possible_cpu(i) {
+               if (tg->cfs_rq)
+                       kfree(tg->cfs_rq[i]);
+               if (tg->se)
+                       kfree(tg->se[i]);
+       }
+
+       kfree(tg->cfs_rq);
+       kfree(tg->se);
+}
+
+int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
+{
+       struct cfs_rq *cfs_rq;
+       struct sched_entity *se;
+       int i;
+
+       tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
+       if (!tg->cfs_rq)
+               goto err;
+       tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
+       if (!tg->se)
+               goto err;
+
+       tg->shares = NICE_0_LOAD;
+
+       init_cfs_bandwidth(tg_cfs_bandwidth(tg));
+
+       for_each_possible_cpu(i) {
+               cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
+                                     GFP_KERNEL, cpu_to_node(i));
+               if (!cfs_rq)
+                       goto err;
+
+               se = kzalloc_node(sizeof(struct sched_entity),
+                                 GFP_KERNEL, cpu_to_node(i));
+               if (!se)
+                       goto err_free_rq;
+
+               init_cfs_rq(cfs_rq);
+               init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
+       }
+
+       return 1;
+
+err_free_rq:
+       kfree(cfs_rq);
+err:
+       return 0;
+}
+
+void unregister_fair_sched_group(struct task_group *tg, int cpu)
+{
+       struct rq *rq = cpu_rq(cpu);
+       unsigned long flags;
+
+       /*
+       * Only empty task groups can be destroyed; so we can speculatively
+       * check on_list without danger of it being re-added.
+       */
+       if (!tg->cfs_rq[cpu]->on_list)
+               return;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+       list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
+                       struct sched_entity *se, int cpu,
+                       struct sched_entity *parent)
+{
+       struct rq *rq = cpu_rq(cpu);
+
+       cfs_rq->tg = tg;
+       cfs_rq->rq = rq;
+#ifdef CONFIG_SMP
+       /* allow initial update_cfs_load() to truncate */
+       cfs_rq->load_stamp = 1;
+#endif
+       init_cfs_rq_runtime(cfs_rq);
+
+       tg->cfs_rq[cpu] = cfs_rq;
+       tg->se[cpu] = se;
+
+       /* se could be NULL for root_task_group */
+       if (!se)
+               return;
+
+       if (!parent)
+               se->cfs_rq = &rq->cfs;
+       else
+               se->cfs_rq = parent->my_q;
+
+       se->my_q = cfs_rq;
+       update_load_set(&se->load, 0);
+       se->parent = parent;
+}
+
+static DEFINE_MUTEX(shares_mutex);
+
+int sched_group_set_shares(struct task_group *tg, unsigned long shares)
+{
+       int i;
+       unsigned long flags;
+
+       /*
+        * We can't change the weight of the root cgroup.
+        */
+       if (!tg->se[0])
+               return -EINVAL;
+
+       shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
+
+       mutex_lock(&shares_mutex);
+       if (tg->shares == shares)
+               goto done;
+
+       tg->shares = shares;
+       for_each_possible_cpu(i) {
+               struct rq *rq = cpu_rq(i);
+               struct sched_entity *se;
+
+               se = tg->se[i];
+               /* Propagate contribution to hierarchy */
+               raw_spin_lock_irqsave(&rq->lock, flags);
+               for_each_sched_entity(se)
+                       update_cfs_shares(group_cfs_rq(se));
+               raw_spin_unlock_irqrestore(&rq->lock, flags);
+       }
+
+done:
+       mutex_unlock(&shares_mutex);
+       return 0;
+}
+#else /* CONFIG_FAIR_GROUP_SCHED */
+
+void free_fair_sched_group(struct task_group *tg) { }
+
+int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
+{
+       return 1;
+}
+
+void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
+
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+
+static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
+{
+       struct sched_entity *se = &task->se;
+       unsigned int rr_interval = 0;
+
+       /*
+        * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
+        * idle runqueue:
+        */
+       if (rq->cfs.load.weight)
+               rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
+
+       return rr_interval;
+}
+
+/*
+ * All the scheduling class methods:
+ */
+const struct sched_class fair_sched_class = {
+       .next                   = &idle_sched_class,
+       .enqueue_task           = enqueue_task_fair,
+       .dequeue_task           = dequeue_task_fair,
+       .yield_task             = yield_task_fair,
+       .yield_to_task          = yield_to_task_fair,
+
+       .check_preempt_curr     = check_preempt_wakeup,
+
+       .pick_next_task         = pick_next_task_fair,
+       .put_prev_task          = put_prev_task_fair,
+
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_fair,
+
+       .rq_online              = rq_online_fair,
+       .rq_offline             = rq_offline_fair,
+
+       .task_waking            = task_waking_fair,
+#endif
+
+       .set_curr_task          = set_curr_task_fair,
+       .task_tick              = task_tick_fair,
+       .task_fork              = task_fork_fair,
+
+       .prio_changed           = prio_changed_fair,
+       .switched_from          = switched_from_fair,
+       .switched_to            = switched_to_fair,
+
+       .get_rr_interval        = get_rr_interval_fair,
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       .task_move_group        = task_move_group_fair,
+#endif
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+void print_cfs_stats(struct seq_file *m, int cpu)
+{
+       struct cfs_rq *cfs_rq;
+
+       rcu_read_lock();
+       for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
+               print_cfs_rq(m, cpu, cfs_rq);
+       rcu_read_unlock();
+}
+#endif
+
+__init void init_sched_fair_class(void)
+{
+#ifdef CONFIG_SMP
+       open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
+
+#ifdef CONFIG_NO_HZ
+       zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
+       alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
+       atomic_set(&nohz.load_balancer, nr_cpu_ids);
+       atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
+       atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
+#endif
+#endif /* SMP */
+
+}
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
new file mode 100644 (file)
index 0000000..8480224
--- /dev/null
@@ -0,0 +1,70 @@
+/*
+ * Only give sleepers 50% of their service deficit. This allows
+ * them to run sooner, but does not allow tons of sleepers to
+ * rip the spread apart.
+ */
+SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1)
+
+/*
+ * Place new tasks ahead so that they do not starve already running
+ * tasks
+ */
+SCHED_FEAT(START_DEBIT, 1)
+
+/*
+ * Based on load and program behaviour, see if it makes sense to place
+ * a newly woken task on the same cpu as the task that woke it --
+ * improve cache locality. Typically used with SYNC wakeups as
+ * generated by pipes and the like, see also SYNC_WAKEUPS.
+ */
+SCHED_FEAT(AFFINE_WAKEUPS, 1)
+
+/*
+ * Prefer to schedule the task we woke last (assuming it failed
+ * wakeup-preemption), since its likely going to consume data we
+ * touched, increases cache locality.
+ */
+SCHED_FEAT(NEXT_BUDDY, 0)
+
+/*
+ * Prefer to schedule the task that ran last (when we did
+ * wake-preempt) as that likely will touch the same data, increases
+ * cache locality.
+ */
+SCHED_FEAT(LAST_BUDDY, 1)
+
+/*
+ * Consider buddies to be cache hot, decreases the likelyness of a
+ * cache buddy being migrated away, increases cache locality.
+ */
+SCHED_FEAT(CACHE_HOT_BUDDY, 1)
+
+/*
+ * Use arch dependent cpu power functions
+ */
+SCHED_FEAT(ARCH_POWER, 0)
+
+SCHED_FEAT(HRTICK, 0)
+SCHED_FEAT(DOUBLE_TICK, 0)
+SCHED_FEAT(LB_BIAS, 1)
+
+/*
+ * Spin-wait on mutex acquisition when the mutex owner is running on
+ * another cpu -- assumes that when the owner is running, it will soon
+ * release the lock. Decreases scheduling overhead.
+ */
+SCHED_FEAT(OWNER_SPIN, 1)
+
+/*
+ * Decrement CPU power based on time not spent running tasks
+ */
+SCHED_FEAT(NONTASK_POWER, 1)
+
+/*
+ * Queue remote wakeups on the target CPU and process them
+ * using the scheduler IPI. Reduces rq->lock contention/bounces.
+ */
+SCHED_FEAT(TTWU_QUEUE, 1)
+
+SCHED_FEAT(FORCE_SD_OVERLAP, 0)
+SCHED_FEAT(RT_RUNTIME_SHARE, 1)
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
new file mode 100644 (file)
index 0000000..91b4c95
--- /dev/null
@@ -0,0 +1,99 @@
+#include "sched.h"
+
+/*
+ * idle-task scheduling class.
+ *
+ * (NOTE: these are not related to SCHED_IDLE tasks which are
+ *  handled in sched_fair.c)
+ */
+
+#ifdef CONFIG_SMP
+static int
+select_task_rq_idle(struct task_struct *p, int sd_flag, int flags)
+{
+       return task_cpu(p); /* IDLE tasks as never migrated */
+}
+#endif /* CONFIG_SMP */
+/*
+ * Idle tasks are unconditionally rescheduled:
+ */
+static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags)
+{
+       resched_task(rq->idle);
+}
+
+static struct task_struct *pick_next_task_idle(struct rq *rq)
+{
+       schedstat_inc(rq, sched_goidle);
+       calc_load_account_idle(rq);
+       return rq->idle;
+}
+
+/*
+ * It is not legal to sleep in the idle task - print a warning
+ * message if some code attempts to do it:
+ */
+static void
+dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
+{
+       raw_spin_unlock_irq(&rq->lock);
+       printk(KERN_ERR "bad: scheduling from the idle thread!\n");
+       dump_stack();
+       raw_spin_lock_irq(&rq->lock);
+}
+
+static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
+{
+}
+
+static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
+{
+}
+
+static void set_curr_task_idle(struct rq *rq)
+{
+}
+
+static void switched_to_idle(struct rq *rq, struct task_struct *p)
+{
+       BUG();
+}
+
+static void
+prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
+{
+       BUG();
+}
+
+static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task)
+{
+       return 0;
+}
+
+/*
+ * Simple, special scheduling class for the per-CPU idle tasks:
+ */
+const struct sched_class idle_sched_class = {
+       /* .next is NULL */
+       /* no enqueue/yield_task for idle tasks */
+
+       /* dequeue is not valid, we print a debug message there: */
+       .dequeue_task           = dequeue_task_idle,
+
+       .check_preempt_curr     = check_preempt_curr_idle,
+
+       .pick_next_task         = pick_next_task_idle,
+       .put_prev_task          = put_prev_task_idle,
+
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_idle,
+#endif
+
+       .set_curr_task          = set_curr_task_idle,
+       .task_tick              = task_tick_idle,
+
+       .get_rr_interval        = get_rr_interval_idle,
+
+       .prio_changed           = prio_changed_idle,
+       .switched_to            = switched_to_idle,
+};
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
new file mode 100644 (file)
index 0000000..023b355
--- /dev/null
@@ -0,0 +1,2045 @@
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+
+#include "sched.h"
+
+#include <linux/slab.h>
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
+
+struct rt_bandwidth def_rt_bandwidth;
+
+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
+{
+       struct rt_bandwidth *rt_b =
+               container_of(timer, struct rt_bandwidth, rt_period_timer);
+       ktime_t now;
+       int overrun;
+       int idle = 0;
+
+       for (;;) {
+               now = hrtimer_cb_get_time(timer);
+               overrun = hrtimer_forward(timer, now, rt_b->rt_period);
+
+               if (!overrun)
+                       break;
+
+               idle = do_sched_rt_period_timer(rt_b, overrun);
+       }
+
+       return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
+}
+
+void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
+{
+       rt_b->rt_period = ns_to_ktime(period);
+       rt_b->rt_runtime = runtime;
+
+       raw_spin_lock_init(&rt_b->rt_runtime_lock);
+
+       hrtimer_init(&rt_b->rt_period_timer,
+                       CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       rt_b->rt_period_timer.function = sched_rt_period_timer;
+}
+
+static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+       if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+               return;
+
+       if (hrtimer_active(&rt_b->rt_period_timer))
+               return;
+
+       raw_spin_lock(&rt_b->rt_runtime_lock);
+       start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
+       raw_spin_unlock(&rt_b->rt_runtime_lock);
+}
+
+void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
+{
+       struct rt_prio_array *array;
+       int i;
+
+       array = &rt_rq->active;
+       for (i = 0; i < MAX_RT_PRIO; i++) {
+               INIT_LIST_HEAD(array->queue + i);
+               __clear_bit(i, array->bitmap);
+       }
+       /* delimiter for bitsearch: */
+       __set_bit(MAX_RT_PRIO, array->bitmap);
+
+#if defined CONFIG_SMP
+       rt_rq->highest_prio.curr = MAX_RT_PRIO;
+       rt_rq->highest_prio.next = MAX_RT_PRIO;
+       rt_rq->rt_nr_migratory = 0;
+       rt_rq->overloaded = 0;
+       plist_head_init(&rt_rq->pushable_tasks);
+#endif
+
+       rt_rq->rt_time = 0;
+       rt_rq->rt_throttled = 0;
+       rt_rq->rt_runtime = 0;
+       raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+       hrtimer_cancel(&rt_b->rt_period_timer);
+}
+
+#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+       WARN_ON_ONCE(!rt_entity_is_task(rt_se));
+#endif
+       return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+       return rt_rq->rq;
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+       return rt_se->rt_rq;
+}
+
+void free_rt_sched_group(struct task_group *tg)
+{
+       int i;
+
+       if (tg->rt_se)
+               destroy_rt_bandwidth(&tg->rt_bandwidth);
+
+       for_each_possible_cpu(i) {
+               if (tg->rt_rq)
+                       kfree(tg->rt_rq[i]);
+               if (tg->rt_se)
+                       kfree(tg->rt_se[i]);
+       }
+
+       kfree(tg->rt_rq);
+       kfree(tg->rt_se);
+}
+
+void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+               struct sched_rt_entity *rt_se, int cpu,
+               struct sched_rt_entity *parent)
+{
+       struct rq *rq = cpu_rq(cpu);
+
+       rt_rq->highest_prio.curr = MAX_RT_PRIO;
+       rt_rq->rt_nr_boosted = 0;
+       rt_rq->rq = rq;
+       rt_rq->tg = tg;
+
+       tg->rt_rq[cpu] = rt_rq;
+       tg->rt_se[cpu] = rt_se;
+
+       if (!rt_se)
+               return;
+
+       if (!parent)
+               rt_se->rt_rq = &rq->rt;
+       else
+               rt_se->rt_rq = parent->my_q;
+
+       rt_se->my_q = rt_rq;
+       rt_se->parent = parent;
+       INIT_LIST_HEAD(&rt_se->run_list);
+}
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+       struct rt_rq *rt_rq;
+       struct sched_rt_entity *rt_se;
+       int i;
+
+       tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
+       if (!tg->rt_rq)
+               goto err;
+       tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
+       if (!tg->rt_se)
+               goto err;
+
+       init_rt_bandwidth(&tg->rt_bandwidth,
+                       ktime_to_ns(def_rt_bandwidth.rt_period), 0);
+
+       for_each_possible_cpu(i) {
+               rt_rq = kzalloc_node(sizeof(struct rt_rq),
+                                    GFP_KERNEL, cpu_to_node(i));
+               if (!rt_rq)
+                       goto err;
+
+               rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
+                                    GFP_KERNEL, cpu_to_node(i));
+               if (!rt_se)
+                       goto err_free_rq;
+
+               init_rt_rq(rt_rq, cpu_rq(i));
+               rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
+               init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
+       }
+
+       return 1;
+
+err_free_rq:
+       kfree(rt_rq);
+err:
+       return 0;
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+#define rt_entity_is_task(rt_se) (1)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+       return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+       return container_of(rt_rq, struct rq, rt);
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+       struct task_struct *p = rt_task_of(rt_se);
+       struct rq *rq = task_rq(p);
+
+       return &rq->rt;
+}
+
+void free_rt_sched_group(struct task_group *tg) { }
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+       return 1;
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+
+static inline int rt_overloaded(struct rq *rq)
+{
+       return atomic_read(&rq->rd->rto_count);
+}
+
+static inline void rt_set_overload(struct rq *rq)
+{
+       if (!rq->online)
+               return;
+
+       cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
+       /*
+        * Make sure the mask is visible before we set
+        * the overload count. That is checked to determine
+        * if we should look at the mask. It would be a shame
+        * if we looked at the mask, but the mask was not
+        * updated yet.
+        */
+       wmb();
+       atomic_inc(&rq->rd->rto_count);
+}
+
+static inline void rt_clear_overload(struct rq *rq)
+{
+       if (!rq->online)
+               return;
+
+       /* the order here really doesn't matter */
+       atomic_dec(&rq->rd->rto_count);
+       cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
+}
+
+static void update_rt_migration(struct rt_rq *rt_rq)
+{
+       if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
+               if (!rt_rq->overloaded) {
+                       rt_set_overload(rq_of_rt_rq(rt_rq));
+                       rt_rq->overloaded = 1;
+               }
+       } else if (rt_rq->overloaded) {
+               rt_clear_overload(rq_of_rt_rq(rt_rq));
+               rt_rq->overloaded = 0;
+       }
+}
+
+static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       if (!rt_entity_is_task(rt_se))
+               return;
+
+       rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+       rt_rq->rt_nr_total++;
+       if (rt_se->nr_cpus_allowed > 1)
+               rt_rq->rt_nr_migratory++;
+
+       update_rt_migration(rt_rq);
+}
+
+static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       if (!rt_entity_is_task(rt_se))
+               return;
+
+       rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+       rt_rq->rt_nr_total--;
+       if (rt_se->nr_cpus_allowed > 1)
+               rt_rq->rt_nr_migratory--;
+
+       update_rt_migration(rt_rq);
+}
+
+static inline int has_pushable_tasks(struct rq *rq)
+{
+       return !plist_head_empty(&rq->rt.pushable_tasks);
+}
+
+static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+       plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+       plist_node_init(&p->pushable_tasks, p->prio);
+       plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+       /* Update the highest prio pushable task */
+       if (p->prio < rq->rt.highest_prio.next)
+               rq->rt.highest_prio.next = p->prio;
+}
+
+static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+       plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+       /* Update the new highest prio pushable task */
+       if (has_pushable_tasks(rq)) {
+               p = plist_first_entry(&rq->rt.pushable_tasks,
+                                     struct task_struct, pushable_tasks);
+               rq->rt.highest_prio.next = p->prio;
+       } else
+               rq->rt.highest_prio.next = MAX_RT_PRIO;
+}
+
+#else
+
+static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+static inline
+void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+#endif /* CONFIG_SMP */
+
+static inline int on_rt_rq(struct sched_rt_entity *rt_se)
+{
+       return !list_empty(&rt_se->run_list);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+       if (!rt_rq->tg)
+               return RUNTIME_INF;
+
+       return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+       return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
+}
+
+typedef struct task_group *rt_rq_iter_t;
+
+static inline struct task_group *next_task_group(struct task_group *tg)
+{
+       do {
+               tg = list_entry_rcu(tg->list.next,
+                       typeof(struct task_group), list);
+       } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
+
+       if (&tg->list == &task_groups)
+               tg = NULL;
+
+       return tg;
+}
+
+#define for_each_rt_rq(rt_rq, iter, rq)                                        \
+       for (iter = container_of(&task_groups, typeof(*iter), list);    \
+               (iter = next_task_group(iter)) &&                       \
+               (rt_rq = iter->rt_rq[cpu_of(rq)]);)
+
+static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+       list_add_rcu(&rt_rq->leaf_rt_rq_list,
+                       &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
+}
+
+static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+       list_del_rcu(&rt_rq->leaf_rt_rq_list);
+}
+
+#define for_each_leaf_rt_rq(rt_rq, rq) \
+       list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
+
+#define for_each_sched_rt_entity(rt_se) \
+       for (; rt_se; rt_se = rt_se->parent)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+       return rt_se->my_q;
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
+
+static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+       struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+       struct sched_rt_entity *rt_se;
+
+       int cpu = cpu_of(rq_of_rt_rq(rt_rq));
+
+       rt_se = rt_rq->tg->rt_se[cpu];
+
+       if (rt_rq->rt_nr_running) {
+               if (rt_se && !on_rt_rq(rt_se))
+                       enqueue_rt_entity(rt_se, false);
+               if (rt_rq->highest_prio.curr < curr->prio)
+                       resched_task(curr);
+       }
+}
+
+static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+       struct sched_rt_entity *rt_se;
+       int cpu = cpu_of(rq_of_rt_rq(rt_rq));
+
+       rt_se = rt_rq->tg->rt_se[cpu];
+
+       if (rt_se && on_rt_rq(rt_se))
+               dequeue_rt_entity(rt_se);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+       return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
+}
+
+static int rt_se_boosted(struct sched_rt_entity *rt_se)
+{
+       struct rt_rq *rt_rq = group_rt_rq(rt_se);
+       struct task_struct *p;
+
+       if (rt_rq)
+               return !!rt_rq->rt_nr_boosted;
+
+       p = rt_task_of(rt_se);
+       return p->prio != p->normal_prio;
+}
+
+#ifdef CONFIG_SMP
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+       return cpu_rq(smp_processor_id())->rd->span;
+}
+#else
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+       return cpu_online_mask;
+}
+#endif
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+       return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+       return &rt_rq->tg->rt_bandwidth;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+       return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+       return ktime_to_ns(def_rt_bandwidth.rt_period);
+}
+
+typedef struct rt_rq *rt_rq_iter_t;
+
+#define for_each_rt_rq(rt_rq, iter, rq) \
+       for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+}
+
+static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+}
+
+#define for_each_leaf_rt_rq(rt_rq, rq) \
+       for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+#define for_each_sched_rt_entity(rt_se) \
+       for (; rt_se; rt_se = NULL)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+       return NULL;
+}
+
+static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+       if (rt_rq->rt_nr_running)
+               resched_task(rq_of_rt_rq(rt_rq)->curr);
+}
+
+static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+       return rt_rq->rt_throttled;
+}
+
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+       return cpu_online_mask;
+}
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+       return &cpu_rq(cpu)->rt;
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+       return &def_rt_bandwidth;
+}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+/*
+ * We ran out of runtime, see if we can borrow some from our neighbours.
+ */
+static int do_balance_runtime(struct rt_rq *rt_rq)
+{
+       struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+       struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
+       int i, weight, more = 0;
+       u64 rt_period;
+
+       weight = cpumask_weight(rd->span);
+
+       raw_spin_lock(&rt_b->rt_runtime_lock);
+       rt_period = ktime_to_ns(rt_b->rt_period);
+       for_each_cpu(i, rd->span) {
+               struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+               s64 diff;
+
+               if (iter == rt_rq)
+                       continue;
+
+               raw_spin_lock(&iter->rt_runtime_lock);
+               /*
+                * Either all rqs have inf runtime and there's nothing to steal
+                * or __disable_runtime() below sets a specific rq to inf to
+                * indicate its been disabled and disalow stealing.
+                */
+               if (iter->rt_runtime == RUNTIME_INF)
+                       goto next;
+
+               /*
+                * From runqueues with spare time, take 1/n part of their
+                * spare time, but no more than our period.
+                */
+               diff = iter->rt_runtime - iter->rt_time;
+               if (diff > 0) {
+                       diff = div_u64((u64)diff, weight);
+                       if (rt_rq->rt_runtime + diff > rt_period)
+                               diff = rt_period - rt_rq->rt_runtime;
+                       iter->rt_runtime -= diff;
+                       rt_rq->rt_runtime += diff;
+                       more = 1;
+                       if (rt_rq->rt_runtime == rt_period) {
+                               raw_spin_unlock(&iter->rt_runtime_lock);
+                               break;
+                       }
+               }
+next:
+               raw_spin_unlock(&iter->rt_runtime_lock);
+       }
+       raw_spin_unlock(&rt_b->rt_runtime_lock);
+
+       return more;
+}
+
+/*
+ * Ensure this RQ takes back all the runtime it lend to its neighbours.
+ */
+static void __disable_runtime(struct rq *rq)
+{
+       struct root_domain *rd = rq->rd;
+       rt_rq_iter_t iter;
+       struct rt_rq *rt_rq;
+
+       if (unlikely(!scheduler_running))
+               return;
+
+       for_each_rt_rq(rt_rq, iter, rq) {
+               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+               s64 want;
+               int i;
+
+               raw_spin_lock(&rt_b->rt_runtime_lock);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               /*
+                * Either we're all inf and nobody needs to borrow, or we're
+                * already disabled and thus have nothing to do, or we have
+                * exactly the right amount of runtime to take out.
+                */
+               if (rt_rq->rt_runtime == RUNTIME_INF ||
+                               rt_rq->rt_runtime == rt_b->rt_runtime)
+                       goto balanced;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+
+               /*
+                * Calculate the difference between what we started out with
+                * and what we current have, that's the amount of runtime
+                * we lend and now have to reclaim.
+                */
+               want = rt_b->rt_runtime - rt_rq->rt_runtime;
+
+               /*
+                * Greedy reclaim, take back as much as we can.
+                */
+               for_each_cpu(i, rd->span) {
+                       struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+                       s64 diff;
+
+                       /*
+                        * Can't reclaim from ourselves or disabled runqueues.
+                        */
+                       if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
+                               continue;
+
+                       raw_spin_lock(&iter->rt_runtime_lock);
+                       if (want > 0) {
+                               diff = min_t(s64, iter->rt_runtime, want);
+                               iter->rt_runtime -= diff;
+                               want -= diff;
+                       } else {
+                               iter->rt_runtime -= want;
+                               want -= want;
+                       }
+                       raw_spin_unlock(&iter->rt_runtime_lock);
+
+                       if (!want)
+                               break;
+               }
+
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               /*
+                * We cannot be left wanting - that would mean some runtime
+                * leaked out of the system.
+                */
+               BUG_ON(want);
+balanced:
+               /*
+                * Disable all the borrow logic by pretending we have inf
+                * runtime - in which case borrowing doesn't make sense.
+                */
+               rt_rq->rt_runtime = RUNTIME_INF;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               raw_spin_unlock(&rt_b->rt_runtime_lock);
+       }
+}
+
+static void disable_runtime(struct rq *rq)
+{
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+       __disable_runtime(rq);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+static void __enable_runtime(struct rq *rq)
+{
+       rt_rq_iter_t iter;
+       struct rt_rq *rt_rq;
+
+       if (unlikely(!scheduler_running))
+               return;
+
+       /*
+        * Reset each runqueue's bandwidth settings
+        */
+       for_each_rt_rq(rt_rq, iter, rq) {
+               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+               raw_spin_lock(&rt_b->rt_runtime_lock);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+               rt_rq->rt_runtime = rt_b->rt_runtime;
+               rt_rq->rt_time = 0;
+               rt_rq->rt_throttled = 0;
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               raw_spin_unlock(&rt_b->rt_runtime_lock);
+       }
+}
+
+static void enable_runtime(struct rq *rq)
+{
+       unsigned long flags;
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+       __enable_runtime(rq);
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
+{
+       int cpu = (int)(long)hcpu;
+
+       switch (action) {
+       case CPU_DOWN_PREPARE:
+       case CPU_DOWN_PREPARE_FROZEN:
+               disable_runtime(cpu_rq(cpu));
+               return NOTIFY_OK;
+
+       case CPU_DOWN_FAILED:
+       case CPU_DOWN_FAILED_FROZEN:
+       case CPU_ONLINE:
+       case CPU_ONLINE_FROZEN:
+               enable_runtime(cpu_rq(cpu));
+               return NOTIFY_OK;
+
+       default:
+               return NOTIFY_DONE;
+       }
+}
+
+static int balance_runtime(struct rt_rq *rt_rq)
+{
+       int more = 0;
+
+       if (!sched_feat(RT_RUNTIME_SHARE))
+               return more;
+
+       if (rt_rq->rt_time > rt_rq->rt_runtime) {
+               raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               more = do_balance_runtime(rt_rq);
+               raw_spin_lock(&rt_rq->rt_runtime_lock);
+       }
+
+       return more;
+}
+#else /* !CONFIG_SMP */
+static inline int balance_runtime(struct rt_rq *rt_rq)
+{
+       return 0;
+}
+#endif /* CONFIG_SMP */
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
+{
+       int i, idle = 1;
+       const struct cpumask *span;
+
+       if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+               return 1;
+
+       span = sched_rt_period_mask();
+       for_each_cpu(i, span) {
+               int enqueue = 0;
+               struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
+               struct rq *rq = rq_of_rt_rq(rt_rq);
+
+               raw_spin_lock(&rq->lock);
+               if (rt_rq->rt_time) {
+                       u64 runtime;
+
+                       raw_spin_lock(&rt_rq->rt_runtime_lock);
+                       if (rt_rq->rt_throttled)
+                               balance_runtime(rt_rq);
+                       runtime = rt_rq->rt_runtime;
+                       rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
+                       if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
+                               rt_rq->rt_throttled = 0;
+                               enqueue = 1;
+
+                               /*
+                                * Force a clock update if the CPU was idle,
+                                * lest wakeup -> unthrottle time accumulate.
+                                */
+                               if (rt_rq->rt_nr_running && rq->curr == rq->idle)
+                                       rq->skip_clock_update = -1;
+                       }
+                       if (rt_rq->rt_time || rt_rq->rt_nr_running)
+                               idle = 0;
+                       raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               } else if (rt_rq->rt_nr_running) {
+                       idle = 0;
+                       if (!rt_rq_throttled(rt_rq))
+                               enqueue = 1;
+               }
+
+               if (enqueue)
+                       sched_rt_rq_enqueue(rt_rq);
+               raw_spin_unlock(&rq->lock);
+       }
+
+       return idle;
+}
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+       struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+       if (rt_rq)
+               return rt_rq->highest_prio.curr;
+#endif
+
+       return rt_task_of(rt_se)->prio;
+}
+
+static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
+{
+       u64 runtime = sched_rt_runtime(rt_rq);
+
+       if (rt_rq->rt_throttled)
+               return rt_rq_throttled(rt_rq);
+
+       if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
+               return 0;
+
+       balance_runtime(rt_rq);
+       runtime = sched_rt_runtime(rt_rq);
+       if (runtime == RUNTIME_INF)
+               return 0;
+
+       if (rt_rq->rt_time > runtime) {
+               rt_rq->rt_throttled = 1;
+               printk_once(KERN_WARNING "sched: RT throttling activated\n");
+               if (rt_rq_throttled(rt_rq)) {
+                       sched_rt_rq_dequeue(rt_rq);
+                       return 1;
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static void update_curr_rt(struct rq *rq)
+{
+       struct task_struct *curr = rq->curr;
+       struct sched_rt_entity *rt_se = &curr->rt;
+       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+       u64 delta_exec;
+
+       if (curr->sched_class != &rt_sched_class)
+               return;
+
+       delta_exec = rq->clock_task - curr->se.exec_start;
+       if (unlikely((s64)delta_exec < 0))
+               delta_exec = 0;
+
+       schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
+
+       curr->se.sum_exec_runtime += delta_exec;
+       account_group_exec_runtime(curr, delta_exec);
+
+       curr->se.exec_start = rq->clock_task;
+       cpuacct_charge(curr, delta_exec);
+
+       sched_rt_avg_update(rq, delta_exec);
+
+       if (!rt_bandwidth_enabled())
+               return;
+
+       for_each_sched_rt_entity(rt_se) {
+               rt_rq = rt_rq_of_se(rt_se);
+
+               if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
+                       raw_spin_lock(&rt_rq->rt_runtime_lock);
+                       rt_rq->rt_time += delta_exec;
+                       if (sched_rt_runtime_exceeded(rt_rq))
+                               resched_task(curr);
+                       raw_spin_unlock(&rt_rq->rt_runtime_lock);
+               }
+       }
+}
+
+#if defined CONFIG_SMP
+
+static void
+inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+       if (rq->online && prio < prev_prio)
+               cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
+}
+
+static void
+dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+       struct rq *rq = rq_of_rt_rq(rt_rq);
+
+       if (rq->online && rt_rq->highest_prio.curr != prev_prio)
+               cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
+}
+
+#else /* CONFIG_SMP */
+
+static inline
+void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+static inline
+void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+
+#endif /* CONFIG_SMP */
+
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+static void
+inc_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+       int prev_prio = rt_rq->highest_prio.curr;
+
+       if (prio < prev_prio)
+               rt_rq->highest_prio.curr = prio;
+
+       inc_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+static void
+dec_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+       int prev_prio = rt_rq->highest_prio.curr;
+
+       if (rt_rq->rt_nr_running) {
+
+               WARN_ON(prio < prev_prio);
+
+               /*
+                * This may have been our highest task, and therefore
+                * we may have some recomputation to do
+                */
+               if (prio == prev_prio) {
+                       struct rt_prio_array *array = &rt_rq->active;
+
+                       rt_rq->highest_prio.curr =
+                               sched_find_first_bit(array->bitmap);
+               }
+
+       } else
+               rt_rq->highest_prio.curr = MAX_RT_PRIO;
+
+       dec_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+#else
+
+static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
+static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
+
+#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       if (rt_se_boosted(rt_se))
+               rt_rq->rt_nr_boosted++;
+
+       if (rt_rq->tg)
+               start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
+}
+
+static void
+dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       if (rt_se_boosted(rt_se))
+               rt_rq->rt_nr_boosted--;
+
+       WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       start_rt_bandwidth(&def_rt_bandwidth);
+}
+
+static inline
+void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static inline
+void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       int prio = rt_se_prio(rt_se);
+
+       WARN_ON(!rt_prio(prio));
+       rt_rq->rt_nr_running++;
+
+       inc_rt_prio(rt_rq, prio);
+       inc_rt_migration(rt_se, rt_rq);
+       inc_rt_group(rt_se, rt_rq);
+}
+
+static inline
+void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+       WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+       WARN_ON(!rt_rq->rt_nr_running);
+       rt_rq->rt_nr_running--;
+
+       dec_rt_prio(rt_rq, rt_se_prio(rt_se));
+       dec_rt_migration(rt_se, rt_rq);
+       dec_rt_group(rt_se, rt_rq);
+}
+
+static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+{
+       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+       struct rt_prio_array *array = &rt_rq->active;
+       struct rt_rq *group_rq = group_rt_rq(rt_se);
+       struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+       /*
+        * Don't enqueue the group if its throttled, or when empty.
+        * The latter is a consequence of the former when a child group
+        * get throttled and the current group doesn't have any other
+        * active members.
+        */
+       if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
+               return;
+
+       if (!rt_rq->rt_nr_running)
+               list_add_leaf_rt_rq(rt_rq);
+
+       if (head)
+               list_add(&rt_se->run_list, queue);
+       else
+               list_add_tail(&rt_se->run_list, queue);
+       __set_bit(rt_se_prio(rt_se), array->bitmap);
+
+       inc_rt_tasks(rt_se, rt_rq);
+}
+
+static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+       struct rt_prio_array *array = &rt_rq->active;
+
+       list_del_init(&rt_se->run_list);
+       if (list_empty(array->queue + rt_se_prio(rt_se)))
+               __clear_bit(rt_se_prio(rt_se), array->bitmap);
+
+       dec_rt_tasks(rt_se, rt_rq);
+       if (!rt_rq->rt_nr_running)
+               list_del_leaf_rt_rq(rt_rq);
+}
+
+/*
+ * Because the prio of an upper entry depends on the lower
+ * entries, we must remove entries top - down.
+ */
+static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
+{
+       struct sched_rt_entity *back = NULL;
+
+       for_each_sched_rt_entity(rt_se) {
+               rt_se->back = back;
+               back = rt_se;
+       }
+
+       for (rt_se = back; rt_se; rt_se = rt_se->back) {
+               if (on_rt_rq(rt_se))
+                       __dequeue_rt_entity(rt_se);
+       }
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+{
+       dequeue_rt_stack(rt_se);
+       for_each_sched_rt_entity(rt_se)
+               __enqueue_rt_entity(rt_se, head);
+}
+
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+       dequeue_rt_stack(rt_se);
+
+       for_each_sched_rt_entity(rt_se) {
+               struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+               if (rt_rq && rt_rq->rt_nr_running)
+                       __enqueue_rt_entity(rt_se, false);
+       }
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+
+       if (flags & ENQUEUE_WAKEUP)
+               rt_se->timeout = 0;
+
+       enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
+
+       if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
+               enqueue_pushable_task(rq, p);
+
+       inc_nr_running(rq);
+}
+
+static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+
+       update_curr_rt(rq);
+       dequeue_rt_entity(rt_se);
+
+       dequeue_pushable_task(rq, p);
+
+       dec_nr_running(rq);
+}
+
+/*
+ * Put task to the head or the end of the run list without the overhead of
+ * dequeue followed by enqueue.
+ */
+static void
+requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
+{
+       if (on_rt_rq(rt_se)) {
+               struct rt_prio_array *array = &rt_rq->active;
+               struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+               if (head)
+                       list_move(&rt_se->run_list, queue);
+               else
+                       list_move_tail(&rt_se->run_list, queue);
+       }
+}
+
+static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
+{
+       struct sched_rt_entity *rt_se = &p->rt;
+       struct rt_rq *rt_rq;
+
+       for_each_sched_rt_entity(rt_se) {
+               rt_rq = rt_rq_of_se(rt_se);
+               requeue_rt_entity(rt_rq, rt_se, head);
+       }
+}
+
+static void yield_task_rt(struct rq *rq)
+{
+       requeue_task_rt(rq, rq->curr, 0);
+}
+
+#ifdef CONFIG_SMP
+static int find_lowest_rq(struct task_struct *task);
+
+static int
+select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
+{
+       struct task_struct *curr;
+       struct rq *rq;
+       int cpu;
+
+       cpu = task_cpu(p);
+
+       /* For anything but wake ups, just return the task_cpu */
+       if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
+               goto out;
+
+       rq = cpu_rq(cpu);
+
+       rcu_read_lock();
+       curr = ACCESS_ONCE(rq->curr); /* unlocked access */
+
+       /*
+        * If the current task on @p's runqueue is an RT task, then
+        * try to see if we can wake this RT task up on another
+        * runqueue. Otherwise simply start this RT task
+        * on its current runqueue.
+        *
+        * We want to avoid overloading runqueues. If the woken
+        * task is a higher priority, then it will stay on this CPU
+        * and the lower prio task should be moved to another CPU.
+        * Even though this will probably make the lower prio task
+        * lose its cache, we do not want to bounce a higher task
+        * around just because it gave up its CPU, perhaps for a
+        * lock?
+        *
+        * For equal prio tasks, we just let the scheduler sort it out.
+        *
+        * Otherwise, just let it ride on the affined RQ and the
+        * post-schedule router will push the preempted task away
+        *
+        * This test is optimistic, if we get it wrong the load-balancer
+        * will have to sort it out.
+        */
+       if (curr && unlikely(rt_task(curr)) &&
+           (curr->rt.nr_cpus_allowed < 2 ||
+            curr->prio <= p->prio) &&
+           (p->rt.nr_cpus_allowed > 1)) {
+               int target = find_lowest_rq(p);
+
+               if (target != -1)
+                       cpu = target;
+       }
+       rcu_read_unlock();
+
+out:
+       return cpu;
+}
+
+static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
+{
+       if (rq->curr->rt.nr_cpus_allowed == 1)
+               return;
+
+       if (p->rt.nr_cpus_allowed != 1
+           && cpupri_find(&rq->rd->cpupri, p, NULL))
+               return;
+
+       if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
+               return;
+
+       /*
+        * There appears to be other cpus that can accept
+        * current and none to run 'p', so lets reschedule
+        * to try and push current away:
+        */
+       requeue_task_rt(rq, p, 1);
+       resched_task(rq->curr);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+       if (p->prio < rq->curr->prio) {
+               resched_task(rq->curr);
+               return;
+       }
+
+#ifdef CONFIG_SMP
+       /*
+        * If:
+        *
+        * - the newly woken task is of equal priority to the current task
+        * - the newly woken task is non-migratable while current is migratable
+        * - current will be preempted on the next reschedule
+        *
+        * we should check to see if current can readily move to a different
+        * cpu.  If so, we will reschedule to allow the push logic to try
+        * to move current somewhere else, making room for our non-migratable
+        * task.
+        */
+       if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
+               check_preempt_equal_prio(rq, p);
+#endif
+}
+
+static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
+                                                  struct rt_rq *rt_rq)
+{
+       struct rt_prio_array *array = &rt_rq->active;
+       struct sched_rt_entity *next = NULL;
+       struct list_head *queue;
+       int idx;
+
+       idx = sched_find_first_bit(array->bitmap);
+       BUG_ON(idx >= MAX_RT_PRIO);
+
+       queue = array->queue + idx;
+       next = list_entry(queue->next, struct sched_rt_entity, run_list);
+
+       return next;
+}
+
+static struct task_struct *_pick_next_task_rt(struct rq *rq)
+{
+       struct sched_rt_entity *rt_se;
+       struct task_struct *p;
+       struct rt_rq *rt_rq;
+
+       rt_rq = &rq->rt;
+
+       if (!rt_rq->rt_nr_running)
+               return NULL;
+
+       if (rt_rq_throttled(rt_rq))
+               return NULL;
+
+       do {
+               rt_se = pick_next_rt_entity(rq, rt_rq);
+               BUG_ON(!rt_se);
+               rt_rq = group_rt_rq(rt_se);
+       } while (rt_rq);
+
+       p = rt_task_of(rt_se);
+       p->se.exec_start = rq->clock_task;
+
+       return p;
+}
+
+static struct task_struct *pick_next_task_rt(struct rq *rq)
+{
+       struct task_struct *p = _pick_next_task_rt(rq);
+
+       /* The running task is never eligible for pushing */
+       if (p)
+               dequeue_pushable_task(rq, p);
+
+#ifdef CONFIG_SMP
+       /*
+        * We detect this state here so that we can avoid taking the RQ
+        * lock again later if there is no need to push
+        */
+       rq->post_schedule = has_pushable_tasks(rq);
+#endif
+
+       return p;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
+{
+       update_curr_rt(rq);
+
+       /*
+        * The previous task needs to be made eligible for pushing
+        * if it is still active
+        */
+       if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
+               enqueue_pushable_task(rq, p);
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define RT_MAX_TRIES 3
+
+static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+       if (!task_running(rq, p) &&
+           (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
+           (p->rt.nr_cpus_allowed > 1))
+               return 1;
+       return 0;
+}
+
+/* Return the second highest RT task, NULL otherwise */
+static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
+{
+       struct task_struct *next = NULL;
+       struct sched_rt_entity *rt_se;
+       struct rt_prio_array *array;
+       struct rt_rq *rt_rq;
+       int idx;
+
+       for_each_leaf_rt_rq(rt_rq, rq) {
+               array = &rt_rq->active;
+               idx = sched_find_first_bit(array->bitmap);
+next_idx:
+               if (idx >= MAX_RT_PRIO)
+                       continue;
+               if (next && next->prio < idx)
+                       continue;
+               list_for_each_entry(rt_se, array->queue + idx, run_list) {
+                       struct task_struct *p;
+
+                       if (!rt_entity_is_task(rt_se))
+                               continue;
+
+                       p = rt_task_of(rt_se);
+                       if (pick_rt_task(rq, p, cpu)) {
+                               next = p;
+                               break;
+                       }
+               }
+               if (!next) {
+                       idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
+                       goto next_idx;
+               }
+       }
+
+       return next;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
+
+static int find_lowest_rq(struct task_struct *task)
+{
+       struct sched_domain *sd;
+       struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
+       int this_cpu = smp_processor_id();
+       int cpu      = task_cpu(task);
+
+       /* Make sure the mask is initialized first */
+       if (unlikely(!lowest_mask))
+               return -1;
+
+       if (task->rt.nr_cpus_allowed == 1)
+               return -1; /* No other targets possible */
+
+       if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
+               return -1; /* No targets found */
+
+       /*
+        * At this point we have built a mask of cpus representing the
+        * lowest priority tasks in the system.  Now we want to elect
+        * the best one based on our affinity and topology.
+        *
+        * We prioritize the last cpu that the task executed on since
+        * it is most likely cache-hot in that location.
+        */
+       if (cpumask_test_cpu(cpu, lowest_mask))
+               return cpu;
+
+       /*
+        * Otherwise, we consult the sched_domains span maps to figure
+        * out which cpu is logically closest to our hot cache data.
+        */
+       if (!cpumask_test_cpu(this_cpu, lowest_mask))
+               this_cpu = -1; /* Skip this_cpu opt if not among lowest */
+
+       rcu_read_lock();
+       for_each_domain(cpu, sd) {
+               if (sd->flags & SD_WAKE_AFFINE) {
+                       int best_cpu;
+
+                       /*
+                        * "this_cpu" is cheaper to preempt than a
+                        * remote processor.
+                        */
+                       if (this_cpu != -1 &&
+                           cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+                               rcu_read_unlock();
+                               return this_cpu;
+                       }
+
+                       best_cpu = cpumask_first_and(lowest_mask,
+                                                    sched_domain_span(sd));
+                       if (best_cpu < nr_cpu_ids) {
+                               rcu_read_unlock();
+                               return best_cpu;
+                       }
+               }
+       }
+       rcu_read_unlock();
+
+       /*
+        * And finally, if there were no matches within the domains
+        * just give the caller *something* to work with from the compatible
+        * locations.
+        */
+       if (this_cpu != -1)
+               return this_cpu;
+
+       cpu = cpumask_any(lowest_mask);
+       if (cpu < nr_cpu_ids)
+               return cpu;
+       return -1;
+}
+
+/* Will lock the rq it finds */
+static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
+{
+       struct rq *lowest_rq = NULL;
+       int tries;
+       int cpu;
+
+       for (tries = 0; tries < RT_MAX_TRIES; tries++) {
+               cpu = find_lowest_rq(task);
+
+               if ((cpu == -1) || (cpu == rq->cpu))
+                       break;
+
+               lowest_rq = cpu_rq(cpu);
+
+               /* if the prio of this runqueue changed, try again */
+               if (double_lock_balance(rq, lowest_rq)) {
+                       /*
+                        * We had to unlock the run queue. In
+                        * the mean time, task could have
+                        * migrated already or had its affinity changed.
+                        * Also make sure that it wasn't scheduled on its rq.
+                        */
+                       if (unlikely(task_rq(task) != rq ||
+                                    !cpumask_test_cpu(lowest_rq->cpu,
+                                                      tsk_cpus_allowed(task)) ||
+                                    task_running(rq, task) ||
+                                    !task->on_rq)) {
+
+                               raw_spin_unlock(&lowest_rq->lock);
+                               lowest_rq = NULL;
+                               break;
+                       }
+               }
+
+               /* If this rq is still suitable use it. */
+               if (lowest_rq->rt.highest_prio.curr > task->prio)
+                       break;
+
+               /* try again */
+               double_unlock_balance(rq, lowest_rq);
+               lowest_rq = NULL;
+       }
+
+       return lowest_rq;
+}
+
+static struct task_struct *pick_next_pushable_task(struct rq *rq)
+{
+       struct task_struct *p;
+
+       if (!has_pushable_tasks(rq))
+               return NULL;
+
+       p = plist_first_entry(&rq->rt.pushable_tasks,
+                             struct task_struct, pushable_tasks);
+
+       BUG_ON(rq->cpu != task_cpu(p));
+       BUG_ON(task_current(rq, p));
+       BUG_ON(p->rt.nr_cpus_allowed <= 1);
+
+       BUG_ON(!p->on_rq);
+       BUG_ON(!rt_task(p));
+
+       return p;
+}
+
+/*
+ * If the current CPU has more than one RT task, see if the non
+ * running task can migrate over to a CPU that is running a task
+ * of lesser priority.
+ */
+static int push_rt_task(struct rq *rq)
+{
+       struct task_struct *next_task;
+       struct rq *lowest_rq;
+       int ret = 0;
+
+       if (!rq->rt.overloaded)
+               return 0;
+
+       next_task = pick_next_pushable_task(rq);
+       if (!next_task)
+               return 0;
+
+retry:
+       if (unlikely(next_task == rq->curr)) {
+               WARN_ON(1);
+               return 0;
+       }
+
+       /*
+        * It's possible that the next_task slipped in of
+        * higher priority than current. If that's the case
+        * just reschedule current.
+        */
+       if (unlikely(next_task->prio < rq->curr->prio)) {
+               resched_task(rq->curr);
+               return 0;
+       }
+
+       /* We might release rq lock */
+       get_task_struct(next_task);
+
+       /* find_lock_lowest_rq locks the rq if found */
+       lowest_rq = find_lock_lowest_rq(next_task, rq);
+       if (!lowest_rq) {
+               struct task_struct *task;
+               /*
+                * find_lock_lowest_rq releases rq->lock
+                * so it is possible that next_task has migrated.
+                *
+                * We need to make sure that the task is still on the same
+                * run-queue and is also still the next task eligible for
+                * pushing.
+                */
+               task = pick_next_pushable_task(rq);
+               if (task_cpu(next_task) == rq->cpu && task == next_task) {
+                       /*
+                        * The task hasn't migrated, and is still the next
+                        * eligible task, but we failed to find a run-queue
+                        * to push it to.  Do not retry in this case, since
+                        * other cpus will pull from us when ready.
+                        */
+                       goto out;
+               }
+
+               if (!task)
+                       /* No more tasks, just exit */
+                       goto out;
+
+               /*
+                * Something has shifted, try again.
+                */
+               put_task_struct(next_task);
+               next_task = task;
+               goto retry;
+       }
+
+       deactivate_task(rq, next_task, 0);
+       set_task_cpu(next_task, lowest_rq->cpu);
+       activate_task(lowest_rq, next_task, 0);
+       ret = 1;
+
+       resched_task(lowest_rq->curr);
+
+       double_unlock_balance(rq, lowest_rq);
+
+out:
+       put_task_struct(next_task);
+
+       return ret;
+}
+
+static void push_rt_tasks(struct rq *rq)
+{
+       /* push_rt_task will return true if it moved an RT */
+       while (push_rt_task(rq))
+               ;
+}
+
+static int pull_rt_task(struct rq *this_rq)
+{
+       int this_cpu = this_rq->cpu, ret = 0, cpu;
+       struct task_struct *p;
+       struct rq *src_rq;
+
+       if (likely(!rt_overloaded(this_rq)))
+               return 0;
+
+       for_each_cpu(cpu, this_rq->rd->rto_mask) {
+               if (this_cpu == cpu)
+                       continue;
+
+               src_rq = cpu_rq(cpu);
+
+               /*
+                * Don't bother taking the src_rq->lock if the next highest
+                * task is known to be lower-priority than our current task.
+                * This may look racy, but if this value is about to go
+                * logically higher, the src_rq will push this task away.
+                * And if its going logically lower, we do not care
+                */
+               if (src_rq->rt.highest_prio.next >=
+                   this_rq->rt.highest_prio.curr)
+                       continue;
+
+               /*
+                * We can potentially drop this_rq's lock in
+                * double_lock_balance, and another CPU could
+                * alter this_rq
+                */
+               double_lock_balance(this_rq, src_rq);
+
+               /*
+                * Are there still pullable RT tasks?
+                */
+               if (src_rq->rt.rt_nr_running <= 1)
+                       goto skip;
+
+               p = pick_next_highest_task_rt(src_rq, this_cpu);
+
+               /*
+                * Do we have an RT task that preempts
+                * the to-be-scheduled task?
+                */
+               if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
+                       WARN_ON(p == src_rq->curr);
+                       WARN_ON(!p->on_rq);
+
+                       /*
+                        * There's a chance that p is higher in priority
+                        * than what's currently running on its cpu.
+                        * This is just that p is wakeing up and hasn't
+                        * had a chance to schedule. We only pull
+                        * p if it is lower in priority than the
+                        * current task on the run queue
+                        */
+                       if (p->prio < src_rq->curr->prio)
+                               goto skip;
+
+                       ret = 1;
+
+                       deactivate_task(src_rq, p, 0);
+                       set_task_cpu(p, this_cpu);
+                       activate_task(this_rq, p, 0);
+                       /*
+                        * We continue with the search, just in
+                        * case there's an even higher prio task
+                        * in another runqueue. (low likelihood
+                        * but possible)
+                        */
+               }
+skip:
+               double_unlock_balance(this_rq, src_rq);
+       }
+
+       return ret;
+}
+
+static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
+{
+       /* Try to pull RT tasks here if we lower this rq's prio */
+       if (rq->rt.highest_prio.curr > prev->prio)
+               pull_rt_task(rq);
+}
+
+static void post_schedule_rt(struct rq *rq)
+{
+       push_rt_tasks(rq);
+}
+
+/*
+ * If we are not running and we are not going to reschedule soon, we should
+ * try to push tasks away now
+ */
+static void task_woken_rt(struct rq *rq, struct task_struct *p)
+{
+       if (!task_running(rq, p) &&
+           !test_tsk_need_resched(rq->curr) &&
+           has_pushable_tasks(rq) &&
+           p->rt.nr_cpus_allowed > 1 &&
+           rt_task(rq->curr) &&
+           (rq->curr->rt.nr_cpus_allowed < 2 ||
+            rq->curr->prio <= p->prio))
+               push_rt_tasks(rq);
+}
+
+static void set_cpus_allowed_rt(struct task_struct *p,
+                               const struct cpumask *new_mask)
+{
+       int weight = cpumask_weight(new_mask);
+
+       BUG_ON(!rt_task(p));
+
+       /*
+        * Update the migration status of the RQ if we have an RT task
+        * which is running AND changing its weight value.
+        */
+       if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
+               struct rq *rq = task_rq(p);
+
+               if (!task_current(rq, p)) {
+                       /*
+                        * Make sure we dequeue this task from the pushable list
+                        * before going further.  It will either remain off of
+                        * the list because we are no longer pushable, or it
+                        * will be requeued.
+                        */
+                       if (p->rt.nr_cpus_allowed > 1)
+                               dequeue_pushable_task(rq, p);
+
+                       /*
+                        * Requeue if our weight is changing and still > 1
+                        */
+                       if (weight > 1)
+                               enqueue_pushable_task(rq, p);
+
+               }
+
+               if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
+                       rq->rt.rt_nr_migratory++;
+               } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
+                       BUG_ON(!rq->rt.rt_nr_migratory);
+                       rq->rt.rt_nr_migratory--;
+               }
+
+               update_rt_migration(&rq->rt);
+       }
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_rt(struct rq *rq)
+{
+       if (rq->rt.overloaded)
+               rt_set_overload(rq);
+
+       __enable_runtime(rq);
+
+       cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_rt(struct rq *rq)
+{
+       if (rq->rt.overloaded)
+               rt_clear_overload(rq);
+
+       __disable_runtime(rq);
+
+       cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
+}
+
+/*
+ * When switch from the rt queue, we bring ourselves to a position
+ * that we might want to pull RT tasks from other runqueues.
+ */
+static void switched_from_rt(struct rq *rq, struct task_struct *p)
+{
+       /*
+        * If there are other RT tasks then we will reschedule
+        * and the scheduling of the other RT tasks will handle
+        * the balancing. But if we are the last RT task
+        * we may need to handle the pulling of RT tasks
+        * now.
+        */
+       if (p->on_rq && !rq->rt.rt_nr_running)
+               pull_rt_task(rq);
+}
+
+void init_sched_rt_class(void)
+{
+       unsigned int i;
+
+       for_each_possible_cpu(i) {
+               zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
+                                       GFP_KERNEL, cpu_to_node(i));
+       }
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * When switching a task to RT, we may overload the runqueue
+ * with RT tasks. In this case we try to push them off to
+ * other runqueues.
+ */
+static void switched_to_rt(struct rq *rq, struct task_struct *p)
+{
+       int check_resched = 1;
+
+       /*
+        * If we are already running, then there's nothing
+        * that needs to be done. But if we are not running
+        * we may need to preempt the current running task.
+        * If that current running task is also an RT task
+        * then see if we can move to another run queue.
+        */
+       if (p->on_rq && rq->curr != p) {
+#ifdef CONFIG_SMP
+               if (rq->rt.overloaded && push_rt_task(rq) &&
+                   /* Don't resched if we changed runqueues */
+                   rq != task_rq(p))
+                       check_resched = 0;
+#endif /* CONFIG_SMP */
+               if (check_resched && p->prio < rq->curr->prio)
+                       resched_task(rq->curr);
+       }
+}
+
+/*
+ * Priority of the task has changed. This may cause
+ * us to initiate a push or pull.
+ */
+static void
+prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
+{
+       if (!p->on_rq)
+               return;
+
+       if (rq->curr == p) {
+#ifdef CONFIG_SMP
+               /*
+                * If our priority decreases while running, we
+                * may need to pull tasks to this runqueue.
+                */
+               if (oldprio < p->prio)
+                       pull_rt_task(rq);
+               /*
+                * If there's a higher priority task waiting to run
+                * then reschedule. Note, the above pull_rt_task
+                * can release the rq lock and p could migrate.
+                * Only reschedule if p is still on the same runqueue.
+                */
+               if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
+                       resched_task(p);
+#else
+               /* For UP simply resched on drop of prio */
+               if (oldprio < p->prio)
+                       resched_task(p);
+#endif /* CONFIG_SMP */
+       } else {
+               /*
+                * This task is not running, but if it is
+                * greater than the current running task
+                * then reschedule.
+                */
+               if (p->prio < rq->curr->prio)
+                       resched_task(rq->curr);
+       }
+}
+
+static void watchdog(struct rq *rq, struct task_struct *p)
+{
+       unsigned long soft, hard;
+
+       /* max may change after cur was read, this will be fixed next tick */
+       soft = task_rlimit(p, RLIMIT_RTTIME);
+       hard = task_rlimit_max(p, RLIMIT_RTTIME);
+
+       if (soft != RLIM_INFINITY) {
+               unsigned long next;
+
+               p->rt.timeout++;
+               next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
+               if (p->rt.timeout > next)
+                       p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
+       }
+}
+
+static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
+{
+       update_curr_rt(rq);
+
+       watchdog(rq, p);
+
+       /*
+        * RR tasks need a special form of timeslice management.
+        * FIFO tasks have no timeslices.
+        */
+       if (p->policy != SCHED_RR)
+               return;
+
+       if (--p->rt.time_slice)
+               return;
+
+       p->rt.time_slice = DEF_TIMESLICE;
+
+       /*
+        * Requeue to the end of queue if we are not the only element
+        * on the queue:
+        */
+       if (p->rt.run_list.prev != p->rt.run_list.next) {
+               requeue_task_rt(rq, p, 0);
+               set_tsk_need_resched(p);
+       }
+}
+
+static void set_curr_task_rt(struct rq *rq)
+{
+       struct task_struct *p = rq->curr;
+
+       p->se.exec_start = rq->clock_task;
+
+       /* The running task is never eligible for pushing */
+       dequeue_pushable_task(rq, p);
+}
+
+static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
+{
+       /*
+        * Time slice is 0 for SCHED_FIFO tasks
+        */
+       if (task->policy == SCHED_RR)
+               return DEF_TIMESLICE;
+       else
+               return 0;
+}
+
+const struct sched_class rt_sched_class = {
+       .next                   = &fair_sched_class,
+       .enqueue_task           = enqueue_task_rt,
+       .dequeue_task           = dequeue_task_rt,
+       .yield_task             = yield_task_rt,
+
+       .check_preempt_curr     = check_preempt_curr_rt,
+
+       .pick_next_task         = pick_next_task_rt,
+       .put_prev_task          = put_prev_task_rt,
+
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_rt,
+
+       .set_cpus_allowed       = set_cpus_allowed_rt,
+       .rq_online              = rq_online_rt,
+       .rq_offline             = rq_offline_rt,
+       .pre_schedule           = pre_schedule_rt,
+       .post_schedule          = post_schedule_rt,
+       .task_woken             = task_woken_rt,
+       .switched_from          = switched_from_rt,
+#endif
+
+       .set_curr_task          = set_curr_task_rt,
+       .task_tick              = task_tick_rt,
+
+       .get_rr_interval        = get_rr_interval_rt,
+
+       .prio_changed           = prio_changed_rt,
+       .switched_to            = switched_to_rt,
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
+
+void print_rt_stats(struct seq_file *m, int cpu)
+{
+       rt_rq_iter_t iter;
+       struct rt_rq *rt_rq;
+
+       rcu_read_lock();
+       for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
+               print_rt_rq(m, cpu, rt_rq);
+       rcu_read_unlock();
+}
+#endif /* CONFIG_SCHED_DEBUG */
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
new file mode 100644 (file)
index 0000000..c2e7802
--- /dev/null
@@ -0,0 +1,1064 @@
+
+#include <linux/sched.h>
+#include <linux/mutex.h>
+#include <linux/spinlock.h>
+#include <linux/stop_machine.h>
+
+#include "cpupri.h"
+
+extern __read_mostly int scheduler_running;
+
+/*
+ * Convert user-nice values [ -20 ... 0 ... 19 ]
+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
+ * and back.
+ */
+#define NICE_TO_PRIO(nice)     (MAX_RT_PRIO + (nice) + 20)
+#define PRIO_TO_NICE(prio)     ((prio) - MAX_RT_PRIO - 20)
+#define TASK_NICE(p)           PRIO_TO_NICE((p)->static_prio)
+
+/*
+ * 'User priority' is the nice value converted to something we
+ * can work with better when scaling various scheduler parameters,
+ * it's a [ 0 ... 39 ] range.
+ */
+#define USER_PRIO(p)           ((p)-MAX_RT_PRIO)
+#define TASK_USER_PRIO(p)      USER_PRIO((p)->static_prio)
+#define MAX_USER_PRIO          (USER_PRIO(MAX_PRIO))
+
+/*
+ * Helpers for converting nanosecond timing to jiffy resolution
+ */
+#define NS_TO_JIFFIES(TIME)    ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
+
+#define NICE_0_LOAD            SCHED_LOAD_SCALE
+#define NICE_0_SHIFT           SCHED_LOAD_SHIFT
+
+/*
+ * These are the 'tuning knobs' of the scheduler:
+ *
+ * default timeslice is 100 msecs (used only for SCHED_RR tasks).
+ * Timeslices get refilled after they expire.
+ */
+#define DEF_TIMESLICE          (100 * HZ / 1000)
+
+/*
+ * single value that denotes runtime == period, ie unlimited time.
+ */
+#define RUNTIME_INF    ((u64)~0ULL)
+
+static inline int rt_policy(int policy)
+{
+       if (policy == SCHED_FIFO || policy == SCHED_RR)
+               return 1;
+       return 0;
+}
+
+static inline int task_has_rt_policy(struct task_struct *p)
+{
+       return rt_policy(p->policy);
+}
+
+/*
+ * This is the priority-queue data structure of the RT scheduling class:
+ */
+struct rt_prio_array {
+       DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
+       struct list_head queue[MAX_RT_PRIO];
+};
+
+struct rt_bandwidth {
+       /* nests inside the rq lock: */
+       raw_spinlock_t          rt_runtime_lock;
+       ktime_t                 rt_period;
+       u64                     rt_runtime;
+       struct hrtimer          rt_period_timer;
+};
+
+extern struct mutex sched_domains_mutex;
+
+#ifdef CONFIG_CGROUP_SCHED
+
+#include <linux/cgroup.h>
+
+struct cfs_rq;
+struct rt_rq;
+
+static LIST_HEAD(task_groups);
+
+struct cfs_bandwidth {
+#ifdef CONFIG_CFS_BANDWIDTH
+       raw_spinlock_t lock;
+       ktime_t period;
+       u64 quota, runtime;
+       s64 hierarchal_quota;
+       u64 runtime_expires;
+
+       int idle, timer_active;
+       struct hrtimer period_timer, slack_timer;
+       struct list_head throttled_cfs_rq;
+
+       /* statistics */
+       int nr_periods, nr_throttled;
+       u64 throttled_time;
+#endif
+};
+
+/* task group related information */
+struct task_group {
+       struct cgroup_subsys_state css;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       /* schedulable entities of this group on each cpu */
+       struct sched_entity **se;
+       /* runqueue "owned" by this group on each cpu */
+       struct cfs_rq **cfs_rq;
+       unsigned long shares;
+
+       atomic_t load_weight;
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       struct sched_rt_entity **rt_se;
+       struct rt_rq **rt_rq;
+
+       struct rt_bandwidth rt_bandwidth;
+#endif
+
+       struct rcu_head rcu;
+       struct list_head list;
+
+       struct task_group *parent;
+       struct list_head siblings;
+       struct list_head children;
+
+#ifdef CONFIG_SCHED_AUTOGROUP
+       struct autogroup *autogroup;
+#endif
+
+       struct cfs_bandwidth cfs_bandwidth;
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+#define ROOT_TASK_GROUP_LOAD   NICE_0_LOAD
+
+/*
+ * A weight of 0 or 1 can cause arithmetics problems.
+ * A weight of a cfs_rq is the sum of weights of which entities
+ * are queued on this cfs_rq, so a weight of a entity should not be
+ * too large, so as the shares value of a task group.
+ * (The default weight is 1024 - so there's no practical
+ *  limitation from this.)
+ */
+#define MIN_SHARES     (1UL <<  1)
+#define MAX_SHARES     (1UL << 18)
+#endif
+
+/* Default task group.
+ *     Every task in system belong to this group at bootup.
+ */
+extern struct task_group root_task_group;
+
+typedef int (*tg_visitor)(struct task_group *, void *);
+
+extern int walk_tg_tree_from(struct task_group *from,
+                            tg_visitor down, tg_visitor up, void *data);
+
+/*
+ * Iterate the full tree, calling @down when first entering a node and @up when
+ * leaving it for the final time.
+ *
+ * Caller must hold rcu_lock or sufficient equivalent.
+ */
+static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
+{
+       return walk_tg_tree_from(&root_task_group, down, up, data);
+}
+
+extern int tg_nop(struct task_group *tg, void *data);
+
+extern void free_fair_sched_group(struct task_group *tg);
+extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
+extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
+extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
+                       struct sched_entity *se, int cpu,
+                       struct sched_entity *parent);
+extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+
+extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
+extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
+
+extern void free_rt_sched_group(struct task_group *tg);
+extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
+extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+               struct sched_rt_entity *rt_se, int cpu,
+               struct sched_rt_entity *parent);
+
+#else /* CONFIG_CGROUP_SCHED */
+
+struct cfs_bandwidth { };
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+/* CFS-related fields in a runqueue */
+struct cfs_rq {
+       struct load_weight load;
+       unsigned long nr_running, h_nr_running;
+
+       u64 exec_clock;
+       u64 min_vruntime;
+#ifndef CONFIG_64BIT
+       u64 min_vruntime_copy;
+#endif
+
+       struct rb_root tasks_timeline;
+       struct rb_node *rb_leftmost;
+
+       struct list_head tasks;
+       struct list_head *balance_iterator;
+
+       /*
+        * 'curr' points to currently running entity on this cfs_rq.
+        * It is set to NULL otherwise (i.e when none are currently running).
+        */
+       struct sched_entity *curr, *next, *last, *skip;
+
+#ifdef CONFIG_SCHED_DEBUG
+       unsigned int nr_spread_over;
+#endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
+
+       /*
+        * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+        * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+        * (like users, containers etc.)
+        *
+        * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
+        * list is used during load balance.
+        */
+       int on_list;
+       struct list_head leaf_cfs_rq_list;
+       struct task_group *tg;  /* group that "owns" this runqueue */
+
+#ifdef CONFIG_SMP
+       /*
+        * the part of load.weight contributed by tasks
+        */
+       unsigned long task_weight;
+
+       /*
+        *   h_load = weight * f(tg)
+        *
+        * Where f(tg) is the recursive weight fraction assigned to
+        * this group.
+        */
+       unsigned long h_load;
+
+       /*
+        * Maintaining per-cpu shares distribution for group scheduling
+        *
+        * load_stamp is the last time we updated the load average
+        * load_last is the last time we updated the load average and saw load
+        * load_unacc_exec_time is currently unaccounted execution time
+        */
+       u64 load_avg;
+       u64 load_period;
+       u64 load_stamp, load_last, load_unacc_exec_time;
+
+       unsigned long load_contribution;
+#endif /* CONFIG_SMP */
+#ifdef CONFIG_CFS_BANDWIDTH
+       int runtime_enabled;
+       u64 runtime_expires;
+       s64 runtime_remaining;
+
+       u64 throttled_timestamp;
+       int throttled, throttle_count;
+       struct list_head throttled_list;
+#endif /* CONFIG_CFS_BANDWIDTH */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+};
+
+static inline int rt_bandwidth_enabled(void)
+{
+       return sysctl_sched_rt_runtime >= 0;
+}
+
+/* Real-Time classes' related field in a runqueue: */
+struct rt_rq {
+       struct rt_prio_array active;
+       unsigned long rt_nr_running;
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+       struct {
+               int curr; /* highest queued rt task prio */
+#ifdef CONFIG_SMP
+               int next; /* next highest */
+#endif
+       } highest_prio;
+#endif
+#ifdef CONFIG_SMP
+       unsigned long rt_nr_migratory;
+       unsigned long rt_nr_total;
+       int overloaded;
+       struct plist_head pushable_tasks;
+#endif
+       int rt_throttled;
+       u64 rt_time;
+       u64 rt_runtime;
+       /* Nests inside the rq lock: */
+       raw_spinlock_t rt_runtime_lock;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       unsigned long rt_nr_boosted;
+
+       struct rq *rq;
+       struct list_head leaf_rt_rq_list;
+       struct task_group *tg;
+#endif
+};
+
+#ifdef CONFIG_SMP
+
+/*
+ * We add the notion of a root-domain which will be used to define per-domain
+ * variables. Each exclusive cpuset essentially defines an island domain by
+ * fully partitioning the member cpus from any other cpuset. Whenever a new
+ * exclusive cpuset is created, we also create and attach a new root-domain
+ * object.
+ *
+ */
+struct root_domain {
+       atomic_t refcount;
+       atomic_t rto_count;
+       struct rcu_head rcu;
+       cpumask_var_t span;
+       cpumask_var_t online;
+
+       /*
+        * The "RT overload" flag: it gets set if a CPU has more than
+        * one runnable RT task.
+        */
+       cpumask_var_t rto_mask;
+       struct cpupri cpupri;
+};
+
+extern struct root_domain def_root_domain;
+
+#endif /* CONFIG_SMP */
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ *
+ * Locking rule: those places that want to lock multiple runqueues
+ * (such as the load balancing or the thread migration code), lock
+ * acquire operations must be ordered by ascending &runqueue.
+ */
+struct rq {
+       /* runqueue lock: */
+       raw_spinlock_t lock;
+
+       /*
+        * nr_running and cpu_load should be in the same cacheline because
+        * remote CPUs use both these fields when doing load calculation.
+        */
+       unsigned long nr_running;
+       #define CPU_LOAD_IDX_MAX 5
+       unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+       unsigned long last_load_update_tick;
+#ifdef CONFIG_NO_HZ
+       u64 nohz_stamp;
+       unsigned char nohz_balance_kick;
+#endif
+       int skip_clock_update;
+
+       /* capture load from *all* tasks on this cpu: */
+       struct load_weight load;
+       unsigned long nr_load_updates;
+       u64 nr_switches;
+
+       struct cfs_rq cfs;
+       struct rt_rq rt;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       /* list of leaf cfs_rq on this cpu: */
+       struct list_head leaf_cfs_rq_list;
+#endif
+#ifdef CONFIG_RT_GROUP_SCHED
+       struct list_head leaf_rt_rq_list;
+#endif
+
+       /*
+        * This is part of a global counter where only the total sum
+        * over all CPUs matters. A task can increase this counter on
+        * one CPU and if it got migrated afterwards it may decrease
+        * it on another CPU. Always updated under the runqueue lock:
+        */
+       unsigned long nr_uninterruptible;
+
+       struct task_struct *curr, *idle, *stop;
+       unsigned long next_balance;
+       struct mm_struct *prev_mm;
+
+       u64 clock;
+       u64 clock_task;
+
+       atomic_t nr_iowait;
+
+#ifdef CONFIG_SMP
+       struct root_domain *rd;
+       struct sched_domain *sd;
+
+       unsigned long cpu_power;
+
+       unsigned char idle_balance;
+       /* For active balancing */
+       int post_schedule;
+       int active_balance;
+       int push_cpu;
+       struct cpu_stop_work active_balance_work;
+       /* cpu of this runqueue: */
+       int cpu;
+       int online;
+
+       u64 rt_avg;
+       u64 age_stamp;
+       u64 idle_stamp;
+       u64 avg_idle;
+#endif
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+       u64 prev_irq_time;
+#endif
+#ifdef CONFIG_PARAVIRT
+       u64 prev_steal_time;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+       u64 prev_steal_time_rq;
+#endif
+
+       /* calc_load related fields */
+       unsigned long calc_load_update;
+       long calc_load_active;
+
+#ifdef CONFIG_SCHED_HRTICK
+#ifdef CONFIG_SMP
+       int hrtick_csd_pending;
+       struct call_single_data hrtick_csd;
+#endif
+       struct hrtimer hrtick_timer;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+       /* latency stats */
+       struct sched_info rq_sched_info;
+       unsigned long long rq_cpu_time;
+       /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
+
+       /* sys_sched_yield() stats */
+       unsigned int yld_count;
+
+       /* schedule() stats */
+       unsigned int sched_switch;
+       unsigned int sched_count;
+       unsigned int sched_goidle;
+
+       /* try_to_wake_up() stats */
+       unsigned int ttwu_count;
+       unsigned int ttwu_local;
+#endif
+
+#ifdef CONFIG_SMP
+       struct llist_head wake_list;
+#endif
+};
+
+static inline int cpu_of(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+       return rq->cpu;
+#else
+       return 0;
+#endif
+}
+
+DECLARE_PER_CPU(struct rq, runqueues);
+
+#define rcu_dereference_check_sched_domain(p) \
+       rcu_dereference_check((p), \
+                             lockdep_is_held(&sched_domains_mutex))
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+       for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
+
+#define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
+#define this_rq()              (&__get_cpu_var(runqueues))
+#define task_rq(p)             cpu_rq(task_cpu(p))
+#define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
+#define raw_rq()               (&__raw_get_cpu_var(runqueues))
+
+#include "stats.h"
+#include "auto_group.h"
+
+#ifdef CONFIG_CGROUP_SCHED
+
+/*
+ * Return the group to which this tasks belongs.
+ *
+ * We use task_subsys_state_check() and extend the RCU verification with
+ * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
+ * task it moves into the cgroup. Therefore by holding either of those locks,
+ * we pin the task to the current cgroup.
+ */
+static inline struct task_group *task_group(struct task_struct *p)
+{
+       struct task_group *tg;
+       struct cgroup_subsys_state *css;
+
+       css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
+                       lockdep_is_held(&p->pi_lock) ||
+                       lockdep_is_held(&task_rq(p)->lock));
+       tg = container_of(css, struct task_group, css);
+
+       return autogroup_task_group(p, tg);
+}
+
+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
+{
+#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
+       struct task_group *tg = task_group(p);
+#endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+       p->se.cfs_rq = tg->cfs_rq[cpu];
+       p->se.parent = tg->se[cpu];
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+       p->rt.rt_rq  = tg->rt_rq[cpu];
+       p->rt.parent = tg->rt_se[cpu];
+#endif
+}
+
+#else /* CONFIG_CGROUP_SCHED */
+
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
+static inline struct task_group *task_group(struct task_struct *p)
+{
+       return NULL;
+}
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+       set_task_rq(p, cpu);
+#ifdef CONFIG_SMP
+       /*
+        * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+        * successfuly executed on another CPU. We must ensure that updates of
+        * per-task data have been completed by this moment.
+        */
+       smp_wmb();
+       task_thread_info(p)->cpu = cpu;
+#endif
+}
+
+/*
+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ */
+#ifdef CONFIG_SCHED_DEBUG
+# define const_debug __read_mostly
+#else
+# define const_debug const
+#endif
+
+extern const_debug unsigned int sysctl_sched_features;
+
+#define SCHED_FEAT(name, enabled)      \
+       __SCHED_FEAT_##name ,
+
+enum {
+#include "features.h"
+};
+
+#undef SCHED_FEAT
+
+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+
+static inline u64 global_rt_period(void)
+{
+       return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
+}
+
+static inline u64 global_rt_runtime(void)
+{
+       if (sysctl_sched_rt_runtime < 0)
+               return RUNTIME_INF;
+
+       return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
+}
+
+
+
+static inline int task_current(struct rq *rq, struct task_struct *p)
+{
+       return rq->curr == p;
+}
+
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+       return p->on_cpu;
+#else
+       return task_current(rq, p);
+#endif
+}
+
+
+#ifndef prepare_arch_switch
+# define prepare_arch_switch(next)     do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev)      do { } while (0)
+#endif
+
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+#ifdef CONFIG_SMP
+       /*
+        * We can optimise this out completely for !SMP, because the
+        * SMP rebalancing from interrupt is the only thing that cares
+        * here.
+        */
+       next->on_cpu = 1;
+#endif
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+       /*
+        * After ->on_cpu is cleared, the task can be moved to a different CPU.
+        * We must ensure this doesn't happen until the switch is completely
+        * finished.
+        */
+       smp_wmb();
+       prev->on_cpu = 0;
+#endif
+#ifdef CONFIG_DEBUG_SPINLOCK
+       /* this is a valid case when another task releases the spinlock */
+       rq->lock.owner = current;
+#endif
+       /*
+        * If we are tracking spinlock dependencies then we have to
+        * fix up the runqueue lock - which gets 'carried over' from
+        * prev into current:
+        */
+       spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
+
+       raw_spin_unlock_irq(&rq->lock);
+}
+
+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+#ifdef CONFIG_SMP
+       /*
+        * We can optimise this out completely for !SMP, because the
+        * SMP rebalancing from interrupt is the only thing that cares
+        * here.
+        */
+       next->on_cpu = 1;
+#endif
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       raw_spin_unlock_irq(&rq->lock);
+#else
+       raw_spin_unlock(&rq->lock);
+#endif
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+       /*
+        * After ->on_cpu is cleared, the task can be moved to a different CPU.
+        * We must ensure this doesn't happen until the switch is completely
+        * finished.
+        */
+       smp_wmb();
+       prev->on_cpu = 0;
+#endif
+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       local_irq_enable();
+#endif
+}
+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
+
+
+static inline void update_load_add(struct load_weight *lw, unsigned long inc)
+{
+       lw->weight += inc;
+       lw->inv_weight = 0;
+}
+
+static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
+{
+       lw->weight -= dec;
+       lw->inv_weight = 0;
+}
+
+static inline void update_load_set(struct load_weight *lw, unsigned long w)
+{
+       lw->weight = w;
+       lw->inv_weight = 0;
+}
+
+/*
+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
+ * of tasks with abnormal "nice" values across CPUs the contribution that
+ * each task makes to its run queue's load is weighted according to its
+ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
+ * scaled version of the new time slice allocation that they receive on time
+ * slice expiry etc.
+ */
+
+#define WEIGHT_IDLEPRIO                3
+#define WMULT_IDLEPRIO         1431655765
+
+/*
+ * Nice levels are multiplicative, with a gentle 10% change for every
+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
+ * nice 1, it will get ~10% less CPU time than another CPU-bound task
+ * that remained on nice 0.
+ *
+ * The "10% effect" is relative and cumulative: from _any_ nice level,
+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
+ * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
+ * If a task goes up by ~10% and another task goes down by ~10% then
+ * the relative distance between them is ~25%.)
+ */
+static const int prio_to_weight[40] = {
+ /* -20 */     88761,     71755,     56483,     46273,     36291,
+ /* -15 */     29154,     23254,     18705,     14949,     11916,
+ /* -10 */      9548,      7620,      6100,      4904,      3906,
+ /*  -5 */      3121,      2501,      1991,      1586,      1277,
+ /*   0 */      1024,       820,       655,       526,       423,
+ /*   5 */       335,       272,       215,       172,       137,
+ /*  10 */       110,        87,        70,        56,        45,
+ /*  15 */        36,        29,        23,        18,        15,
+};
+
+/*
+ * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
+ *
+ * In cases where the weight does not change often, we can use the
+ * precalculated inverse to speed up arithmetics by turning divisions
+ * into multiplications:
+ */
+static const u32 prio_to_wmult[40] = {
+ /* -20 */     48388,     59856,     76040,     92818,    118348,
+ /* -15 */    147320,    184698,    229616,    287308,    360437,
+ /* -10 */    449829,    563644,    704093,    875809,   1099582,
+ /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
+ /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
+ /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
+ /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
+ /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
+};
+
+/* Time spent by the tasks of the cpu accounting group executing in ... */
+enum cpuacct_stat_index {
+       CPUACCT_STAT_USER,      /* ... user mode */
+       CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
+
+       CPUACCT_STAT_NSTATS,
+};
+
+
+#define sched_class_highest (&stop_sched_class)
+#define for_each_class(class) \
+   for (class = sched_class_highest; class; class = class->next)
+
+extern const struct sched_class stop_sched_class;
+extern const struct sched_class rt_sched_class;
+extern const struct sched_class fair_sched_class;
+extern const struct sched_class idle_sched_class;
+
+
+#ifdef CONFIG_SMP
+
+extern void trigger_load_balance(struct rq *rq, int cpu);
+extern void idle_balance(int this_cpu, struct rq *this_rq);
+
+#else  /* CONFIG_SMP */
+
+static inline void idle_balance(int cpu, struct rq *rq)
+{
+}
+
+#endif
+
+extern void sysrq_sched_debug_show(void);
+extern void sched_init_granularity(void);
+extern void update_max_interval(void);
+extern void update_group_power(struct sched_domain *sd, int cpu);
+extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
+extern void init_sched_rt_class(void);
+extern void init_sched_fair_class(void);
+
+extern void resched_task(struct task_struct *p);
+extern void resched_cpu(int cpu);
+
+extern struct rt_bandwidth def_rt_bandwidth;
+extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
+
+extern void update_cpu_load(struct rq *this_rq);
+
+#ifdef CONFIG_CGROUP_CPUACCT
+extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
+extern void cpuacct_update_stats(struct task_struct *tsk,
+               enum cpuacct_stat_index idx, cputime_t val);
+#else
+static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
+static inline void cpuacct_update_stats(struct task_struct *tsk,
+               enum cpuacct_stat_index idx, cputime_t val) {}
+#endif
+
+static inline void inc_nr_running(struct rq *rq)
+{
+       rq->nr_running++;
+}
+
+static inline void dec_nr_running(struct rq *rq)
+{
+       rq->nr_running--;
+}
+
+extern void update_rq_clock(struct rq *rq);
+
+extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
+extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
+
+extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
+
+extern const_debug unsigned int sysctl_sched_time_avg;
+extern const_debug unsigned int sysctl_sched_nr_migrate;
+extern const_debug unsigned int sysctl_sched_migration_cost;
+
+static inline u64 sched_avg_period(void)
+{
+       return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
+}
+
+void calc_load_account_idle(struct rq *this_rq);
+
+#ifdef CONFIG_SCHED_HRTICK
+
+/*
+ * Use hrtick when:
+ *  - enabled by features
+ *  - hrtimer is actually high res
+ */
+static inline int hrtick_enabled(struct rq *rq)
+{
+       if (!sched_feat(HRTICK))
+               return 0;
+       if (!cpu_active(cpu_of(rq)))
+               return 0;
+       return hrtimer_is_hres_active(&rq->hrtick_timer);
+}
+
+void hrtick_start(struct rq *rq, u64 delay);
+
+#endif /* CONFIG_SCHED_HRTICK */
+
+#ifdef CONFIG_SMP
+extern void sched_avg_update(struct rq *rq);
+static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
+{
+       rq->rt_avg += rt_delta;
+       sched_avg_update(rq);
+}
+#else
+static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
+static inline void sched_avg_update(struct rq *rq) { }
+#endif
+
+extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
+
+#ifdef CONFIG_SMP
+#ifdef CONFIG_PREEMPT
+
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
+
+/*
+ * fair double_lock_balance: Safely acquires both rq->locks in a fair
+ * way at the expense of forcing extra atomic operations in all
+ * invocations.  This assures that the double_lock is acquired using the
+ * same underlying policy as the spinlock_t on this architecture, which
+ * reduces latency compared to the unfair variant below.  However, it
+ * also adds more overhead and therefore may reduce throughput.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
+{
+       raw_spin_unlock(&this_rq->lock);
+       double_rq_lock(this_rq, busiest);
+
+       return 1;
+}
+
+#else
+/*
+ * Unfair double_lock_balance: Optimizes throughput at the expense of
+ * latency by eliminating extra atomic operations when the locks are
+ * already in proper order on entry.  This favors lower cpu-ids and will
+ * grant the double lock to lower cpus over higher ids under contention,
+ * regardless of entry order into the function.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(this_rq->lock)
+       __acquires(busiest->lock)
+       __acquires(this_rq->lock)
+{
+       int ret = 0;
+
+       if (unlikely(!raw_spin_trylock(&busiest->lock))) {
+               if (busiest < this_rq) {
+                       raw_spin_unlock(&this_rq->lock);
+                       raw_spin_lock(&busiest->lock);
+                       raw_spin_lock_nested(&this_rq->lock,
+                                             SINGLE_DEPTH_NESTING);
+                       ret = 1;
+               } else
+                       raw_spin_lock_nested(&busiest->lock,
+                                             SINGLE_DEPTH_NESTING);
+       }
+       return ret;
+}
+
+#endif /* CONFIG_PREEMPT */
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+{
+       if (unlikely(!irqs_disabled())) {
+               /* printk() doesn't work good under rq->lock */
+               raw_spin_unlock(&this_rq->lock);
+               BUG_ON(1);
+       }
+
+       return _double_lock_balance(this_rq, busiest);
+}
+
+static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
+       __releases(busiest->lock)
+{
+       raw_spin_unlock(&busiest->lock);
+       lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
+}
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
+{
+       BUG_ON(!irqs_disabled());
+       if (rq1 == rq2) {
+               raw_spin_lock(&rq1->lock);
+               __acquire(rq2->lock);   /* Fake it out ;) */
+       } else {
+               if (rq1 < rq2) {
+                       raw_spin_lock(&rq1->lock);
+                       raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
+               } else {
+                       raw_spin_lock(&rq2->lock);
+                       raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
+               }
+       }
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
+{
+       raw_spin_unlock(&rq1->lock);
+       if (rq1 != rq2)
+               raw_spin_unlock(&rq2->lock);
+       else
+               __release(rq2->lock);
+}
+
+#else /* CONFIG_SMP */
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+       __acquires(rq1->lock)
+       __acquires(rq2->lock)
+{
+       BUG_ON(!irqs_disabled());
+       BUG_ON(rq1 != rq2);
+       raw_spin_lock(&rq1->lock);
+       __acquire(rq2->lock);   /* Fake it out ;) */
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+       __releases(rq1->lock)
+       __releases(rq2->lock)
+{
+       BUG_ON(rq1 != rq2);
+       raw_spin_unlock(&rq1->lock);
+       __release(rq2->lock);
+}
+
+#endif
+
+extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
+extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
+extern void print_cfs_stats(struct seq_file *m, int cpu);
+extern void print_rt_stats(struct seq_file *m, int cpu);
+
+extern void init_cfs_rq(struct cfs_rq *cfs_rq);
+extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
+extern void unthrottle_offline_cfs_rqs(struct rq *rq);
+
+extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
new file mode 100644 (file)
index 0000000..2a581ba
--- /dev/null
@@ -0,0 +1,111 @@
+
+#include <linux/slab.h>
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/proc_fs.h>
+
+#include "sched.h"
+
+/*
+ * bump this up when changing the output format or the meaning of an existing
+ * format, so that tools can adapt (or abort)
+ */
+#define SCHEDSTAT_VERSION 15
+
+static int show_schedstat(struct seq_file *seq, void *v)
+{
+       int cpu;
+       int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9;
+       char *mask_str = kmalloc(mask_len, GFP_KERNEL);
+
+       if (mask_str == NULL)
+               return -ENOMEM;
+
+       seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
+       seq_printf(seq, "timestamp %lu\n", jiffies);
+       for_each_online_cpu(cpu) {
+               struct rq *rq = cpu_rq(cpu);
+#ifdef CONFIG_SMP
+               struct sched_domain *sd;
+               int dcount = 0;
+#endif
+
+               /* runqueue-specific stats */
+               seq_printf(seq,
+                   "cpu%d %u %u %u %u %u %u %llu %llu %lu",
+                   cpu, rq->yld_count,
+                   rq->sched_switch, rq->sched_count, rq->sched_goidle,
+                   rq->ttwu_count, rq->ttwu_local,
+                   rq->rq_cpu_time,
+                   rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
+
+               seq_printf(seq, "\n");
+
+#ifdef CONFIG_SMP
+               /* domain-specific stats */
+               rcu_read_lock();
+               for_each_domain(cpu, sd) {
+                       enum cpu_idle_type itype;
+
+                       cpumask_scnprintf(mask_str, mask_len,
+                                         sched_domain_span(sd));
+                       seq_printf(seq, "domain%d %s", dcount++, mask_str);
+                       for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
+                                       itype++) {
+                               seq_printf(seq, " %u %u %u %u %u %u %u %u",
+                                   sd->lb_count[itype],
+                                   sd->lb_balanced[itype],
+                                   sd->lb_failed[itype],
+                                   sd->lb_imbalance[itype],
+                                   sd->lb_gained[itype],
+                                   sd->lb_hot_gained[itype],
+                                   sd->lb_nobusyq[itype],
+                                   sd->lb_nobusyg[itype]);
+                       }
+                       seq_printf(seq,
+                                  " %u %u %u %u %u %u %u %u %u %u %u %u\n",
+                           sd->alb_count, sd->alb_failed, sd->alb_pushed,
+                           sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
+                           sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
+                           sd->ttwu_wake_remote, sd->ttwu_move_affine,
+                           sd->ttwu_move_balance);
+               }
+               rcu_read_unlock();
+#endif
+       }
+       kfree(mask_str);
+       return 0;
+}
+
+static int schedstat_open(struct inode *inode, struct file *file)
+{
+       unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
+       char *buf = kmalloc(size, GFP_KERNEL);
+       struct seq_file *m;
+       int res;
+
+       if (!buf)
+               return -ENOMEM;
+       res = single_open(file, show_schedstat, NULL);
+       if (!res) {
+               m = file->private_data;
+               m->buf = buf;
+               m->size = size;
+       } else
+               kfree(buf);
+       return res;
+}
+
+static const struct file_operations proc_schedstat_operations = {
+       .open    = schedstat_open,
+       .read    = seq_read,
+       .llseek  = seq_lseek,
+       .release = single_release,
+};
+
+static int __init proc_schedstat_init(void)
+{
+       proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
+       return 0;
+}
+module_init(proc_schedstat_init);
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
new file mode 100644 (file)
index 0000000..ea2b6f0
--- /dev/null
@@ -0,0 +1,233 @@
+
+#ifdef CONFIG_SCHEDSTATS
+
+/*
+ * Expects runqueue lock to be held for atomicity of update
+ */
+static inline void
+rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
+{
+       if (rq) {
+               rq->rq_sched_info.run_delay += delta;
+               rq->rq_sched_info.pcount++;
+       }
+}
+
+/*
+ * Expects runqueue lock to be held for atomicity of update
+ */
+static inline void
+rq_sched_info_depart(struct rq *rq, unsigned long long delta)
+{
+       if (rq)
+               rq->rq_cpu_time += delta;
+}
+
+static inline void
+rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
+{
+       if (rq)
+               rq->rq_sched_info.run_delay += delta;
+}
+# define schedstat_inc(rq, field)      do { (rq)->field++; } while (0)
+# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
+# define schedstat_set(var, val)       do { var = (val); } while (0)
+#else /* !CONFIG_SCHEDSTATS */
+static inline void
+rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
+{}
+static inline void
+rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
+{}
+static inline void
+rq_sched_info_depart(struct rq *rq, unsigned long long delta)
+{}
+# define schedstat_inc(rq, field)      do { } while (0)
+# define schedstat_add(rq, field, amt) do { } while (0)
+# define schedstat_set(var, val)       do { } while (0)
+#endif
+
+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
+static inline void sched_info_reset_dequeued(struct task_struct *t)
+{
+       t->sched_info.last_queued = 0;
+}
+
+/*
+ * We are interested in knowing how long it was from the *first* time a
+ * task was queued to the time that it finally hit a cpu, we call this routine
+ * from dequeue_task() to account for possible rq->clock skew across cpus. The
+ * delta taken on each cpu would annul the skew.
+ */
+static inline void sched_info_dequeued(struct task_struct *t)
+{
+       unsigned long long now = task_rq(t)->clock, delta = 0;
+
+       if (unlikely(sched_info_on()))
+               if (t->sched_info.last_queued)
+                       delta = now - t->sched_info.last_queued;
+       sched_info_reset_dequeued(t);
+       t->sched_info.run_delay += delta;
+
+       rq_sched_info_dequeued(task_rq(t), delta);
+}
+
+/*
+ * Called when a task finally hits the cpu.  We can now calculate how
+ * long it was waiting to run.  We also note when it began so that we
+ * can keep stats on how long its timeslice is.
+ */
+static void sched_info_arrive(struct task_struct *t)
+{
+       unsigned long long now = task_rq(t)->clock, delta = 0;
+
+       if (t->sched_info.last_queued)
+               delta = now - t->sched_info.last_queued;
+       sched_info_reset_dequeued(t);
+       t->sched_info.run_delay += delta;
+       t->sched_info.last_arrival = now;
+       t->sched_info.pcount++;
+
+       rq_sched_info_arrive(task_rq(t), delta);
+}
+
+/*
+ * This function is only called from enqueue_task(), but also only updates
+ * the timestamp if it is already not set.  It's assumed that
+ * sched_info_dequeued() will clear that stamp when appropriate.
+ */
+static inline void sched_info_queued(struct task_struct *t)
+{
+       if (unlikely(sched_info_on()))
+               if (!t->sched_info.last_queued)
+                       t->sched_info.last_queued = task_rq(t)->clock;
+}
+
+/*
+ * Called when a process ceases being the active-running process, either
+ * voluntarily or involuntarily.  Now we can calculate how long we ran.
+ * Also, if the process is still in the TASK_RUNNING state, call
+ * sched_info_queued() to mark that it has now again started waiting on
+ * the runqueue.
+ */
+static inline void sched_info_depart(struct task_struct *t)
+{
+       unsigned long long delta = task_rq(t)->clock -
+                                       t->sched_info.last_arrival;
+
+       rq_sched_info_depart(task_rq(t), delta);
+
+       if (t->state == TASK_RUNNING)
+               sched_info_queued(t);
+}
+
+/*
+ * Called when tasks are switched involuntarily due, typically, to expiring
+ * their time slice.  (This may also be called when switching to or from
+ * the idle task.)  We are only called when prev != next.
+ */
+static inline void
+__sched_info_switch(struct task_struct *prev, struct task_struct *next)
+{
+       struct rq *rq = task_rq(prev);
+
+       /*
+        * prev now departs the cpu.  It's not interesting to record
+        * stats about how efficient we were at scheduling the idle
+        * process, however.
+        */
+       if (prev != rq->idle)
+               sched_info_depart(prev);
+
+       if (next != rq->idle)
+               sched_info_arrive(next);
+}
+static inline void
+sched_info_switch(struct task_struct *prev, struct task_struct *next)
+{
+       if (unlikely(sched_info_on()))
+               __sched_info_switch(prev, next);
+}
+#else
+#define sched_info_queued(t)                   do { } while (0)
+#define sched_info_reset_dequeued(t)   do { } while (0)
+#define sched_info_dequeued(t)                 do { } while (0)
+#define sched_info_switch(t, next)             do { } while (0)
+#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
+
+/*
+ * The following are functions that support scheduler-internal time accounting.
+ * These functions are generally called at the timer tick.  None of this depends
+ * on CONFIG_SCHEDSTATS.
+ */
+
+/**
+ * account_group_user_time - Maintain utime for a thread group.
+ *
+ * @tsk:       Pointer to task structure.
+ * @cputime:   Time value by which to increment the utime field of the
+ *             thread_group_cputime structure.
+ *
+ * If thread group time is being maintained, get the structure for the
+ * running CPU and update the utime field there.
+ */
+static inline void account_group_user_time(struct task_struct *tsk,
+                                          cputime_t cputime)
+{
+       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
+
+       if (!cputimer->running)
+               return;
+
+       raw_spin_lock(&cputimer->lock);
+       cputimer->cputime.utime =
+               cputime_add(cputimer->cputime.utime, cputime);
+       raw_spin_unlock(&cputimer->lock);
+}
+
+/**
+ * account_group_system_time - Maintain stime for a thread group.
+ *
+ * @tsk:       Pointer to task structure.
+ * @cputime:   Time value by which to increment the stime field of the
+ *             thread_group_cputime structure.
+ *
+ * If thread group time is being maintained, get the structure for the
+ * running CPU and update the stime field there.
+ */
+static inline void account_group_system_time(struct task_struct *tsk,
+                                            cputime_t cputime)
+{
+       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
+
+       if (!cputimer->running)
+               return;
+
+       raw_spin_lock(&cputimer->lock);
+       cputimer->cputime.stime =
+               cputime_add(cputimer->cputime.stime, cputime);
+       raw_spin_unlock(&cputimer->lock);
+}
+
+/**
+ * account_group_exec_runtime - Maintain exec runtime for a thread group.
+ *
+ * @tsk:       Pointer to task structure.
+ * @ns:                Time value by which to increment the sum_exec_runtime field
+ *             of the thread_group_cputime structure.
+ *
+ * If thread group time is being maintained, get the structure for the
+ * running CPU and update the sum_exec_runtime field there.
+ */
+static inline void account_group_exec_runtime(struct task_struct *tsk,
+                                             unsigned long long ns)
+{
+       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
+
+       if (!cputimer->running)
+               return;
+
+       raw_spin_lock(&cputimer->lock);
+       cputimer->cputime.sum_exec_runtime += ns;
+       raw_spin_unlock(&cputimer->lock);
+}
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
new file mode 100644 (file)
index 0000000..7b386e8
--- /dev/null
@@ -0,0 +1,108 @@
+#include "sched.h"
+
+/*
+ * stop-task scheduling class.
+ *
+ * The stop task is the highest priority task in the system, it preempts
+ * everything and will be preempted by nothing.
+ *
+ * See kernel/stop_machine.c
+ */
+
+#ifdef CONFIG_SMP
+static int
+select_task_rq_stop(struct task_struct *p, int sd_flag, int flags)
+{
+       return task_cpu(p); /* stop tasks as never migrate */
+}
+#endif /* CONFIG_SMP */
+
+static void
+check_preempt_curr_stop(struct rq *rq, struct task_struct *p, int flags)
+{
+       /* we're never preempted */
+}
+
+static struct task_struct *pick_next_task_stop(struct rq *rq)
+{
+       struct task_struct *stop = rq->stop;
+
+       if (stop && stop->on_rq)
+               return stop;
+
+       return NULL;
+}
+
+static void
+enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
+{
+       inc_nr_running(rq);
+}
+
+static void
+dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
+{
+       dec_nr_running(rq);
+}
+
+static void yield_task_stop(struct rq *rq)
+{
+       BUG(); /* the stop task should never yield, its pointless. */
+}
+
+static void put_prev_task_stop(struct rq *rq, struct task_struct *prev)
+{
+}
+
+static void task_tick_stop(struct rq *rq, struct task_struct *curr, int queued)
+{
+}
+
+static void set_curr_task_stop(struct rq *rq)
+{
+}
+
+static void switched_to_stop(struct rq *rq, struct task_struct *p)
+{
+       BUG(); /* its impossible to change to this class */
+}
+
+static void
+prio_changed_stop(struct rq *rq, struct task_struct *p, int oldprio)
+{
+       BUG(); /* how!?, what priority? */
+}
+
+static unsigned int
+get_rr_interval_stop(struct rq *rq, struct task_struct *task)
+{
+       return 0;
+}
+
+/*
+ * Simple, special scheduling class for the per-CPU stop tasks:
+ */
+const struct sched_class stop_sched_class = {
+       .next                   = &rt_sched_class,
+
+       .enqueue_task           = enqueue_task_stop,
+       .dequeue_task           = dequeue_task_stop,
+       .yield_task             = yield_task_stop,
+
+       .check_preempt_curr     = check_preempt_curr_stop,
+
+       .pick_next_task         = pick_next_task_stop,
+       .put_prev_task          = put_prev_task_stop,
+
+#ifdef CONFIG_SMP
+       .select_task_rq         = select_task_rq_stop,
+#endif
+
+       .set_curr_task          = set_curr_task_stop,
+       .task_tick              = task_tick_stop,
+
+       .get_rr_interval        = get_rr_interval_stop,
+
+       .prio_changed           = prio_changed_stop,
+       .switched_to            = switched_to_stop,
+};
diff --git a/kernel/sched_autogroup.c b/kernel/sched_autogroup.c
deleted file mode 100644 (file)
index e8a1f83..0000000
+++ /dev/null
@@ -1,258 +0,0 @@
-#ifdef CONFIG_SCHED_AUTOGROUP
-
-#include "sched.h"
-
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/kallsyms.h>
-#include <linux/utsname.h>
-#include <linux/security.h>
-#include <linux/export.h>
-
-unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1;
-static struct autogroup autogroup_default;
-static atomic_t autogroup_seq_nr;
-
-void __init autogroup_init(struct task_struct *init_task)
-{
-       autogroup_default.tg = &root_task_group;
-       kref_init(&autogroup_default.kref);
-       init_rwsem(&autogroup_default.lock);
-       init_task->signal->autogroup = &autogroup_default;
-}
-
-void autogroup_free(struct task_group *tg)
-{
-       kfree(tg->autogroup);
-}
-
-static inline void autogroup_destroy(struct kref *kref)
-{
-       struct autogroup *ag = container_of(kref, struct autogroup, kref);
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       /* We've redirected RT tasks to the root task group... */
-       ag->tg->rt_se = NULL;
-       ag->tg->rt_rq = NULL;
-#endif
-       sched_destroy_group(ag->tg);
-}
-
-static inline void autogroup_kref_put(struct autogroup *ag)
-{
-       kref_put(&ag->kref, autogroup_destroy);
-}
-
-static inline struct autogroup *autogroup_kref_get(struct autogroup *ag)
-{
-       kref_get(&ag->kref);
-       return ag;
-}
-
-static inline struct autogroup *autogroup_task_get(struct task_struct *p)
-{
-       struct autogroup *ag;
-       unsigned long flags;
-
-       if (!lock_task_sighand(p, &flags))
-               return autogroup_kref_get(&autogroup_default);
-
-       ag = autogroup_kref_get(p->signal->autogroup);
-       unlock_task_sighand(p, &flags);
-
-       return ag;
-}
-
-static inline struct autogroup *autogroup_create(void)
-{
-       struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL);
-       struct task_group *tg;
-
-       if (!ag)
-               goto out_fail;
-
-       tg = sched_create_group(&root_task_group);
-
-       if (IS_ERR(tg))
-               goto out_free;
-
-       kref_init(&ag->kref);
-       init_rwsem(&ag->lock);
-       ag->id = atomic_inc_return(&autogroup_seq_nr);
-       ag->tg = tg;
-#ifdef CONFIG_RT_GROUP_SCHED
-       /*
-        * Autogroup RT tasks are redirected to the root task group
-        * so we don't have to move tasks around upon policy change,
-        * or flail around trying to allocate bandwidth on the fly.
-        * A bandwidth exception in __sched_setscheduler() allows
-        * the policy change to proceed.  Thereafter, task_group()
-        * returns &root_task_group, so zero bandwidth is required.
-        */
-       free_rt_sched_group(tg);
-       tg->rt_se = root_task_group.rt_se;
-       tg->rt_rq = root_task_group.rt_rq;
-#endif
-       tg->autogroup = ag;
-
-       return ag;
-
-out_free:
-       kfree(ag);
-out_fail:
-       if (printk_ratelimit()) {
-               printk(KERN_WARNING "autogroup_create: %s failure.\n",
-                       ag ? "sched_create_group()" : "kmalloc()");
-       }
-
-       return autogroup_kref_get(&autogroup_default);
-}
-
-bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
-{
-       if (tg != &root_task_group)
-               return false;
-
-       if (p->sched_class != &fair_sched_class)
-               return false;
-
-       /*
-        * We can only assume the task group can't go away on us if
-        * autogroup_move_group() can see us on ->thread_group list.
-        */
-       if (p->flags & PF_EXITING)
-               return false;
-
-       return true;
-}
-
-static void
-autogroup_move_group(struct task_struct *p, struct autogroup *ag)
-{
-       struct autogroup *prev;
-       struct task_struct *t;
-       unsigned long flags;
-
-       BUG_ON(!lock_task_sighand(p, &flags));
-
-       prev = p->signal->autogroup;
-       if (prev == ag) {
-               unlock_task_sighand(p, &flags);
-               return;
-       }
-
-       p->signal->autogroup = autogroup_kref_get(ag);
-
-       if (!ACCESS_ONCE(sysctl_sched_autogroup_enabled))
-               goto out;
-
-       t = p;
-       do {
-               sched_move_task(t);
-       } while_each_thread(p, t);
-
-out:
-       unlock_task_sighand(p, &flags);
-       autogroup_kref_put(prev);
-}
-
-/* Allocates GFP_KERNEL, cannot be called under any spinlock */
-void sched_autogroup_create_attach(struct task_struct *p)
-{
-       struct autogroup *ag = autogroup_create();
-
-       autogroup_move_group(p, ag);
-       /* drop extra reference added by autogroup_create() */
-       autogroup_kref_put(ag);
-}
-EXPORT_SYMBOL(sched_autogroup_create_attach);
-
-/* Cannot be called under siglock.  Currently has no users */
-void sched_autogroup_detach(struct task_struct *p)
-{
-       autogroup_move_group(p, &autogroup_default);
-}
-EXPORT_SYMBOL(sched_autogroup_detach);
-
-void sched_autogroup_fork(struct signal_struct *sig)
-{
-       sig->autogroup = autogroup_task_get(current);
-}
-
-void sched_autogroup_exit(struct signal_struct *sig)
-{
-       autogroup_kref_put(sig->autogroup);
-}
-
-static int __init setup_autogroup(char *str)
-{
-       sysctl_sched_autogroup_enabled = 0;
-
-       return 1;
-}
-
-__setup("noautogroup", setup_autogroup);
-
-#ifdef CONFIG_PROC_FS
-
-int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice)
-{
-       static unsigned long next = INITIAL_JIFFIES;
-       struct autogroup *ag;
-       int err;
-
-       if (*nice < -20 || *nice > 19)
-               return -EINVAL;
-
-       err = security_task_setnice(current, *nice);
-       if (err)
-               return err;
-
-       if (*nice < 0 && !can_nice(current, *nice))
-               return -EPERM;
-
-       /* this is a heavy operation taking global locks.. */
-       if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next))
-               return -EAGAIN;
-
-       next = HZ / 10 + jiffies;
-       ag = autogroup_task_get(p);
-
-       down_write(&ag->lock);
-       err = sched_group_set_shares(ag->tg, prio_to_weight[*nice + 20]);
-       if (!err)
-               ag->nice = *nice;
-       up_write(&ag->lock);
-
-       autogroup_kref_put(ag);
-
-       return err;
-}
-
-void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
-{
-       struct autogroup *ag = autogroup_task_get(p);
-
-       if (!task_group_is_autogroup(ag->tg))
-               goto out;
-
-       down_read(&ag->lock);
-       seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice);
-       up_read(&ag->lock);
-
-out:
-       autogroup_kref_put(ag);
-}
-#endif /* CONFIG_PROC_FS */
-
-#ifdef CONFIG_SCHED_DEBUG
-int autogroup_path(struct task_group *tg, char *buf, int buflen)
-{
-       if (!task_group_is_autogroup(tg))
-               return 0;
-
-       return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-#endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched_autogroup.h b/kernel/sched_autogroup.h
deleted file mode 100644 (file)
index 8bd0471..0000000
+++ /dev/null
@@ -1,64 +0,0 @@
-#ifdef CONFIG_SCHED_AUTOGROUP
-
-#include <linux/kref.h>
-#include <linux/rwsem.h>
-
-struct autogroup {
-       /*
-        * reference doesn't mean how many thread attach to this
-        * autogroup now. It just stands for the number of task
-        * could use this autogroup.
-        */
-       struct kref             kref;
-       struct task_group       *tg;
-       struct rw_semaphore     lock;
-       unsigned long           id;
-       int                     nice;
-};
-
-extern void autogroup_init(struct task_struct *init_task);
-extern void autogroup_free(struct task_group *tg);
-
-static inline bool task_group_is_autogroup(struct task_group *tg)
-{
-       return !!tg->autogroup;
-}
-
-extern bool task_wants_autogroup(struct task_struct *p, struct task_group *tg);
-
-static inline struct task_group *
-autogroup_task_group(struct task_struct *p, struct task_group *tg)
-{
-       int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled);
-
-       if (enabled && task_wants_autogroup(p, tg))
-               return p->signal->autogroup->tg;
-
-       return tg;
-}
-
-extern int autogroup_path(struct task_group *tg, char *buf, int buflen);
-
-#else /* !CONFIG_SCHED_AUTOGROUP */
-
-static inline void autogroup_init(struct task_struct *init_task) {  }
-static inline void autogroup_free(struct task_group *tg) { }
-static inline bool task_group_is_autogroup(struct task_group *tg)
-{
-       return 0;
-}
-
-static inline struct task_group *
-autogroup_task_group(struct task_struct *p, struct task_group *tg)
-{
-       return tg;
-}
-
-#ifdef CONFIG_SCHED_DEBUG
-static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
-{
-       return 0;
-}
-#endif
-
-#endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c
deleted file mode 100644 (file)
index c685e31..0000000
+++ /dev/null
@@ -1,350 +0,0 @@
-/*
- * sched_clock for unstable cpu clocks
- *
- *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- *
- *  Updates and enhancements:
- *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
- *
- * Based on code by:
- *   Ingo Molnar <mingo@redhat.com>
- *   Guillaume Chazarain <guichaz@gmail.com>
- *
- *
- * What:
- *
- * cpu_clock(i) provides a fast (execution time) high resolution
- * clock with bounded drift between CPUs. The value of cpu_clock(i)
- * is monotonic for constant i. The timestamp returned is in nanoseconds.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !!                                                  #
- * ####################################################################
- *
- * There is no strict promise about the base, although it tends to start
- * at 0 on boot (but people really shouldn't rely on that).
- *
- * cpu_clock(i)       -- can be used from any context, including NMI.
- * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
- * local_clock()      -- is cpu_clock() on the current cpu.
- *
- * How:
- *
- * The implementation either uses sched_clock() when
- * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
- * sched_clock() is assumed to provide these properties (mostly it means
- * the architecture provides a globally synchronized highres time source).
- *
- * Otherwise it tries to create a semi stable clock from a mixture of other
- * clocks, including:
- *
- *  - GTOD (clock monotomic)
- *  - sched_clock()
- *  - explicit idle events
- *
- * We use GTOD as base and use sched_clock() deltas to improve resolution. The
- * deltas are filtered to provide monotonicity and keeping it within an
- * expected window.
- *
- * Furthermore, explicit sleep and wakeup hooks allow us to account for time
- * that is otherwise invisible (TSC gets stopped).
- *
- *
- * Notes:
- *
- * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
- * like cpufreq interrupts that can change the base clock (TSC) multiplier
- * and cause funny jumps in time -- although the filtering provided by
- * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
- * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
- * sched_clock().
- */
-#include <linux/spinlock.h>
-#include <linux/hardirq.h>
-#include <linux/export.h>
-#include <linux/percpu.h>
-#include <linux/ktime.h>
-#include <linux/sched.h>
-
-/*
- * Scheduler clock - returns current time in nanosec units.
- * This is default implementation.
- * Architectures and sub-architectures can override this.
- */
-unsigned long long __attribute__((weak)) sched_clock(void)
-{
-       return (unsigned long long)(jiffies - INITIAL_JIFFIES)
-                                       * (NSEC_PER_SEC / HZ);
-}
-EXPORT_SYMBOL_GPL(sched_clock);
-
-__read_mostly int sched_clock_running;
-
-#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
-__read_mostly int sched_clock_stable;
-
-struct sched_clock_data {
-       u64                     tick_raw;
-       u64                     tick_gtod;
-       u64                     clock;
-};
-
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
-
-static inline struct sched_clock_data *this_scd(void)
-{
-       return &__get_cpu_var(sched_clock_data);
-}
-
-static inline struct sched_clock_data *cpu_sdc(int cpu)
-{
-       return &per_cpu(sched_clock_data, cpu);
-}
-
-void sched_clock_init(void)
-{
-       u64 ktime_now = ktime_to_ns(ktime_get());
-       int cpu;
-
-       for_each_possible_cpu(cpu) {
-               struct sched_clock_data *scd = cpu_sdc(cpu);
-
-               scd->tick_raw = 0;
-               scd->tick_gtod = ktime_now;
-               scd->clock = ktime_now;
-       }
-
-       sched_clock_running = 1;
-}
-
-/*
- * min, max except they take wrapping into account
- */
-
-static inline u64 wrap_min(u64 x, u64 y)
-{
-       return (s64)(x - y) < 0 ? x : y;
-}
-
-static inline u64 wrap_max(u64 x, u64 y)
-{
-       return (s64)(x - y) > 0 ? x : y;
-}
-
-/*
- * update the percpu scd from the raw @now value
- *
- *  - filter out backward motion
- *  - use the GTOD tick value to create a window to filter crazy TSC values
- */
-static u64 sched_clock_local(struct sched_clock_data *scd)
-{
-       u64 now, clock, old_clock, min_clock, max_clock;
-       s64 delta;
-
-again:
-       now = sched_clock();
-       delta = now - scd->tick_raw;
-       if (unlikely(delta < 0))
-               delta = 0;
-
-       old_clock = scd->clock;
-
-       /*
-        * scd->clock = clamp(scd->tick_gtod + delta,
-        *                    max(scd->tick_gtod, scd->clock),
-        *                    scd->tick_gtod + TICK_NSEC);
-        */
-
-       clock = scd->tick_gtod + delta;
-       min_clock = wrap_max(scd->tick_gtod, old_clock);
-       max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
-
-       clock = wrap_max(clock, min_clock);
-       clock = wrap_min(clock, max_clock);
-
-       if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
-               goto again;
-
-       return clock;
-}
-
-static u64 sched_clock_remote(struct sched_clock_data *scd)
-{
-       struct sched_clock_data *my_scd = this_scd();
-       u64 this_clock, remote_clock;
-       u64 *ptr, old_val, val;
-
-       sched_clock_local(my_scd);
-again:
-       this_clock = my_scd->clock;
-       remote_clock = scd->clock;
-
-       /*
-        * Use the opportunity that we have both locks
-        * taken to couple the two clocks: we take the
-        * larger time as the latest time for both
-        * runqueues. (this creates monotonic movement)
-        */
-       if (likely((s64)(remote_clock - this_clock) < 0)) {
-               ptr = &scd->clock;
-               old_val = remote_clock;
-               val = this_clock;
-       } else {
-               /*
-                * Should be rare, but possible:
-                */
-               ptr = &my_scd->clock;
-               old_val = this_clock;
-               val = remote_clock;
-       }
-
-       if (cmpxchg64(ptr, old_val, val) != old_val)
-               goto again;
-
-       return val;
-}
-
-/*
- * Similar to cpu_clock(), but requires local IRQs to be disabled.
- *
- * See cpu_clock().
- */
-u64 sched_clock_cpu(int cpu)
-{
-       struct sched_clock_data *scd;
-       u64 clock;
-
-       WARN_ON_ONCE(!irqs_disabled());
-
-       if (sched_clock_stable)
-               return sched_clock();
-
-       if (unlikely(!sched_clock_running))
-               return 0ull;
-
-       scd = cpu_sdc(cpu);
-
-       if (cpu != smp_processor_id())
-               clock = sched_clock_remote(scd);
-       else
-               clock = sched_clock_local(scd);
-
-       return clock;
-}
-
-void sched_clock_tick(void)
-{
-       struct sched_clock_data *scd;
-       u64 now, now_gtod;
-
-       if (sched_clock_stable)
-               return;
-
-       if (unlikely(!sched_clock_running))
-               return;
-
-       WARN_ON_ONCE(!irqs_disabled());
-
-       scd = this_scd();
-       now_gtod = ktime_to_ns(ktime_get());
-       now = sched_clock();
-
-       scd->tick_raw = now;
-       scd->tick_gtod = now_gtod;
-       sched_clock_local(scd);
-}
-
-/*
- * We are going deep-idle (irqs are disabled):
- */
-void sched_clock_idle_sleep_event(void)
-{
-       sched_clock_cpu(smp_processor_id());
-}
-EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
-
-/*
- * We just idled delta nanoseconds (called with irqs disabled):
- */
-void sched_clock_idle_wakeup_event(u64 delta_ns)
-{
-       if (timekeeping_suspended)
-               return;
-
-       sched_clock_tick();
-       touch_softlockup_watchdog();
-}
-EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
-
-/*
- * As outlined at the top, provides a fast, high resolution, nanosecond
- * time source that is monotonic per cpu argument and has bounded drift
- * between cpus.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !!                                                  #
- * ####################################################################
- */
-u64 cpu_clock(int cpu)
-{
-       u64 clock;
-       unsigned long flags;
-
-       local_irq_save(flags);
-       clock = sched_clock_cpu(cpu);
-       local_irq_restore(flags);
-
-       return clock;
-}
-
-/*
- * Similar to cpu_clock() for the current cpu. Time will only be observed
- * to be monotonic if care is taken to only compare timestampt taken on the
- * same CPU.
- *
- * See cpu_clock().
- */
-u64 local_clock(void)
-{
-       u64 clock;
-       unsigned long flags;
-
-       local_irq_save(flags);
-       clock = sched_clock_cpu(smp_processor_id());
-       local_irq_restore(flags);
-
-       return clock;
-}
-
-#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
-
-void sched_clock_init(void)
-{
-       sched_clock_running = 1;
-}
-
-u64 sched_clock_cpu(int cpu)
-{
-       if (unlikely(!sched_clock_running))
-               return 0;
-
-       return sched_clock();
-}
-
-u64 cpu_clock(int cpu)
-{
-       return sched_clock_cpu(cpu);
-}
-
-u64 local_clock(void)
-{
-       return sched_clock_cpu(0);
-}
-
-#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
-
-EXPORT_SYMBOL_GPL(cpu_clock);
-EXPORT_SYMBOL_GPL(local_clock);
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c
deleted file mode 100644 (file)
index a86cf9d..0000000
+++ /dev/null
@@ -1,241 +0,0 @@
-/*
- *  kernel/sched_cpupri.c
- *
- *  CPU priority management
- *
- *  Copyright (C) 2007-2008 Novell
- *
- *  Author: Gregory Haskins <ghaskins@novell.com>
- *
- *  This code tracks the priority of each CPU so that global migration
- *  decisions are easy to calculate.  Each CPU can be in a state as follows:
- *
- *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
- *
- *  going from the lowest priority to the highest.  CPUs in the INVALID state
- *  are not eligible for routing.  The system maintains this state with
- *  a 2 dimensional bitmap (the first for priority class, the second for cpus
- *  in that class).  Therefore a typical application without affinity
- *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
- *  searches).  For tasks with affinity restrictions, the algorithm has a
- *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
- *  yields the worst case search is fairly contrived.
- *
- *  This program is free software; you can redistribute it and/or
- *  modify it under the terms of the GNU General Public License
- *  as published by the Free Software Foundation; version 2
- *  of the License.
- */
-
-#include <linux/gfp.h>
-#include "sched_cpupri.h"
-
-/* Convert between a 140 based task->prio, and our 102 based cpupri */
-static int convert_prio(int prio)
-{
-       int cpupri;
-
-       if (prio == CPUPRI_INVALID)
-               cpupri = CPUPRI_INVALID;
-       else if (prio == MAX_PRIO)
-               cpupri = CPUPRI_IDLE;
-       else if (prio >= MAX_RT_PRIO)
-               cpupri = CPUPRI_NORMAL;
-       else
-               cpupri = MAX_RT_PRIO - prio + 1;
-
-       return cpupri;
-}
-
-/**
- * cpupri_find - find the best (lowest-pri) CPU in the system
- * @cp: The cpupri context
- * @p: The task
- * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
- *
- * Note: This function returns the recommended CPUs as calculated during the
- * current invocation.  By the time the call returns, the CPUs may have in
- * fact changed priorities any number of times.  While not ideal, it is not
- * an issue of correctness since the normal rebalancer logic will correct
- * any discrepancies created by racing against the uncertainty of the current
- * priority configuration.
- *
- * Returns: (int)bool - CPUs were found
- */
-int cpupri_find(struct cpupri *cp, struct task_struct *p,
-               struct cpumask *lowest_mask)
-{
-       int                  idx      = 0;
-       int                  task_pri = convert_prio(p->prio);
-
-       if (task_pri >= MAX_RT_PRIO)
-               return 0;
-
-       for (idx = 0; idx < task_pri; idx++) {
-               struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
-               int skip = 0;
-
-               if (!atomic_read(&(vec)->count))
-                       skip = 1;
-               /*
-                * When looking at the vector, we need to read the counter,
-                * do a memory barrier, then read the mask.
-                *
-                * Note: This is still all racey, but we can deal with it.
-                *  Ideally, we only want to look at masks that are set.
-                *
-                *  If a mask is not set, then the only thing wrong is that we
-                *  did a little more work than necessary.
-                *
-                *  If we read a zero count but the mask is set, because of the
-                *  memory barriers, that can only happen when the highest prio
-                *  task for a run queue has left the run queue, in which case,
-                *  it will be followed by a pull. If the task we are processing
-                *  fails to find a proper place to go, that pull request will
-                *  pull this task if the run queue is running at a lower
-                *  priority.
-                */
-               smp_rmb();
-
-               /* Need to do the rmb for every iteration */
-               if (skip)
-                       continue;
-
-               if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
-                       continue;
-
-               if (lowest_mask) {
-                       cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
-
-                       /*
-                        * We have to ensure that we have at least one bit
-                        * still set in the array, since the map could have
-                        * been concurrently emptied between the first and
-                        * second reads of vec->mask.  If we hit this
-                        * condition, simply act as though we never hit this
-                        * priority level and continue on.
-                        */
-                       if (cpumask_any(lowest_mask) >= nr_cpu_ids)
-                               continue;
-               }
-
-               return 1;
-       }
-
-       return 0;
-}
-
-/**
- * cpupri_set - update the cpu priority setting
- * @cp: The cpupri context
- * @cpu: The target cpu
- * @pri: The priority (INVALID-RT99) to assign to this CPU
- *
- * Note: Assumes cpu_rq(cpu)->lock is locked
- *
- * Returns: (void)
- */
-void cpupri_set(struct cpupri *cp, int cpu, int newpri)
-{
-       int                 *currpri = &cp->cpu_to_pri[cpu];
-       int                  oldpri  = *currpri;
-       int                  do_mb = 0;
-
-       newpri = convert_prio(newpri);
-
-       BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
-
-       if (newpri == oldpri)
-               return;
-
-       /*
-        * If the cpu was currently mapped to a different value, we
-        * need to map it to the new value then remove the old value.
-        * Note, we must add the new value first, otherwise we risk the
-        * cpu being missed by the priority loop in cpupri_find.
-        */
-       if (likely(newpri != CPUPRI_INVALID)) {
-               struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
-
-               cpumask_set_cpu(cpu, vec->mask);
-               /*
-                * When adding a new vector, we update the mask first,
-                * do a write memory barrier, and then update the count, to
-                * make sure the vector is visible when count is set.
-                */
-               smp_mb__before_atomic_inc();
-               atomic_inc(&(vec)->count);
-               do_mb = 1;
-       }
-       if (likely(oldpri != CPUPRI_INVALID)) {
-               struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
-
-               /*
-                * Because the order of modification of the vec->count
-                * is important, we must make sure that the update
-                * of the new prio is seen before we decrement the
-                * old prio. This makes sure that the loop sees
-                * one or the other when we raise the priority of
-                * the run queue. We don't care about when we lower the
-                * priority, as that will trigger an rt pull anyway.
-                *
-                * We only need to do a memory barrier if we updated
-                * the new priority vec.
-                */
-               if (do_mb)
-                       smp_mb__after_atomic_inc();
-
-               /*
-                * When removing from the vector, we decrement the counter first
-                * do a memory barrier and then clear the mask.
-                */
-               atomic_dec(&(vec)->count);
-               smp_mb__after_atomic_inc();
-               cpumask_clear_cpu(cpu, vec->mask);
-       }
-
-       *currpri = newpri;
-}
-
-/**
- * cpupri_init - initialize the cpupri structure
- * @cp: The cpupri context
- * @bootmem: true if allocations need to use bootmem
- *
- * Returns: -ENOMEM if memory fails.
- */
-int cpupri_init(struct cpupri *cp)
-{
-       int i;
-
-       memset(cp, 0, sizeof(*cp));
-
-       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
-               struct cpupri_vec *vec = &cp->pri_to_cpu[i];
-
-               atomic_set(&vec->count, 0);
-               if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
-                       goto cleanup;
-       }
-
-       for_each_possible_cpu(i)
-               cp->cpu_to_pri[i] = CPUPRI_INVALID;
-       return 0;
-
-cleanup:
-       for (i--; i >= 0; i--)
-               free_cpumask_var(cp->pri_to_cpu[i].mask);
-       return -ENOMEM;
-}
-
-/**
- * cpupri_cleanup - clean up the cpupri structure
- * @cp: The cpupri context
- */
-void cpupri_cleanup(struct cpupri *cp)
-{
-       int i;
-
-       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
-               free_cpumask_var(cp->pri_to_cpu[i].mask);
-}
diff --git a/kernel/sched_cpupri.h b/kernel/sched_cpupri.h
deleted file mode 100644 (file)
index f6d7561..0000000
+++ /dev/null
@@ -1,34 +0,0 @@
-#ifndef _LINUX_CPUPRI_H
-#define _LINUX_CPUPRI_H
-
-#include <linux/sched.h>
-
-#define CPUPRI_NR_PRIORITIES   (MAX_RT_PRIO + 2)
-
-#define CPUPRI_INVALID -1
-#define CPUPRI_IDLE     0
-#define CPUPRI_NORMAL   1
-/* values 2-101 are RT priorities 0-99 */
-
-struct cpupri_vec {
-       atomic_t        count;
-       cpumask_var_t   mask;
-};
-
-struct cpupri {
-       struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];
-       int               cpu_to_pri[NR_CPUS];
-};
-
-#ifdef CONFIG_SMP
-int  cpupri_find(struct cpupri *cp,
-                struct task_struct *p, struct cpumask *lowest_mask);
-void cpupri_set(struct cpupri *cp, int cpu, int pri);
-int cpupri_init(struct cpupri *cp);
-void cpupri_cleanup(struct cpupri *cp);
-#else
-#define cpupri_set(cp, cpu, pri) do { } while (0)
-#define cpupri_init() do { } while (0)
-#endif
-
-#endif /* _LINUX_CPUPRI_H */
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
deleted file mode 100644 (file)
index ce1a85f..0000000
+++ /dev/null
@@ -1,510 +0,0 @@
-/*
- * kernel/time/sched_debug.c
- *
- * Print the CFS rbtree
- *
- * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
-
-#include <linux/proc_fs.h>
-#include <linux/sched.h>
-#include <linux/seq_file.h>
-#include <linux/kallsyms.h>
-#include <linux/utsname.h>
-
-#include "sched.h"
-
-static DEFINE_SPINLOCK(sched_debug_lock);
-
-/*
- * This allows printing both to /proc/sched_debug and
- * to the console
- */
-#define SEQ_printf(m, x...)                    \
- do {                                          \
-       if (m)                                  \
-               seq_printf(m, x);               \
-       else                                    \
-               printk(x);                      \
- } while (0)
-
-/*
- * Ease the printing of nsec fields:
- */
-static long long nsec_high(unsigned long long nsec)
-{
-       if ((long long)nsec < 0) {
-               nsec = -nsec;
-               do_div(nsec, 1000000);
-               return -nsec;
-       }
-       do_div(nsec, 1000000);
-
-       return nsec;
-}
-
-static unsigned long nsec_low(unsigned long long nsec)
-{
-       if ((long long)nsec < 0)
-               nsec = -nsec;
-
-       return do_div(nsec, 1000000);
-}
-
-#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
-{
-       struct sched_entity *se = tg->se[cpu];
-       if (!se)
-               return;
-
-#define P(F) \
-       SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
-#define PN(F) \
-       SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
-
-       PN(se->exec_start);
-       PN(se->vruntime);
-       PN(se->sum_exec_runtime);
-#ifdef CONFIG_SCHEDSTATS
-       PN(se->statistics.wait_start);
-       PN(se->statistics.sleep_start);
-       PN(se->statistics.block_start);
-       PN(se->statistics.sleep_max);
-       PN(se->statistics.block_max);
-       PN(se->statistics.exec_max);
-       PN(se->statistics.slice_max);
-       PN(se->statistics.wait_max);
-       PN(se->statistics.wait_sum);
-       P(se->statistics.wait_count);
-#endif
-       P(se->load.weight);
-#undef PN
-#undef P
-}
-#endif
-
-#ifdef CONFIG_CGROUP_SCHED
-static char group_path[PATH_MAX];
-
-static char *task_group_path(struct task_group *tg)
-{
-       if (autogroup_path(tg, group_path, PATH_MAX))
-               return group_path;
-
-       /*
-        * May be NULL if the underlying cgroup isn't fully-created yet
-        */
-       if (!tg->css.cgroup) {
-               group_path[0] = '\0';
-               return group_path;
-       }
-       cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
-       return group_path;
-}
-#endif
-
-static void
-print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
-{
-       if (rq->curr == p)
-               SEQ_printf(m, "R");
-       else
-               SEQ_printf(m, " ");
-
-       SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
-               p->comm, p->pid,
-               SPLIT_NS(p->se.vruntime),
-               (long long)(p->nvcsw + p->nivcsw),
-               p->prio);
-#ifdef CONFIG_SCHEDSTATS
-       SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
-               SPLIT_NS(p->se.vruntime),
-               SPLIT_NS(p->se.sum_exec_runtime),
-               SPLIT_NS(p->se.statistics.sum_sleep_runtime));
-#else
-       SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
-               0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
-#endif
-#ifdef CONFIG_CGROUP_SCHED
-       SEQ_printf(m, " %s", task_group_path(task_group(p)));
-#endif
-
-       SEQ_printf(m, "\n");
-}
-
-static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
-{
-       struct task_struct *g, *p;
-       unsigned long flags;
-
-       SEQ_printf(m,
-       "\nrunnable tasks:\n"
-       "            task   PID         tree-key  switches  prio"
-       "     exec-runtime         sum-exec        sum-sleep\n"
-       "------------------------------------------------------"
-       "----------------------------------------------------\n");
-
-       read_lock_irqsave(&tasklist_lock, flags);
-
-       do_each_thread(g, p) {
-               if (!p->on_rq || task_cpu(p) != rq_cpu)
-                       continue;
-
-               print_task(m, rq, p);
-       } while_each_thread(g, p);
-
-       read_unlock_irqrestore(&tasklist_lock, flags);
-}
-
-void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
-{
-       s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
-               spread, rq0_min_vruntime, spread0;
-       struct rq *rq = cpu_rq(cpu);
-       struct sched_entity *last;
-       unsigned long flags;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
-#else
-       SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
-#endif
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
-                       SPLIT_NS(cfs_rq->exec_clock));
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-       if (cfs_rq->rb_leftmost)
-               MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
-       last = __pick_last_entity(cfs_rq);
-       if (last)
-               max_vruntime = last->vruntime;
-       min_vruntime = cfs_rq->min_vruntime;
-       rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
-                       SPLIT_NS(MIN_vruntime));
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
-                       SPLIT_NS(min_vruntime));
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
-                       SPLIT_NS(max_vruntime));
-       spread = max_vruntime - MIN_vruntime;
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
-                       SPLIT_NS(spread));
-       spread0 = min_vruntime - rq0_min_vruntime;
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
-                       SPLIT_NS(spread0));
-       SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
-                       cfs_rq->nr_spread_over);
-       SEQ_printf(m, "  .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
-       SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
-#ifdef CONFIG_FAIR_GROUP_SCHED
-#ifdef CONFIG_SMP
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "load_avg",
-                       SPLIT_NS(cfs_rq->load_avg));
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "load_period",
-                       SPLIT_NS(cfs_rq->load_period));
-       SEQ_printf(m, "  .%-30s: %ld\n", "load_contrib",
-                       cfs_rq->load_contribution);
-       SEQ_printf(m, "  .%-30s: %d\n", "load_tg",
-                       atomic_read(&cfs_rq->tg->load_weight));
-#endif
-
-       print_cfs_group_stats(m, cpu, cfs_rq->tg);
-#endif
-}
-
-void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
-{
-#ifdef CONFIG_RT_GROUP_SCHED
-       SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
-#else
-       SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
-#endif
-
-#define P(x) \
-       SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
-#define PN(x) \
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
-
-       P(rt_nr_running);
-       P(rt_throttled);
-       PN(rt_time);
-       PN(rt_runtime);
-
-#undef PN
-#undef P
-}
-
-extern __read_mostly int sched_clock_running;
-
-static void print_cpu(struct seq_file *m, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-#ifdef CONFIG_X86
-       {
-               unsigned int freq = cpu_khz ? : 1;
-
-               SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
-                          cpu, freq / 1000, (freq % 1000));
-       }
-#else
-       SEQ_printf(m, "\ncpu#%d\n", cpu);
-#endif
-
-#define P(x) \
-       SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x))
-#define PN(x) \
-       SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
-
-       P(nr_running);
-       SEQ_printf(m, "  .%-30s: %lu\n", "load",
-                  rq->load.weight);
-       P(nr_switches);
-       P(nr_load_updates);
-       P(nr_uninterruptible);
-       PN(next_balance);
-       P(curr->pid);
-       PN(clock);
-       P(cpu_load[0]);
-       P(cpu_load[1]);
-       P(cpu_load[2]);
-       P(cpu_load[3]);
-       P(cpu_load[4]);
-#undef P
-#undef PN
-
-#ifdef CONFIG_SCHEDSTATS
-#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
-#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
-
-       P(yld_count);
-
-       P(sched_switch);
-       P(sched_count);
-       P(sched_goidle);
-#ifdef CONFIG_SMP
-       P64(avg_idle);
-#endif
-
-       P(ttwu_count);
-       P(ttwu_local);
-
-#undef P
-#undef P64
-#endif
-       spin_lock_irqsave(&sched_debug_lock, flags);
-       print_cfs_stats(m, cpu);
-       print_rt_stats(m, cpu);
-
-       rcu_read_lock();
-       print_rq(m, rq, cpu);
-       rcu_read_unlock();
-       spin_unlock_irqrestore(&sched_debug_lock, flags);
-}
-
-static const char *sched_tunable_scaling_names[] = {
-       "none",
-       "logaritmic",
-       "linear"
-};
-
-static int sched_debug_show(struct seq_file *m, void *v)
-{
-       u64 ktime, sched_clk, cpu_clk;
-       unsigned long flags;
-       int cpu;
-
-       local_irq_save(flags);
-       ktime = ktime_to_ns(ktime_get());
-       sched_clk = sched_clock();
-       cpu_clk = local_clock();
-       local_irq_restore(flags);
-
-       SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
-               init_utsname()->release,
-               (int)strcspn(init_utsname()->version, " "),
-               init_utsname()->version);
-
-#define P(x) \
-       SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
-#define PN(x) \
-       SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
-       PN(ktime);
-       PN(sched_clk);
-       PN(cpu_clk);
-       P(jiffies);
-#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
-       P(sched_clock_stable);
-#endif
-#undef PN
-#undef P
-
-       SEQ_printf(m, "\n");
-       SEQ_printf(m, "sysctl_sched\n");
-
-#define P(x) \
-       SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
-#define PN(x) \
-       SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
-       PN(sysctl_sched_latency);
-       PN(sysctl_sched_min_granularity);
-       PN(sysctl_sched_wakeup_granularity);
-       P(sysctl_sched_child_runs_first);
-       P(sysctl_sched_features);
-#undef PN
-#undef P
-
-       SEQ_printf(m, "  .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling",
-               sysctl_sched_tunable_scaling,
-               sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
-
-       for_each_online_cpu(cpu)
-               print_cpu(m, cpu);
-
-       SEQ_printf(m, "\n");
-
-       return 0;
-}
-
-void sysrq_sched_debug_show(void)
-{
-       sched_debug_show(NULL, NULL);
-}
-
-static int sched_debug_open(struct inode *inode, struct file *filp)
-{
-       return single_open(filp, sched_debug_show, NULL);
-}
-
-static const struct file_operations sched_debug_fops = {
-       .open           = sched_debug_open,
-       .read           = seq_read,
-       .llseek         = seq_lseek,
-       .release        = single_release,
-};
-
-static int __init init_sched_debug_procfs(void)
-{
-       struct proc_dir_entry *pe;
-
-       pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
-       if (!pe)
-               return -ENOMEM;
-       return 0;
-}
-
-__initcall(init_sched_debug_procfs);
-
-void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
-{
-       unsigned long nr_switches;
-
-       SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid,
-                                               get_nr_threads(p));
-       SEQ_printf(m,
-               "---------------------------------------------------------\n");
-#define __P(F) \
-       SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
-#define P(F) \
-       SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
-#define __PN(F) \
-       SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
-#define PN(F) \
-       SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
-
-       PN(se.exec_start);
-       PN(se.vruntime);
-       PN(se.sum_exec_runtime);
-
-       nr_switches = p->nvcsw + p->nivcsw;
-
-#ifdef CONFIG_SCHEDSTATS
-       PN(se.statistics.wait_start);
-       PN(se.statistics.sleep_start);
-       PN(se.statistics.block_start);
-       PN(se.statistics.sleep_max);
-       PN(se.statistics.block_max);
-       PN(se.statistics.exec_max);
-       PN(se.statistics.slice_max);
-       PN(se.statistics.wait_max);
-       PN(se.statistics.wait_sum);
-       P(se.statistics.wait_count);
-       PN(se.statistics.iowait_sum);
-       P(se.statistics.iowait_count);
-       P(se.nr_migrations);
-       P(se.statistics.nr_migrations_cold);
-       P(se.statistics.nr_failed_migrations_affine);
-       P(se.statistics.nr_failed_migrations_running);
-       P(se.statistics.nr_failed_migrations_hot);
-       P(se.statistics.nr_forced_migrations);
-       P(se.statistics.nr_wakeups);
-       P(se.statistics.nr_wakeups_sync);
-       P(se.statistics.nr_wakeups_migrate);
-       P(se.statistics.nr_wakeups_local);
-       P(se.statistics.nr_wakeups_remote);
-       P(se.statistics.nr_wakeups_affine);
-       P(se.statistics.nr_wakeups_affine_attempts);
-       P(se.statistics.nr_wakeups_passive);
-       P(se.statistics.nr_wakeups_idle);
-
-       {
-               u64 avg_atom, avg_per_cpu;
-
-               avg_atom = p->se.sum_exec_runtime;
-               if (nr_switches)
-                       do_div(avg_atom, nr_switches);
-               else
-                       avg_atom = -1LL;
-
-               avg_per_cpu = p->se.sum_exec_runtime;
-               if (p->se.nr_migrations) {
-                       avg_per_cpu = div64_u64(avg_per_cpu,
-                                               p->se.nr_migrations);
-               } else {
-                       avg_per_cpu = -1LL;
-               }
-
-               __PN(avg_atom);
-               __PN(avg_per_cpu);
-       }
-#endif
-       __P(nr_switches);
-       SEQ_printf(m, "%-35s:%21Ld\n",
-                  "nr_voluntary_switches", (long long)p->nvcsw);
-       SEQ_printf(m, "%-35s:%21Ld\n",
-                  "nr_involuntary_switches", (long long)p->nivcsw);
-
-       P(se.load.weight);
-       P(policy);
-       P(prio);
-#undef PN
-#undef __PN
-#undef P
-#undef __P
-
-       {
-               unsigned int this_cpu = raw_smp_processor_id();
-               u64 t0, t1;
-
-               t0 = cpu_clock(this_cpu);
-               t1 = cpu_clock(this_cpu);
-               SEQ_printf(m, "%-35s:%21Ld\n",
-                          "clock-delta", (long long)(t1-t0));
-       }
-}
-
-void proc_sched_set_task(struct task_struct *p)
-{
-#ifdef CONFIG_SCHEDSTATS
-       memset(&p->se.statistics, 0, sizeof(p->se.statistics));
-#endif
-}
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
deleted file mode 100644 (file)
index cd3b642..0000000
+++ /dev/null
@@ -1,5601 +0,0 @@
-/*
- * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
- *
- *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- *  Interactivity improvements by Mike Galbraith
- *  (C) 2007 Mike Galbraith <efault@gmx.de>
- *
- *  Various enhancements by Dmitry Adamushko.
- *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
- *
- *  Group scheduling enhancements by Srivatsa Vaddagiri
- *  Copyright IBM Corporation, 2007
- *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
- *
- *  Scaled math optimizations by Thomas Gleixner
- *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
- *
- *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
- *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- */
-
-#include <linux/latencytop.h>
-#include <linux/sched.h>
-#include <linux/cpumask.h>
-#include <linux/slab.h>
-#include <linux/profile.h>
-#include <linux/interrupt.h>
-
-#include <trace/events/sched.h>
-
-#include "sched.h"
-
-/*
- * Targeted preemption latency for CPU-bound tasks:
- * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length
- * and have no persistent notion like in traditional, time-slice
- * based scheduling concepts.
- *
- * (to see the precise effective timeslice length of your workload,
- *  run vmstat and monitor the context-switches (cs) field)
- */
-unsigned int sysctl_sched_latency = 6000000ULL;
-unsigned int normalized_sysctl_sched_latency = 6000000ULL;
-
-/*
- * The initial- and re-scaling of tunables is configurable
- * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
- *
- * Options are:
- * SCHED_TUNABLESCALING_NONE - unscaled, always *1
- * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
- * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
- */
-enum sched_tunable_scaling sysctl_sched_tunable_scaling
-       = SCHED_TUNABLESCALING_LOG;
-
-/*
- * Minimal preemption granularity for CPU-bound tasks:
- * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
- */
-unsigned int sysctl_sched_min_granularity = 750000ULL;
-unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
-
-/*
- * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
- */
-static unsigned int sched_nr_latency = 8;
-
-/*
- * After fork, child runs first. If set to 0 (default) then
- * parent will (try to) run first.
- */
-unsigned int sysctl_sched_child_runs_first __read_mostly;
-
-/*
- * SCHED_OTHER wake-up granularity.
- * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- */
-unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
-unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
-
-const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
-
-/*
- * The exponential sliding  window over which load is averaged for shares
- * distribution.
- * (default: 10msec)
- */
-unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
-
-#ifdef CONFIG_CFS_BANDWIDTH
-/*
- * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
- * each time a cfs_rq requests quota.
- *
- * Note: in the case that the slice exceeds the runtime remaining (either due
- * to consumption or the quota being specified to be smaller than the slice)
- * we will always only issue the remaining available time.
- *
- * default: 5 msec, units: microseconds
-  */
-unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
-#endif
-
-/*
- * Increase the granularity value when there are more CPUs,
- * because with more CPUs the 'effective latency' as visible
- * to users decreases. But the relationship is not linear,
- * so pick a second-best guess by going with the log2 of the
- * number of CPUs.
- *
- * This idea comes from the SD scheduler of Con Kolivas:
- */
-static int get_update_sysctl_factor(void)
-{
-       unsigned int cpus = min_t(int, num_online_cpus(), 8);
-       unsigned int factor;
-
-       switch (sysctl_sched_tunable_scaling) {
-       case SCHED_TUNABLESCALING_NONE:
-               factor = 1;
-               break;
-       case SCHED_TUNABLESCALING_LINEAR:
-               factor = cpus;
-               break;
-       case SCHED_TUNABLESCALING_LOG:
-       default:
-               factor = 1 + ilog2(cpus);
-               break;
-       }
-
-       return factor;
-}
-
-static void update_sysctl(void)
-{
-       unsigned int factor = get_update_sysctl_factor();
-
-#define SET_SYSCTL(name) \
-       (sysctl_##name = (factor) * normalized_sysctl_##name)
-       SET_SYSCTL(sched_min_granularity);
-       SET_SYSCTL(sched_latency);
-       SET_SYSCTL(sched_wakeup_granularity);
-#undef SET_SYSCTL
-}
-
-void sched_init_granularity(void)
-{
-       update_sysctl();
-}
-
-#if BITS_PER_LONG == 32
-# define WMULT_CONST   (~0UL)
-#else
-# define WMULT_CONST   (1UL << 32)
-#endif
-
-#define WMULT_SHIFT    32
-
-/*
- * Shift right and round:
- */
-#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
-
-/*
- * delta *= weight / lw
- */
-static unsigned long
-calc_delta_mine(unsigned long delta_exec, unsigned long weight,
-               struct load_weight *lw)
-{
-       u64 tmp;
-
-       /*
-        * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
-        * entities since MIN_SHARES = 2. Treat weight as 1 if less than
-        * 2^SCHED_LOAD_RESOLUTION.
-        */
-       if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
-               tmp = (u64)delta_exec * scale_load_down(weight);
-       else
-               tmp = (u64)delta_exec;
-
-       if (!lw->inv_weight) {
-               unsigned long w = scale_load_down(lw->weight);
-
-               if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
-                       lw->inv_weight = 1;
-               else if (unlikely(!w))
-                       lw->inv_weight = WMULT_CONST;
-               else
-                       lw->inv_weight = WMULT_CONST / w;
-       }
-
-       /*
-        * Check whether we'd overflow the 64-bit multiplication:
-        */
-       if (unlikely(tmp > WMULT_CONST))
-               tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
-                       WMULT_SHIFT/2);
-       else
-               tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
-
-       return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
-}
-
-
-const struct sched_class fair_sched_class;
-
-/**************************************************************
- * CFS operations on generic schedulable entities:
- */
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-
-/* cpu runqueue to which this cfs_rq is attached */
-static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
-{
-       return cfs_rq->rq;
-}
-
-/* An entity is a task if it doesn't "own" a runqueue */
-#define entity_is_task(se)     (!se->my_q)
-
-static inline struct task_struct *task_of(struct sched_entity *se)
-{
-#ifdef CONFIG_SCHED_DEBUG
-       WARN_ON_ONCE(!entity_is_task(se));
-#endif
-       return container_of(se, struct task_struct, se);
-}
-
-/* Walk up scheduling entities hierarchy */
-#define for_each_sched_entity(se) \
-               for (; se; se = se->parent)
-
-static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
-{
-       return p->se.cfs_rq;
-}
-
-/* runqueue on which this entity is (to be) queued */
-static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
-{
-       return se->cfs_rq;
-}
-
-/* runqueue "owned" by this group */
-static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
-{
-       return grp->my_q;
-}
-
-static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
-{
-       if (!cfs_rq->on_list) {
-               /*
-                * Ensure we either appear before our parent (if already
-                * enqueued) or force our parent to appear after us when it is
-                * enqueued.  The fact that we always enqueue bottom-up
-                * reduces this to two cases.
-                */
-               if (cfs_rq->tg->parent &&
-                   cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
-                       list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
-                               &rq_of(cfs_rq)->leaf_cfs_rq_list);
-               } else {
-                       list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
-                               &rq_of(cfs_rq)->leaf_cfs_rq_list);
-               }
-
-               cfs_rq->on_list = 1;
-       }
-}
-
-static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
-{
-       if (cfs_rq->on_list) {
-               list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
-               cfs_rq->on_list = 0;
-       }
-}
-
-/* Iterate thr' all leaf cfs_rq's on a runqueue */
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
-       list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
-
-/* Do the two (enqueued) entities belong to the same group ? */
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
-{
-       if (se->cfs_rq == pse->cfs_rq)
-               return 1;
-
-       return 0;
-}
-
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
-{
-       return se->parent;
-}
-
-/* return depth at which a sched entity is present in the hierarchy */
-static inline int depth_se(struct sched_entity *se)
-{
-       int depth = 0;
-
-       for_each_sched_entity(se)
-               depth++;
-
-       return depth;
-}
-
-static void
-find_matching_se(struct sched_entity **se, struct sched_entity **pse)
-{
-       int se_depth, pse_depth;
-
-       /*
-        * preemption test can be made between sibling entities who are in the
-        * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
-        * both tasks until we find their ancestors who are siblings of common
-        * parent.
-        */
-
-       /* First walk up until both entities are at same depth */
-       se_depth = depth_se(*se);
-       pse_depth = depth_se(*pse);
-
-       while (se_depth > pse_depth) {
-               se_depth--;
-               *se = parent_entity(*se);
-       }
-
-       while (pse_depth > se_depth) {
-               pse_depth--;
-               *pse = parent_entity(*pse);
-       }
-
-       while (!is_same_group(*se, *pse)) {
-               *se = parent_entity(*se);
-               *pse = parent_entity(*pse);
-       }
-}
-
-#else  /* !CONFIG_FAIR_GROUP_SCHED */
-
-static inline struct task_struct *task_of(struct sched_entity *se)
-{
-       return container_of(se, struct task_struct, se);
-}
-
-static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
-{
-       return container_of(cfs_rq, struct rq, cfs);
-}
-
-#define entity_is_task(se)     1
-
-#define for_each_sched_entity(se) \
-               for (; se; se = NULL)
-
-static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
-{
-       return &task_rq(p)->cfs;
-}
-
-static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
-{
-       struct task_struct *p = task_of(se);
-       struct rq *rq = task_rq(p);
-
-       return &rq->cfs;
-}
-
-/* runqueue "owned" by this group */
-static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
-{
-       return NULL;
-}
-
-static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
-{
-}
-
-static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
-{
-}
-
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
-               for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
-
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
-{
-       return 1;
-}
-
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
-{
-       return NULL;
-}
-
-static inline void
-find_matching_se(struct sched_entity **se, struct sched_entity **pse)
-{
-}
-
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
-                                  unsigned long delta_exec);
-
-/**************************************************************
- * Scheduling class tree data structure manipulation methods:
- */
-
-static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
-{
-       s64 delta = (s64)(vruntime - min_vruntime);
-       if (delta > 0)
-               min_vruntime = vruntime;
-
-       return min_vruntime;
-}
-
-static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
-{
-       s64 delta = (s64)(vruntime - min_vruntime);
-       if (delta < 0)
-               min_vruntime = vruntime;
-
-       return min_vruntime;
-}
-
-static inline int entity_before(struct sched_entity *a,
-                               struct sched_entity *b)
-{
-       return (s64)(a->vruntime - b->vruntime) < 0;
-}
-
-static void update_min_vruntime(struct cfs_rq *cfs_rq)
-{
-       u64 vruntime = cfs_rq->min_vruntime;
-
-       if (cfs_rq->curr)
-               vruntime = cfs_rq->curr->vruntime;
-
-       if (cfs_rq->rb_leftmost) {
-               struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
-                                                  struct sched_entity,
-                                                  run_node);
-
-               if (!cfs_rq->curr)
-                       vruntime = se->vruntime;
-               else
-                       vruntime = min_vruntime(vruntime, se->vruntime);
-       }
-
-       cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
-#ifndef CONFIG_64BIT
-       smp_wmb();
-       cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
-#endif
-}
-
-/*
- * Enqueue an entity into the rb-tree:
- */
-static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
-       struct rb_node *parent = NULL;
-       struct sched_entity *entry;
-       int leftmost = 1;
-
-       /*
-        * Find the right place in the rbtree:
-        */
-       while (*link) {
-               parent = *link;
-               entry = rb_entry(parent, struct sched_entity, run_node);
-               /*
-                * We dont care about collisions. Nodes with
-                * the same key stay together.
-                */
-               if (entity_before(se, entry)) {
-                       link = &parent->rb_left;
-               } else {
-                       link = &parent->rb_right;
-                       leftmost = 0;
-               }
-       }
-
-       /*
-        * Maintain a cache of leftmost tree entries (it is frequently
-        * used):
-        */
-       if (leftmost)
-               cfs_rq->rb_leftmost = &se->run_node;
-
-       rb_link_node(&se->run_node, parent, link);
-       rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
-}
-
-static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       if (cfs_rq->rb_leftmost == &se->run_node) {
-               struct rb_node *next_node;
-
-               next_node = rb_next(&se->run_node);
-               cfs_rq->rb_leftmost = next_node;
-       }
-
-       rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
-}
-
-struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
-{
-       struct rb_node *left = cfs_rq->rb_leftmost;
-
-       if (!left)
-               return NULL;
-
-       return rb_entry(left, struct sched_entity, run_node);
-}
-
-static struct sched_entity *__pick_next_entity(struct sched_entity *se)
-{
-       struct rb_node *next = rb_next(&se->run_node);
-
-       if (!next)
-               return NULL;
-
-       return rb_entry(next, struct sched_entity, run_node);
-}
-
-#ifdef CONFIG_SCHED_DEBUG
-struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
-{
-       struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
-
-       if (!last)
-               return NULL;
-
-       return rb_entry(last, struct sched_entity, run_node);
-}
-
-/**************************************************************
- * Scheduling class statistics methods:
- */
-
-int sched_proc_update_handler(struct ctl_table *table, int write,
-               void __user *buffer, size_t *lenp,
-               loff_t *ppos)
-{
-       int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
-       int factor = get_update_sysctl_factor();
-
-       if (ret || !write)
-               return ret;
-
-       sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
-                                       sysctl_sched_min_granularity);
-
-#define WRT_SYSCTL(name) \
-       (normalized_sysctl_##name = sysctl_##name / (factor))
-       WRT_SYSCTL(sched_min_granularity);
-       WRT_SYSCTL(sched_latency);
-       WRT_SYSCTL(sched_wakeup_granularity);
-#undef WRT_SYSCTL
-
-       return 0;
-}
-#endif
-
-/*
- * delta /= w
- */
-static inline unsigned long
-calc_delta_fair(unsigned long delta, struct sched_entity *se)
-{
-       if (unlikely(se->load.weight != NICE_0_LOAD))
-               delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
-
-       return delta;
-}
-
-/*
- * The idea is to set a period in which each task runs once.
- *
- * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
- * this period because otherwise the slices get too small.
- *
- * p = (nr <= nl) ? l : l*nr/nl
- */
-static u64 __sched_period(unsigned long nr_running)
-{
-       u64 period = sysctl_sched_latency;
-       unsigned long nr_latency = sched_nr_latency;
-
-       if (unlikely(nr_running > nr_latency)) {
-               period = sysctl_sched_min_granularity;
-               period *= nr_running;
-       }
-
-       return period;
-}
-
-/*
- * We calculate the wall-time slice from the period by taking a part
- * proportional to the weight.
- *
- * s = p*P[w/rw]
- */
-static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
-
-       for_each_sched_entity(se) {
-               struct load_weight *load;
-               struct load_weight lw;
-
-               cfs_rq = cfs_rq_of(se);
-               load = &cfs_rq->load;
-
-               if (unlikely(!se->on_rq)) {
-                       lw = cfs_rq->load;
-
-                       update_load_add(&lw, se->load.weight);
-                       load = &lw;
-               }
-               slice = calc_delta_mine(slice, se->load.weight, load);
-       }
-       return slice;
-}
-
-/*
- * We calculate the vruntime slice of a to be inserted task
- *
- * vs = s/w
- */
-static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       return calc_delta_fair(sched_slice(cfs_rq, se), se);
-}
-
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
-static void update_cfs_shares(struct cfs_rq *cfs_rq);
-
-/*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
-static inline void
-__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
-             unsigned long delta_exec)
-{
-       unsigned long delta_exec_weighted;
-
-       schedstat_set(curr->statistics.exec_max,
-                     max((u64)delta_exec, curr->statistics.exec_max));
-
-       curr->sum_exec_runtime += delta_exec;
-       schedstat_add(cfs_rq, exec_clock, delta_exec);
-       delta_exec_weighted = calc_delta_fair(delta_exec, curr);
-
-       curr->vruntime += delta_exec_weighted;
-       update_min_vruntime(cfs_rq);
-
-#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
-       cfs_rq->load_unacc_exec_time += delta_exec;
-#endif
-}
-
-static void update_curr(struct cfs_rq *cfs_rq)
-{
-       struct sched_entity *curr = cfs_rq->curr;
-       u64 now = rq_of(cfs_rq)->clock_task;
-       unsigned long delta_exec;
-
-       if (unlikely(!curr))
-               return;
-
-       /*
-        * Get the amount of time the current task was running
-        * since the last time we changed load (this cannot
-        * overflow on 32 bits):
-        */
-       delta_exec = (unsigned long)(now - curr->exec_start);
-       if (!delta_exec)
-               return;
-
-       __update_curr(cfs_rq, curr, delta_exec);
-       curr->exec_start = now;
-
-       if (entity_is_task(curr)) {
-               struct task_struct *curtask = task_of(curr);
-
-               trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
-               cpuacct_charge(curtask, delta_exec);
-               account_group_exec_runtime(curtask, delta_exec);
-       }
-
-       account_cfs_rq_runtime(cfs_rq, delta_exec);
-}
-
-static inline void
-update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
-}
-
-/*
- * Task is being enqueued - update stats:
- */
-static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       /*
-        * Are we enqueueing a waiting task? (for current tasks
-        * a dequeue/enqueue event is a NOP)
-        */
-       if (se != cfs_rq->curr)
-               update_stats_wait_start(cfs_rq, se);
-}
-
-static void
-update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
-                       rq_of(cfs_rq)->clock - se->statistics.wait_start));
-       schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
-       schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
-                       rq_of(cfs_rq)->clock - se->statistics.wait_start);
-#ifdef CONFIG_SCHEDSTATS
-       if (entity_is_task(se)) {
-               trace_sched_stat_wait(task_of(se),
-                       rq_of(cfs_rq)->clock - se->statistics.wait_start);
-       }
-#endif
-       schedstat_set(se->statistics.wait_start, 0);
-}
-
-static inline void
-update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       /*
-        * Mark the end of the wait period if dequeueing a
-        * waiting task:
-        */
-       if (se != cfs_rq->curr)
-               update_stats_wait_end(cfs_rq, se);
-}
-
-/*
- * We are picking a new current task - update its stats:
- */
-static inline void
-update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       /*
-        * We are starting a new run period:
-        */
-       se->exec_start = rq_of(cfs_rq)->clock_task;
-}
-
-/**************************************************
- * Scheduling class queueing methods:
- */
-
-#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
-static void
-add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
-{
-       cfs_rq->task_weight += weight;
-}
-#else
-static inline void
-add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
-{
-}
-#endif
-
-static void
-account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       update_load_add(&cfs_rq->load, se->load.weight);
-       if (!parent_entity(se))
-               update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
-       if (entity_is_task(se)) {
-               add_cfs_task_weight(cfs_rq, se->load.weight);
-               list_add(&se->group_node, &cfs_rq->tasks);
-       }
-       cfs_rq->nr_running++;
-}
-
-static void
-account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       update_load_sub(&cfs_rq->load, se->load.weight);
-       if (!parent_entity(se))
-               update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
-       if (entity_is_task(se)) {
-               add_cfs_task_weight(cfs_rq, -se->load.weight);
-               list_del_init(&se->group_node);
-       }
-       cfs_rq->nr_running--;
-}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-/* we need this in update_cfs_load and load-balance functions below */
-static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
-# ifdef CONFIG_SMP
-static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
-                                           int global_update)
-{
-       struct task_group *tg = cfs_rq->tg;
-       long load_avg;
-
-       load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
-       load_avg -= cfs_rq->load_contribution;
-
-       if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
-               atomic_add(load_avg, &tg->load_weight);
-               cfs_rq->load_contribution += load_avg;
-       }
-}
-
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
-{
-       u64 period = sysctl_sched_shares_window;
-       u64 now, delta;
-       unsigned long load = cfs_rq->load.weight;
-
-       if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
-               return;
-
-       now = rq_of(cfs_rq)->clock_task;
-       delta = now - cfs_rq->load_stamp;
-
-       /* truncate load history at 4 idle periods */
-       if (cfs_rq->load_stamp > cfs_rq->load_last &&
-           now - cfs_rq->load_last > 4 * period) {
-               cfs_rq->load_period = 0;
-               cfs_rq->load_avg = 0;
-               delta = period - 1;
-       }
-
-       cfs_rq->load_stamp = now;
-       cfs_rq->load_unacc_exec_time = 0;
-       cfs_rq->load_period += delta;
-       if (load) {
-               cfs_rq->load_last = now;
-               cfs_rq->load_avg += delta * load;
-       }
-
-       /* consider updating load contribution on each fold or truncate */
-       if (global_update || cfs_rq->load_period > period
-           || !cfs_rq->load_period)
-               update_cfs_rq_load_contribution(cfs_rq, global_update);
-
-       while (cfs_rq->load_period > period) {
-               /*
-                * Inline assembly required to prevent the compiler
-                * optimising this loop into a divmod call.
-                * See __iter_div_u64_rem() for another example of this.
-                */
-               asm("" : "+rm" (cfs_rq->load_period));
-               cfs_rq->load_period /= 2;
-               cfs_rq->load_avg /= 2;
-       }
-
-       if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
-               list_del_leaf_cfs_rq(cfs_rq);
-}
-
-static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
-{
-       long tg_weight;
-
-       /*
-        * Use this CPU's actual weight instead of the last load_contribution
-        * to gain a more accurate current total weight. See
-        * update_cfs_rq_load_contribution().
-        */
-       tg_weight = atomic_read(&tg->load_weight);
-       tg_weight -= cfs_rq->load_contribution;
-       tg_weight += cfs_rq->load.weight;
-
-       return tg_weight;
-}
-
-static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
-{
-       long tg_weight, load, shares;
-
-       tg_weight = calc_tg_weight(tg, cfs_rq);
-       load = cfs_rq->load.weight;
-
-       shares = (tg->shares * load);
-       if (tg_weight)
-               shares /= tg_weight;
-
-       if (shares < MIN_SHARES)
-               shares = MIN_SHARES;
-       if (shares > tg->shares)
-               shares = tg->shares;
-
-       return shares;
-}
-
-static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
-{
-       if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
-               update_cfs_load(cfs_rq, 0);
-               update_cfs_shares(cfs_rq);
-       }
-}
-# else /* CONFIG_SMP */
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
-{
-}
-
-static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
-{
-       return tg->shares;
-}
-
-static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
-{
-}
-# endif /* CONFIG_SMP */
-static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
-                           unsigned long weight)
-{
-       if (se->on_rq) {
-               /* commit outstanding execution time */
-               if (cfs_rq->curr == se)
-                       update_curr(cfs_rq);
-               account_entity_dequeue(cfs_rq, se);
-       }
-
-       update_load_set(&se->load, weight);
-
-       if (se->on_rq)
-               account_entity_enqueue(cfs_rq, se);
-}
-
-static void update_cfs_shares(struct cfs_rq *cfs_rq)
-{
-       struct task_group *tg;
-       struct sched_entity *se;
-       long shares;
-
-       tg = cfs_rq->tg;
-       se = tg->se[cpu_of(rq_of(cfs_rq))];
-       if (!se || throttled_hierarchy(cfs_rq))
-               return;
-#ifndef CONFIG_SMP
-       if (likely(se->load.weight == tg->shares))
-               return;
-#endif
-       shares = calc_cfs_shares(cfs_rq, tg);
-
-       reweight_entity(cfs_rq_of(se), se, shares);
-}
-#else /* CONFIG_FAIR_GROUP_SCHED */
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
-{
-}
-
-static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
-{
-}
-
-static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
-{
-}
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-#ifdef CONFIG_SCHEDSTATS
-       struct task_struct *tsk = NULL;
-
-       if (entity_is_task(se))
-               tsk = task_of(se);
-
-       if (se->statistics.sleep_start) {
-               u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
-
-               if ((s64)delta < 0)
-                       delta = 0;
-
-               if (unlikely(delta > se->statistics.sleep_max))
-                       se->statistics.sleep_max = delta;
-
-               se->statistics.sleep_start = 0;
-               se->statistics.sum_sleep_runtime += delta;
-
-               if (tsk) {
-                       account_scheduler_latency(tsk, delta >> 10, 1);
-                       trace_sched_stat_sleep(tsk, delta);
-               }
-       }
-       if (se->statistics.block_start) {
-               u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
-
-               if ((s64)delta < 0)
-                       delta = 0;
-
-               if (unlikely(delta > se->statistics.block_max))
-                       se->statistics.block_max = delta;
-
-               se->statistics.block_start = 0;
-               se->statistics.sum_sleep_runtime += delta;
-
-               if (tsk) {
-                       if (tsk->in_iowait) {
-                               se->statistics.iowait_sum += delta;
-                               se->statistics.iowait_count++;
-                               trace_sched_stat_iowait(tsk, delta);
-                       }
-
-                       /*
-                        * Blocking time is in units of nanosecs, so shift by
-                        * 20 to get a milliseconds-range estimation of the
-                        * amount of time that the task spent sleeping:
-                        */
-                       if (unlikely(prof_on == SLEEP_PROFILING)) {
-                               profile_hits(SLEEP_PROFILING,
-                                               (void *)get_wchan(tsk),
-                                               delta >> 20);
-                       }
-                       account_scheduler_latency(tsk, delta >> 10, 0);
-               }
-       }
-#endif
-}
-
-static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-#ifdef CONFIG_SCHED_DEBUG
-       s64 d = se->vruntime - cfs_rq->min_vruntime;
-
-       if (d < 0)
-               d = -d;
-
-       if (d > 3*sysctl_sched_latency)
-               schedstat_inc(cfs_rq, nr_spread_over);
-#endif
-}
-
-static void
-place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
-{
-       u64 vruntime = cfs_rq->min_vruntime;
-
-       /*
-        * The 'current' period is already promised to the current tasks,
-        * however the extra weight of the new task will slow them down a
-        * little, place the new task so that it fits in the slot that
-        * stays open at the end.
-        */
-       if (initial && sched_feat(START_DEBIT))
-               vruntime += sched_vslice(cfs_rq, se);
-
-       /* sleeps up to a single latency don't count. */
-       if (!initial) {
-               unsigned long thresh = sysctl_sched_latency;
-
-               /*
-                * Halve their sleep time's effect, to allow
-                * for a gentler effect of sleepers:
-                */
-               if (sched_feat(GENTLE_FAIR_SLEEPERS))
-                       thresh >>= 1;
-
-               vruntime -= thresh;
-       }
-
-       /* ensure we never gain time by being placed backwards. */
-       vruntime = max_vruntime(se->vruntime, vruntime);
-
-       se->vruntime = vruntime;
-}
-
-static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
-
-static void
-enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
-{
-       /*
-        * Update the normalized vruntime before updating min_vruntime
-        * through callig update_curr().
-        */
-       if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
-               se->vruntime += cfs_rq->min_vruntime;
-
-       /*
-        * Update run-time statistics of the 'current'.
-        */
-       update_curr(cfs_rq);
-       update_cfs_load(cfs_rq, 0);
-       account_entity_enqueue(cfs_rq, se);
-       update_cfs_shares(cfs_rq);
-
-       if (flags & ENQUEUE_WAKEUP) {
-               place_entity(cfs_rq, se, 0);
-               enqueue_sleeper(cfs_rq, se);
-       }
-
-       update_stats_enqueue(cfs_rq, se);
-       check_spread(cfs_rq, se);
-       if (se != cfs_rq->curr)
-               __enqueue_entity(cfs_rq, se);
-       se->on_rq = 1;
-
-       if (cfs_rq->nr_running == 1) {
-               list_add_leaf_cfs_rq(cfs_rq);
-               check_enqueue_throttle(cfs_rq);
-       }
-}
-
-static void __clear_buddies_last(struct sched_entity *se)
-{
-       for_each_sched_entity(se) {
-               struct cfs_rq *cfs_rq = cfs_rq_of(se);
-               if (cfs_rq->last == se)
-                       cfs_rq->last = NULL;
-               else
-                       break;
-       }
-}
-
-static void __clear_buddies_next(struct sched_entity *se)
-{
-       for_each_sched_entity(se) {
-               struct cfs_rq *cfs_rq = cfs_rq_of(se);
-               if (cfs_rq->next == se)
-                       cfs_rq->next = NULL;
-               else
-                       break;
-       }
-}
-
-static void __clear_buddies_skip(struct sched_entity *se)
-{
-       for_each_sched_entity(se) {
-               struct cfs_rq *cfs_rq = cfs_rq_of(se);
-               if (cfs_rq->skip == se)
-                       cfs_rq->skip = NULL;
-               else
-                       break;
-       }
-}
-
-static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       if (cfs_rq->last == se)
-               __clear_buddies_last(se);
-
-       if (cfs_rq->next == se)
-               __clear_buddies_next(se);
-
-       if (cfs_rq->skip == se)
-               __clear_buddies_skip(se);
-}
-
-static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
-
-static void
-dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
-{
-       /*
-        * Update run-time statistics of the 'current'.
-        */
-       update_curr(cfs_rq);
-
-       update_stats_dequeue(cfs_rq, se);
-       if (flags & DEQUEUE_SLEEP) {
-#ifdef CONFIG_SCHEDSTATS
-               if (entity_is_task(se)) {
-                       struct task_struct *tsk = task_of(se);
-
-                       if (tsk->state & TASK_INTERRUPTIBLE)
-                               se->statistics.sleep_start = rq_of(cfs_rq)->clock;
-                       if (tsk->state & TASK_UNINTERRUPTIBLE)
-                               se->statistics.block_start = rq_of(cfs_rq)->clock;
-               }
-#endif
-       }
-
-       clear_buddies(cfs_rq, se);
-
-       if (se != cfs_rq->curr)
-               __dequeue_entity(cfs_rq, se);
-       se->on_rq = 0;
-       update_cfs_load(cfs_rq, 0);
-       account_entity_dequeue(cfs_rq, se);
-
-       /*
-        * Normalize the entity after updating the min_vruntime because the
-        * update can refer to the ->curr item and we need to reflect this
-        * movement in our normalized position.
-        */
-       if (!(flags & DEQUEUE_SLEEP))
-               se->vruntime -= cfs_rq->min_vruntime;
-
-       /* return excess runtime on last dequeue */
-       return_cfs_rq_runtime(cfs_rq);
-
-       update_min_vruntime(cfs_rq);
-       update_cfs_shares(cfs_rq);
-}
-
-/*
- * Preempt the current task with a newly woken task if needed:
- */
-static void
-check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
-{
-       unsigned long ideal_runtime, delta_exec;
-       struct sched_entity *se;
-       s64 delta;
-
-       ideal_runtime = sched_slice(cfs_rq, curr);
-       delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
-       if (delta_exec > ideal_runtime) {
-               resched_task(rq_of(cfs_rq)->curr);
-               /*
-                * The current task ran long enough, ensure it doesn't get
-                * re-elected due to buddy favours.
-                */
-               clear_buddies(cfs_rq, curr);
-               return;
-       }
-
-       /*
-        * Ensure that a task that missed wakeup preemption by a
-        * narrow margin doesn't have to wait for a full slice.
-        * This also mitigates buddy induced latencies under load.
-        */
-       if (delta_exec < sysctl_sched_min_granularity)
-               return;
-
-       se = __pick_first_entity(cfs_rq);
-       delta = curr->vruntime - se->vruntime;
-
-       if (delta < 0)
-               return;
-
-       if (delta > ideal_runtime)
-               resched_task(rq_of(cfs_rq)->curr);
-}
-
-static void
-set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-       /* 'current' is not kept within the tree. */
-       if (se->on_rq) {
-               /*
-                * Any task has to be enqueued before it get to execute on
-                * a CPU. So account for the time it spent waiting on the
-                * runqueue.
-                */
-               update_stats_wait_end(cfs_rq, se);
-               __dequeue_entity(cfs_rq, se);
-       }
-
-       update_stats_curr_start(cfs_rq, se);
-       cfs_rq->curr = se;
-#ifdef CONFIG_SCHEDSTATS
-       /*
-        * Track our maximum slice length, if the CPU's load is at
-        * least twice that of our own weight (i.e. dont track it
-        * when there are only lesser-weight tasks around):
-        */
-       if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
-               se->statistics.slice_max = max(se->statistics.slice_max,
-                       se->sum_exec_runtime - se->prev_sum_exec_runtime);
-       }
-#endif
-       se->prev_sum_exec_runtime = se->sum_exec_runtime;
-}
-
-static int
-wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
-
-/*
- * Pick the next process, keeping these things in mind, in this order:
- * 1) keep things fair between processes/task groups
- * 2) pick the "next" process, since someone really wants that to run
- * 3) pick the "last" process, for cache locality
- * 4) do not run the "skip" process, if something else is available
- */
-static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
-{
-       struct sched_entity *se = __pick_first_entity(cfs_rq);
-       struct sched_entity *left = se;
-
-       /*
-        * Avoid running the skip buddy, if running something else can
-        * be done without getting too unfair.
-        */
-       if (cfs_rq->skip == se) {
-               struct sched_entity *second = __pick_next_entity(se);
-               if (second && wakeup_preempt_entity(second, left) < 1)
-                       se = second;
-       }
-
-       /*
-        * Prefer last buddy, try to return the CPU to a preempted task.
-        */
-       if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
-               se = cfs_rq->last;
-
-       /*
-        * Someone really wants this to run. If it's not unfair, run it.
-        */
-       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
-               se = cfs_rq->next;
-
-       clear_buddies(cfs_rq, se);
-
-       return se;
-}
-
-static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
-
-static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
-{
-       /*
-        * If still on the runqueue then deactivate_task()
-        * was not called and update_curr() has to be done:
-        */
-       if (prev->on_rq)
-               update_curr(cfs_rq);
-
-       /* throttle cfs_rqs exceeding runtime */
-       check_cfs_rq_runtime(cfs_rq);
-
-       check_spread(cfs_rq, prev);
-       if (prev->on_rq) {
-               update_stats_wait_start(cfs_rq, prev);
-               /* Put 'current' back into the tree. */
-               __enqueue_entity(cfs_rq, prev);
-       }
-       cfs_rq->curr = NULL;
-}
-
-static void
-entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
-{
-       /*
-        * Update run-time statistics of the 'current'.
-        */
-       update_curr(cfs_rq);
-
-       /*
-        * Update share accounting for long-running entities.
-        */
-       update_entity_shares_tick(cfs_rq);
-
-#ifdef CONFIG_SCHED_HRTICK
-       /*
-        * queued ticks are scheduled to match the slice, so don't bother
-        * validating it and just reschedule.
-        */
-       if (queued) {
-               resched_task(rq_of(cfs_rq)->curr);
-               return;
-       }
-       /*
-        * don't let the period tick interfere with the hrtick preemption
-        */
-       if (!sched_feat(DOUBLE_TICK) &&
-                       hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
-               return;
-#endif
-
-       if (cfs_rq->nr_running > 1)
-               check_preempt_tick(cfs_rq, curr);
-}
-
-
-/**************************************************
- * CFS bandwidth control machinery
- */
-
-#ifdef CONFIG_CFS_BANDWIDTH
-
-#ifdef HAVE_JUMP_LABEL
-static struct jump_label_key __cfs_bandwidth_used;
-
-static inline bool cfs_bandwidth_used(void)
-{
-       return static_branch(&__cfs_bandwidth_used);
-}
-
-void account_cfs_bandwidth_used(int enabled, int was_enabled)
-{
-       /* only need to count groups transitioning between enabled/!enabled */
-       if (enabled && !was_enabled)
-               jump_label_inc(&__cfs_bandwidth_used);
-       else if (!enabled && was_enabled)
-               jump_label_dec(&__cfs_bandwidth_used);
-}
-#else /* HAVE_JUMP_LABEL */
-static bool cfs_bandwidth_used(void)
-{
-       return true;
-}
-
-void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
-#endif /* HAVE_JUMP_LABEL */
-
-/*
- * default period for cfs group bandwidth.
- * default: 0.1s, units: nanoseconds
- */
-static inline u64 default_cfs_period(void)
-{
-       return 100000000ULL;
-}
-
-static inline u64 sched_cfs_bandwidth_slice(void)
-{
-       return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
-}
-
-/*
- * Replenish runtime according to assigned quota and update expiration time.
- * We use sched_clock_cpu directly instead of rq->clock to avoid adding
- * additional synchronization around rq->lock.
- *
- * requires cfs_b->lock
- */
-void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
-{
-       u64 now;
-
-       if (cfs_b->quota == RUNTIME_INF)
-               return;
-
-       now = sched_clock_cpu(smp_processor_id());
-       cfs_b->runtime = cfs_b->quota;
-       cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
-}
-
-static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
-{
-       return &tg->cfs_bandwidth;
-}
-
-/* returns 0 on failure to allocate runtime */
-static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
-{
-       struct task_group *tg = cfs_rq->tg;
-       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
-       u64 amount = 0, min_amount, expires;
-
-       /* note: this is a positive sum as runtime_remaining <= 0 */
-       min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
-
-       raw_spin_lock(&cfs_b->lock);
-       if (cfs_b->quota == RUNTIME_INF)
-               amount = min_amount;
-       else {
-               /*
-                * If the bandwidth pool has become inactive, then at least one
-                * period must have elapsed since the last consumption.
-                * Refresh the global state and ensure bandwidth timer becomes
-                * active.
-                */
-               if (!cfs_b->timer_active) {
-                       __refill_cfs_bandwidth_runtime(cfs_b);
-                       __start_cfs_bandwidth(cfs_b);
-               }
-
-               if (cfs_b->runtime > 0) {
-                       amount = min(cfs_b->runtime, min_amount);
-                       cfs_b->runtime -= amount;
-                       cfs_b->idle = 0;
-               }
-       }
-       expires = cfs_b->runtime_expires;
-       raw_spin_unlock(&cfs_b->lock);
-
-       cfs_rq->runtime_remaining += amount;
-       /*
-        * we may have advanced our local expiration to account for allowed
-        * spread between our sched_clock and the one on which runtime was
-        * issued.
-        */
-       if ((s64)(expires - cfs_rq->runtime_expires) > 0)
-               cfs_rq->runtime_expires = expires;
-
-       return cfs_rq->runtime_remaining > 0;
-}
-
-/*
- * Note: This depends on the synchronization provided by sched_clock and the
- * fact that rq->clock snapshots this value.
- */
-static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
-{
-       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
-       struct rq *rq = rq_of(cfs_rq);
-
-       /* if the deadline is ahead of our clock, nothing to do */
-       if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
-               return;
-
-       if (cfs_rq->runtime_remaining < 0)
-               return;
-
-       /*
-        * If the local deadline has passed we have to consider the
-        * possibility that our sched_clock is 'fast' and the global deadline
-        * has not truly expired.
-        *
-        * Fortunately we can check determine whether this the case by checking
-        * whether the global deadline has advanced.
-        */
-
-       if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
-               /* extend local deadline, drift is bounded above by 2 ticks */
-               cfs_rq->runtime_expires += TICK_NSEC;
-       } else {
-               /* global deadline is ahead, expiration has passed */
-               cfs_rq->runtime_remaining = 0;
-       }
-}
-
-static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
-                                    unsigned long delta_exec)
-{
-       /* dock delta_exec before expiring quota (as it could span periods) */
-       cfs_rq->runtime_remaining -= delta_exec;
-       expire_cfs_rq_runtime(cfs_rq);
-
-       if (likely(cfs_rq->runtime_remaining > 0))
-               return;
-
-       /*
-        * if we're unable to extend our runtime we resched so that the active
-        * hierarchy can be throttled
-        */
-       if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
-               resched_task(rq_of(cfs_rq)->curr);
-}
-
-static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
-                                                  unsigned long delta_exec)
-{
-       if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
-               return;
-
-       __account_cfs_rq_runtime(cfs_rq, delta_exec);
-}
-
-static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
-{
-       return cfs_bandwidth_used() && cfs_rq->throttled;
-}
-
-/* check whether cfs_rq, or any parent, is throttled */
-static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
-{
-       return cfs_bandwidth_used() && cfs_rq->throttle_count;
-}
-
-/*
- * Ensure that neither of the group entities corresponding to src_cpu or
- * dest_cpu are members of a throttled hierarchy when performing group
- * load-balance operations.
- */
-static inline int throttled_lb_pair(struct task_group *tg,
-                                   int src_cpu, int dest_cpu)
-{
-       struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
-
-       src_cfs_rq = tg->cfs_rq[src_cpu];
-       dest_cfs_rq = tg->cfs_rq[dest_cpu];
-
-       return throttled_hierarchy(src_cfs_rq) ||
-              throttled_hierarchy(dest_cfs_rq);
-}
-
-/* updated child weight may affect parent so we have to do this bottom up */
-static int tg_unthrottle_up(struct task_group *tg, void *data)
-{
-       struct rq *rq = data;
-       struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
-
-       cfs_rq->throttle_count--;
-#ifdef CONFIG_SMP
-       if (!cfs_rq->throttle_count) {
-               u64 delta = rq->clock_task - cfs_rq->load_stamp;
-
-               /* leaving throttled state, advance shares averaging windows */
-               cfs_rq->load_stamp += delta;
-               cfs_rq->load_last += delta;
-
-               /* update entity weight now that we are on_rq again */
-               update_cfs_shares(cfs_rq);
-       }
-#endif
-
-       return 0;
-}
-
-static int tg_throttle_down(struct task_group *tg, void *data)
-{
-       struct rq *rq = data;
-       struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
-
-       /* group is entering throttled state, record last load */
-       if (!cfs_rq->throttle_count)
-               update_cfs_load(cfs_rq, 0);
-       cfs_rq->throttle_count++;
-
-       return 0;
-}
-
-static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
-{
-       struct rq *rq = rq_of(cfs_rq);
-       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
-       struct sched_entity *se;
-       long task_delta, dequeue = 1;
-
-       se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
-
-       /* account load preceding throttle */
-       rcu_read_lock();
-       walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
-       rcu_read_unlock();
-
-       task_delta = cfs_rq->h_nr_running;
-       for_each_sched_entity(se) {
-               struct cfs_rq *qcfs_rq = cfs_rq_of(se);
-               /* throttled entity or throttle-on-deactivate */
-               if (!se->on_rq)
-                       break;
-
-               if (dequeue)
-                       dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
-               qcfs_rq->h_nr_running -= task_delta;
-
-               if (qcfs_rq->load.weight)
-                       dequeue = 0;
-       }
-
-       if (!se)
-               rq->nr_running -= task_delta;
-
-       cfs_rq->throttled = 1;
-       cfs_rq->throttled_timestamp = rq->clock;
-       raw_spin_lock(&cfs_b->lock);
-       list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
-       raw_spin_unlock(&cfs_b->lock);
-}
-
-void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
-{
-       struct rq *rq = rq_of(cfs_rq);
-       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
-       struct sched_entity *se;
-       int enqueue = 1;
-       long task_delta;
-
-       se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
-
-       cfs_rq->throttled = 0;
-       raw_spin_lock(&cfs_b->lock);
-       cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
-       list_del_rcu(&cfs_rq->throttled_list);
-       raw_spin_unlock(&cfs_b->lock);
-       cfs_rq->throttled_timestamp = 0;
-
-       update_rq_clock(rq);
-       /* update hierarchical throttle state */
-       walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
-
-       if (!cfs_rq->load.weight)
-               return;
-
-       task_delta = cfs_rq->h_nr_running;
-       for_each_sched_entity(se) {
-               if (se->on_rq)
-                       enqueue = 0;
-
-               cfs_rq = cfs_rq_of(se);
-               if (enqueue)
-                       enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
-               cfs_rq->h_nr_running += task_delta;
-
-               if (cfs_rq_throttled(cfs_rq))
-                       break;
-       }
-
-       if (!se)
-               rq->nr_running += task_delta;
-
-       /* determine whether we need to wake up potentially idle cpu */
-       if (rq->curr == rq->idle && rq->cfs.nr_running)
-               resched_task(rq->curr);
-}
-
-static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
-               u64 remaining, u64 expires)
-{
-       struct cfs_rq *cfs_rq;
-       u64 runtime = remaining;
-
-       rcu_read_lock();
-       list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
-                               throttled_list) {
-               struct rq *rq = rq_of(cfs_rq);
-
-               raw_spin_lock(&rq->lock);
-               if (!cfs_rq_throttled(cfs_rq))
-                       goto next;
-
-               runtime = -cfs_rq->runtime_remaining + 1;
-               if (runtime > remaining)
-                       runtime = remaining;
-               remaining -= runtime;
-
-               cfs_rq->runtime_remaining += runtime;
-               cfs_rq->runtime_expires = expires;
-
-               /* we check whether we're throttled above */
-               if (cfs_rq->runtime_remaining > 0)
-                       unthrottle_cfs_rq(cfs_rq);
-
-next:
-               raw_spin_unlock(&rq->lock);
-
-               if (!remaining)
-                       break;
-       }
-       rcu_read_unlock();
-
-       return remaining;
-}
-
-/*
- * Responsible for refilling a task_group's bandwidth and unthrottling its
- * cfs_rqs as appropriate. If there has been no activity within the last
- * period the timer is deactivated until scheduling resumes; cfs_b->idle is
- * used to track this state.
- */
-static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
-{
-       u64 runtime, runtime_expires;
-       int idle = 1, throttled;
-
-       raw_spin_lock(&cfs_b->lock);
-       /* no need to continue the timer with no bandwidth constraint */
-       if (cfs_b->quota == RUNTIME_INF)
-               goto out_unlock;
-
-       throttled = !list_empty(&cfs_b->throttled_cfs_rq);
-       /* idle depends on !throttled (for the case of a large deficit) */
-       idle = cfs_b->idle && !throttled;
-       cfs_b->nr_periods += overrun;
-
-       /* if we're going inactive then everything else can be deferred */
-       if (idle)
-               goto out_unlock;
-
-       __refill_cfs_bandwidth_runtime(cfs_b);
-
-       if (!throttled) {
-               /* mark as potentially idle for the upcoming period */
-               cfs_b->idle = 1;
-               goto out_unlock;
-       }
-
-       /* account preceding periods in which throttling occurred */
-       cfs_b->nr_throttled += overrun;
-
-       /*
-        * There are throttled entities so we must first use the new bandwidth
-        * to unthrottle them before making it generally available.  This
-        * ensures that all existing debts will be paid before a new cfs_rq is
-        * allowed to run.
-        */
-       runtime = cfs_b->runtime;
-       runtime_expires = cfs_b->runtime_expires;
-       cfs_b->runtime = 0;
-
-       /*
-        * This check is repeated as we are holding onto the new bandwidth
-        * while we unthrottle.  This can potentially race with an unthrottled
-        * group trying to acquire new bandwidth from the global pool.
-        */
-       while (throttled && runtime > 0) {
-               raw_spin_unlock(&cfs_b->lock);
-               /* we can't nest cfs_b->lock while distributing bandwidth */
-               runtime = distribute_cfs_runtime(cfs_b, runtime,
-                                                runtime_expires);
-               raw_spin_lock(&cfs_b->lock);
-
-               throttled = !list_empty(&cfs_b->throttled_cfs_rq);
-       }
-
-       /* return (any) remaining runtime */
-       cfs_b->runtime = runtime;
-       /*
-        * While we are ensured activity in the period following an
-        * unthrottle, this also covers the case in which the new bandwidth is
-        * insufficient to cover the existing bandwidth deficit.  (Forcing the
-        * timer to remain active while there are any throttled entities.)
-        */
-       cfs_b->idle = 0;
-out_unlock:
-       if (idle)
-               cfs_b->timer_active = 0;
-       raw_spin_unlock(&cfs_b->lock);
-
-       return idle;
-}
-
-/* a cfs_rq won't donate quota below this amount */
-static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
-/* minimum remaining period time to redistribute slack quota */
-static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
-/* how long we wait to gather additional slack before distributing */
-static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
-
-/* are we near the end of the current quota period? */
-static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
-{
-       struct hrtimer *refresh_timer = &cfs_b->period_timer;
-       u64 remaining;
-
-       /* if the call-back is running a quota refresh is already occurring */
-       if (hrtimer_callback_running(refresh_timer))
-               return 1;
-
-       /* is a quota refresh about to occur? */
-       remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
-       if (remaining < min_expire)
-               return 1;
-
-       return 0;
-}
-
-static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
-{
-       u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
-
-       /* if there's a quota refresh soon don't bother with slack */
-       if (runtime_refresh_within(cfs_b, min_left))
-               return;
-
-       start_bandwidth_timer(&cfs_b->slack_timer,
-                               ns_to_ktime(cfs_bandwidth_slack_period));
-}
-
-/* we know any runtime found here is valid as update_curr() precedes return */
-static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
-{
-       struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
-       s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
-
-       if (slack_runtime <= 0)
-               return;
-
-       raw_spin_lock(&cfs_b->lock);
-       if (cfs_b->quota != RUNTIME_INF &&
-           cfs_rq->runtime_expires == cfs_b->runtime_expires) {
-               cfs_b->runtime += slack_runtime;
-
-               /* we are under rq->lock, defer unthrottling using a timer */
-               if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
-                   !list_empty(&cfs_b->throttled_cfs_rq))
-                       start_cfs_slack_bandwidth(cfs_b);
-       }
-       raw_spin_unlock(&cfs_b->lock);
-
-       /* even if it's not valid for return we don't want to try again */
-       cfs_rq->runtime_remaining -= slack_runtime;
-}
-
-static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
-{
-       if (!cfs_bandwidth_used())
-               return;
-
-       if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
-               return;
-
-       __return_cfs_rq_runtime(cfs_rq);
-}
-
-/*
- * This is done with a timer (instead of inline with bandwidth return) since
- * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
- */
-static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
-{
-       u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
-       u64 expires;
-
-       /* confirm we're still not at a refresh boundary */
-       if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
-               return;
-
-       raw_spin_lock(&cfs_b->lock);
-       if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
-               runtime = cfs_b->runtime;
-               cfs_b->runtime = 0;
-       }
-       expires = cfs_b->runtime_expires;
-       raw_spin_unlock(&cfs_b->lock);
-
-       if (!runtime)
-               return;
-
-       runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
-
-       raw_spin_lock(&cfs_b->lock);
-       if (expires == cfs_b->runtime_expires)
-               cfs_b->runtime = runtime;
-       raw_spin_unlock(&cfs_b->lock);
-}
-
-/*
- * When a group wakes up we want to make sure that its quota is not already
- * expired/exceeded, otherwise it may be allowed to steal additional ticks of
- * runtime as update_curr() throttling can not not trigger until it's on-rq.
- */
-static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
-{
-       if (!cfs_bandwidth_used())
-               return;
-
-       /* an active group must be handled by the update_curr()->put() path */
-       if (!cfs_rq->runtime_enabled || cfs_rq->curr)
-               return;
-
-       /* ensure the group is not already throttled */
-       if (cfs_rq_throttled(cfs_rq))
-               return;
-
-       /* update runtime allocation */
-       account_cfs_rq_runtime(cfs_rq, 0);
-       if (cfs_rq->runtime_remaining <= 0)
-               throttle_cfs_rq(cfs_rq);
-}
-
-/* conditionally throttle active cfs_rq's from put_prev_entity() */
-static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
-{
-       if (!cfs_bandwidth_used())
-               return;
-
-       if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
-               return;
-
-       /*
-        * it's possible for a throttled entity to be forced into a running
-        * state (e.g. set_curr_task), in this case we're finished.
-        */
-       if (cfs_rq_throttled(cfs_rq))
-               return;
-
-       throttle_cfs_rq(cfs_rq);
-}
-
-static inline u64 default_cfs_period(void);
-static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
-static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
-
-static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
-{
-       struct cfs_bandwidth *cfs_b =
-               container_of(timer, struct cfs_bandwidth, slack_timer);
-       do_sched_cfs_slack_timer(cfs_b);
-
-       return HRTIMER_NORESTART;
-}
-
-static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
-{
-       struct cfs_bandwidth *cfs_b =
-               container_of(timer, struct cfs_bandwidth, period_timer);
-       ktime_t now;
-       int overrun;
-       int idle = 0;
-
-       for (;;) {
-               now = hrtimer_cb_get_time(timer);
-               overrun = hrtimer_forward(timer, now, cfs_b->period);
-
-               if (!overrun)
-                       break;
-
-               idle = do_sched_cfs_period_timer(cfs_b, overrun);
-       }
-
-       return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
-}
-
-void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
-{
-       raw_spin_lock_init(&cfs_b->lock);
-       cfs_b->runtime = 0;
-       cfs_b->quota = RUNTIME_INF;
-       cfs_b->period = ns_to_ktime(default_cfs_period());
-
-       INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
-       hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-       cfs_b->period_timer.function = sched_cfs_period_timer;
-       hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-       cfs_b->slack_timer.function = sched_cfs_slack_timer;
-}
-
-static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
-{
-       cfs_rq->runtime_enabled = 0;
-       INIT_LIST_HEAD(&cfs_rq->throttled_list);
-}
-
-/* requires cfs_b->lock, may release to reprogram timer */
-void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
-{
-       /*
-        * The timer may be active because we're trying to set a new bandwidth
-        * period or because we're racing with the tear-down path
-        * (timer_active==0 becomes visible before the hrtimer call-back
-        * terminates).  In either case we ensure that it's re-programmed
-        */
-       while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
-               raw_spin_unlock(&cfs_b->lock);
-               /* ensure cfs_b->lock is available while we wait */
-               hrtimer_cancel(&cfs_b->period_timer);
-
-               raw_spin_lock(&cfs_b->lock);
-               /* if someone else restarted the timer then we're done */
-               if (cfs_b->timer_active)
-                       return;
-       }
-
-       cfs_b->timer_active = 1;
-       start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
-}
-
-static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
-{
-       hrtimer_cancel(&cfs_b->period_timer);
-       hrtimer_cancel(&cfs_b->slack_timer);
-}
-
-void unthrottle_offline_cfs_rqs(struct rq *rq)
-{
-       struct cfs_rq *cfs_rq;
-
-       for_each_leaf_cfs_rq(rq, cfs_rq) {
-               struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
-
-               if (!cfs_rq->runtime_enabled)
-                       continue;
-
-               /*
-                * clock_task is not advancing so we just need to make sure
-                * there's some valid quota amount
-                */
-               cfs_rq->runtime_remaining = cfs_b->quota;
-               if (cfs_rq_throttled(cfs_rq))
-                       unthrottle_cfs_rq(cfs_rq);
-       }
-}
-
-#else /* CONFIG_CFS_BANDWIDTH */
-static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
-                                    unsigned long delta_exec) {}
-static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
-static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
-static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
-
-static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
-{
-       return 0;
-}
-
-static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
-{
-       return 0;
-}
-
-static inline int throttled_lb_pair(struct task_group *tg,
-                                   int src_cpu, int dest_cpu)
-{
-       return 0;
-}
-
-void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
-#endif
-
-static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
-{
-       return NULL;
-}
-static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
-void unthrottle_offline_cfs_rqs(struct rq *rq) {}
-
-#endif /* CONFIG_CFS_BANDWIDTH */
-
-/**************************************************
- * CFS operations on tasks:
- */
-
-#ifdef CONFIG_SCHED_HRTICK
-static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
-{
-       struct sched_entity *se = &p->se;
-       struct cfs_rq *cfs_rq = cfs_rq_of(se);
-
-       WARN_ON(task_rq(p) != rq);
-
-       if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
-               u64 slice = sched_slice(cfs_rq, se);
-               u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
-               s64 delta = slice - ran;
-
-               if (delta < 0) {
-                       if (rq->curr == p)
-                               resched_task(p);
-                       return;
-               }
-
-               /*
-                * Don't schedule slices shorter than 10000ns, that just
-                * doesn't make sense. Rely on vruntime for fairness.
-                */
-               if (rq->curr != p)
-                       delta = max_t(s64, 10000LL, delta);
-
-               hrtick_start(rq, delta);
-       }
-}
-
-/*
- * called from enqueue/dequeue and updates the hrtick when the
- * current task is from our class and nr_running is low enough
- * to matter.
- */
-static void hrtick_update(struct rq *rq)
-{
-       struct task_struct *curr = rq->curr;
-
-       if (curr->sched_class != &fair_sched_class)
-               return;
-
-       if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
-               hrtick_start_fair(rq, curr);
-}
-#else /* !CONFIG_SCHED_HRTICK */
-static inline void
-hrtick_start_fair(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void hrtick_update(struct rq *rq)
-{
-}
-#endif
-
-/*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
-static void
-enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
-{
-       struct cfs_rq *cfs_rq;
-       struct sched_entity *se = &p->se;
-
-       for_each_sched_entity(se) {
-               if (se->on_rq)
-                       break;
-               cfs_rq = cfs_rq_of(se);
-               enqueue_entity(cfs_rq, se, flags);
-
-               /*
-                * end evaluation on encountering a throttled cfs_rq
-                *
-                * note: in the case of encountering a throttled cfs_rq we will
-                * post the final h_nr_running increment below.
-               */
-               if (cfs_rq_throttled(cfs_rq))
-                       break;
-               cfs_rq->h_nr_running++;
-
-               flags = ENQUEUE_WAKEUP;
-       }
-
-       for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
-               cfs_rq->h_nr_running++;
-
-               if (cfs_rq_throttled(cfs_rq))
-                       break;
-
-               update_cfs_load(cfs_rq, 0);
-               update_cfs_shares(cfs_rq);
-       }
-
-       if (!se)
-               inc_nr_running(rq);
-       hrtick_update(rq);
-}
-
-static void set_next_buddy(struct sched_entity *se);
-
-/*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
- */
-static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
-{
-       struct cfs_rq *cfs_rq;
-       struct sched_entity *se = &p->se;
-       int task_sleep = flags & DEQUEUE_SLEEP;
-
-       for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
-               dequeue_entity(cfs_rq, se, flags);
-
-               /*
-                * end evaluation on encountering a throttled cfs_rq
-                *
-                * note: in the case of encountering a throttled cfs_rq we will
-                * post the final h_nr_running decrement below.
-               */
-               if (cfs_rq_throttled(cfs_rq))
-                       break;
-               cfs_rq->h_nr_running--;
-
-               /* Don't dequeue parent if it has other entities besides us */
-               if (cfs_rq->load.weight) {
-                       /*
-                        * Bias pick_next to pick a task from this cfs_rq, as
-                        * p is sleeping when it is within its sched_slice.
-                        */
-                       if (task_sleep && parent_entity(se))
-                               set_next_buddy(parent_entity(se));
-
-                       /* avoid re-evaluating load for this entity */
-                       se = parent_entity(se);
-                       break;
-               }
-               flags |= DEQUEUE_SLEEP;
-       }
-
-       for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
-               cfs_rq->h_nr_running--;
-
-               if (cfs_rq_throttled(cfs_rq))
-                       break;
-
-               update_cfs_load(cfs_rq, 0);
-               update_cfs_shares(cfs_rq);
-       }
-
-       if (!se)
-               dec_nr_running(rq);
-       hrtick_update(rq);
-}
-
-#ifdef CONFIG_SMP
-/* Used instead of source_load when we know the type == 0 */
-static unsigned long weighted_cpuload(const int cpu)
-{
-       return cpu_rq(cpu)->load.weight;
-}
-
-/*
- * Return a low guess at the load of a migration-source cpu weighted
- * according to the scheduling class and "nice" value.
- *
- * We want to under-estimate the load of migration sources, to
- * balance conservatively.
- */
-static unsigned long source_load(int cpu, int type)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long total = weighted_cpuload(cpu);
-
-       if (type == 0 || !sched_feat(LB_BIAS))
-               return total;
-
-       return min(rq->cpu_load[type-1], total);
-}
-
-/*
- * Return a high guess at the load of a migration-target cpu weighted
- * according to the scheduling class and "nice" value.
- */
-static unsigned long target_load(int cpu, int type)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long total = weighted_cpuload(cpu);
-
-       if (type == 0 || !sched_feat(LB_BIAS))
-               return total;
-
-       return max(rq->cpu_load[type-1], total);
-}
-
-static unsigned long power_of(int cpu)
-{
-       return cpu_rq(cpu)->cpu_power;
-}
-
-static unsigned long cpu_avg_load_per_task(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
-
-       if (nr_running)
-               return rq->load.weight / nr_running;
-
-       return 0;
-}
-
-
-static void task_waking_fair(struct task_struct *p)
-{
-       struct sched_entity *se = &p->se;
-       struct cfs_rq *cfs_rq = cfs_rq_of(se);
-       u64 min_vruntime;
-
-#ifndef CONFIG_64BIT
-       u64 min_vruntime_copy;
-
-       do {
-               min_vruntime_copy = cfs_rq->min_vruntime_copy;
-               smp_rmb();
-               min_vruntime = cfs_rq->min_vruntime;
-       } while (min_vruntime != min_vruntime_copy);
-#else
-       min_vruntime = cfs_rq->min_vruntime;
-#endif
-
-       se->vruntime -= min_vruntime;
-}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-/*
- * effective_load() calculates the load change as seen from the root_task_group
- *
- * Adding load to a group doesn't make a group heavier, but can cause movement
- * of group shares between cpus. Assuming the shares were perfectly aligned one
- * can calculate the shift in shares.
- *
- * Calculate the effective load difference if @wl is added (subtracted) to @tg
- * on this @cpu and results in a total addition (subtraction) of @wg to the
- * total group weight.
- *
- * Given a runqueue weight distribution (rw_i) we can compute a shares
- * distribution (s_i) using:
- *
- *   s_i = rw_i / \Sum rw_j                                            (1)
- *
- * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
- * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
- * shares distribution (s_i):
- *
- *   rw_i = {   2,   4,   1,   0 }
- *   s_i  = { 2/7, 4/7, 1/7,   0 }
- *
- * As per wake_affine() we're interested in the load of two CPUs (the CPU the
- * task used to run on and the CPU the waker is running on), we need to
- * compute the effect of waking a task on either CPU and, in case of a sync
- * wakeup, compute the effect of the current task going to sleep.
- *
- * So for a change of @wl to the local @cpu with an overall group weight change
- * of @wl we can compute the new shares distribution (s'_i) using:
- *
- *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                           (2)
- *
- * Suppose we're interested in CPUs 0 and 1, and want to compute the load
- * differences in waking a task to CPU 0. The additional task changes the
- * weight and shares distributions like:
- *
- *   rw'_i = {   3,   4,   1,   0 }
- *   s'_i  = { 3/8, 4/8, 1/8,   0 }
- *
- * We can then compute the difference in effective weight by using:
- *
- *   dw_i = S * (s'_i - s_i)                                           (3)
- *
- * Where 'S' is the group weight as seen by its parent.
- *
- * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
- * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
- * 4/7) times the weight of the group.
- */
-static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
-{
-       struct sched_entity *se = tg->se[cpu];
-
-       if (!tg->parent)        /* the trivial, non-cgroup case */
-               return wl;
-
-       for_each_sched_entity(se) {
-               long w, W;
-
-               tg = se->my_q->tg;
-
-               /*
-                * W = @wg + \Sum rw_j
-                */
-               W = wg + calc_tg_weight(tg, se->my_q);
-
-               /*
-                * w = rw_i + @wl
-                */
-               w = se->my_q->load.weight + wl;
-
-               /*
-                * wl = S * s'_i; see (2)
-                */
-               if (W > 0 && w < W)
-                       wl = (w * tg->shares) / W;
-               else
-                       wl = tg->shares;
-
-               /*
-                * Per the above, wl is the new se->load.weight value; since
-                * those are clipped to [MIN_SHARES, ...) do so now. See
-                * calc_cfs_shares().
-                */
-               if (wl < MIN_SHARES)
-                       wl = MIN_SHARES;
-
-               /*
-                * wl = dw_i = S * (s'_i - s_i); see (3)
-                */
-               wl -= se->load.weight;
-
-               /*
-                * Recursively apply this logic to all parent groups to compute
-                * the final effective load change on the root group. Since
-                * only the @tg group gets extra weight, all parent groups can
-                * only redistribute existing shares. @wl is the shift in shares
-                * resulting from this level per the above.
-                */
-               wg = 0;
-       }
-
-       return wl;
-}
-#else
-
-static inline unsigned long effective_load(struct task_group *tg, int cpu,
-               unsigned long wl, unsigned long wg)
-{
-       return wl;
-}
-
-#endif
-
-static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
-{
-       s64 this_load, load;
-       int idx, this_cpu, prev_cpu;
-       unsigned long tl_per_task;
-       struct task_group *tg;
-       unsigned long weight;
-       int balanced;
-
-       idx       = sd->wake_idx;
-       this_cpu  = smp_processor_id();
-       prev_cpu  = task_cpu(p);
-       load      = source_load(prev_cpu, idx);
-       this_load = target_load(this_cpu, idx);
-
-       /*
-        * If sync wakeup then subtract the (maximum possible)
-        * effect of the currently running task from the load
-        * of the current CPU:
-        */
-       if (sync) {
-               tg = task_group(current);
-               weight = current->se.load.weight;
-
-               this_load += effective_load(tg, this_cpu, -weight, -weight);
-               load += effective_load(tg, prev_cpu, 0, -weight);
-       }
-
-       tg = task_group(p);
-       weight = p->se.load.weight;
-
-       /*
-        * In low-load situations, where prev_cpu is idle and this_cpu is idle
-        * due to the sync cause above having dropped this_load to 0, we'll
-        * always have an imbalance, but there's really nothing you can do
-        * about that, so that's good too.
-        *
-        * Otherwise check if either cpus are near enough in load to allow this
-        * task to be woken on this_cpu.
-        */
-       if (this_load > 0) {
-               s64 this_eff_load, prev_eff_load;
-
-               this_eff_load = 100;
-               this_eff_load *= power_of(prev_cpu);
-               this_eff_load *= this_load +
-                       effective_load(tg, this_cpu, weight, weight);
-
-               prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
-               prev_eff_load *= power_of(this_cpu);
-               prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
-
-               balanced = this_eff_load <= prev_eff_load;
-       } else
-               balanced = true;
-
-       /*
-        * If the currently running task will sleep within
-        * a reasonable amount of time then attract this newly
-        * woken task:
-        */
-       if (sync && balanced)
-               return 1;
-
-       schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
-       tl_per_task = cpu_avg_load_per_task(this_cpu);
-
-       if (balanced ||
-           (this_load <= load &&
-            this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
-               /*
-                * This domain has SD_WAKE_AFFINE and
-                * p is cache cold in this domain, and
-                * there is no bad imbalance.
-                */
-               schedstat_inc(sd, ttwu_move_affine);
-               schedstat_inc(p, se.statistics.nr_wakeups_affine);
-
-               return 1;
-       }
-       return 0;
-}
-
-/*
- * find_idlest_group finds and returns the least busy CPU group within the
- * domain.
- */
-static struct sched_group *
-find_idlest_group(struct sched_domain *sd, struct task_struct *p,
-                 int this_cpu, int load_idx)
-{
-       struct sched_group *idlest = NULL, *group = sd->groups;
-       unsigned long min_load = ULONG_MAX, this_load = 0;
-       int imbalance = 100 + (sd->imbalance_pct-100)/2;
-
-       do {
-               unsigned long load, avg_load;
-               int local_group;
-               int i;
-
-               /* Skip over this group if it has no CPUs allowed */
-               if (!cpumask_intersects(sched_group_cpus(group),
-                                       tsk_cpus_allowed(p)))
-                       continue;
-
-               local_group = cpumask_test_cpu(this_cpu,
-                                              sched_group_cpus(group));
-
-               /* Tally up the load of all CPUs in the group */
-               avg_load = 0;
-
-               for_each_cpu(i, sched_group_cpus(group)) {
-                       /* Bias balancing toward cpus of our domain */
-                       if (local_group)
-                               load = source_load(i, load_idx);
-                       else
-                               load = target_load(i, load_idx);
-
-                       avg_load += load;
-               }
-
-               /* Adjust by relative CPU power of the group */
-               avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
-
-               if (local_group) {
-                       this_load = avg_load;
-               } else if (avg_load < min_load) {
-                       min_load = avg_load;
-                       idlest = group;
-               }
-       } while (group = group->next, group != sd->groups);
-
-       if (!idlest || 100*this_load < imbalance*min_load)
-               return NULL;
-       return idlest;
-}
-
-/*
- * find_idlest_cpu - find the idlest cpu among the cpus in group.
- */
-static int
-find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
-{
-       unsigned long load, min_load = ULONG_MAX;
-       int idlest = -1;
-       int i;
-
-       /* Traverse only the allowed CPUs */
-       for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
-               load = weighted_cpuload(i);
-
-               if (load < min_load || (load == min_load && i == this_cpu)) {
-                       min_load = load;
-                       idlest = i;
-               }
-       }
-
-       return idlest;
-}
-
-/*
- * Try and locate an idle CPU in the sched_domain.
- */
-static int select_idle_sibling(struct task_struct *p, int target)
-{
-       int cpu = smp_processor_id();
-       int prev_cpu = task_cpu(p);
-       struct sched_domain *sd;
-       struct sched_group *sg;
-       int i, smt = 0;
-
-       /*
-        * If the task is going to be woken-up on this cpu and if it is
-        * already idle, then it is the right target.
-        */
-       if (target == cpu && idle_cpu(cpu))
-               return cpu;
-
-       /*
-        * If the task is going to be woken-up on the cpu where it previously
-        * ran and if it is currently idle, then it the right target.
-        */
-       if (target == prev_cpu && idle_cpu(prev_cpu))
-               return prev_cpu;
-
-       /*
-        * Otherwise, iterate the domains and find an elegible idle cpu.
-        */
-       rcu_read_lock();
-again:
-       for_each_domain(target, sd) {
-               if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
-                       continue;
-
-               if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) {
-                       if (!smt) {
-                               smt = 1;
-                               goto again;
-                       }
-                       break;
-               }
-
-               sg = sd->groups;
-               do {
-                       if (!cpumask_intersects(sched_group_cpus(sg),
-                                               tsk_cpus_allowed(p)))
-                               goto next;
-
-                       for_each_cpu(i, sched_group_cpus(sg)) {
-                               if (!idle_cpu(i))
-                                       goto next;
-                       }
-
-                       target = cpumask_first_and(sched_group_cpus(sg),
-                                       tsk_cpus_allowed(p));
-                       goto done;
-next:
-                       sg = sg->next;
-               } while (sg != sd->groups);
-       }
-done:
-       rcu_read_unlock();
-
-       return target;
-}
-
-/*
- * sched_balance_self: balance the current task (running on cpu) in domains
- * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
- * SD_BALANCE_EXEC.
- *
- * Balance, ie. select the least loaded group.
- *
- * Returns the target CPU number, or the same CPU if no balancing is needed.
- *
- * preempt must be disabled.
- */
-static int
-select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
-{
-       struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
-       int cpu = smp_processor_id();
-       int prev_cpu = task_cpu(p);
-       int new_cpu = cpu;
-       int want_affine = 0;
-       int want_sd = 1;
-       int sync = wake_flags & WF_SYNC;
-
-       if (sd_flag & SD_BALANCE_WAKE) {
-               if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
-                       want_affine = 1;
-               new_cpu = prev_cpu;
-       }
-
-       rcu_read_lock();
-       for_each_domain(cpu, tmp) {
-               if (!(tmp->flags & SD_LOAD_BALANCE))
-                       continue;
-
-               /*
-                * If power savings logic is enabled for a domain, see if we
-                * are not overloaded, if so, don't balance wider.
-                */
-               if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
-                       unsigned long power = 0;
-                       unsigned long nr_running = 0;
-                       unsigned long capacity;
-                       int i;
-
-                       for_each_cpu(i, sched_domain_span(tmp)) {
-                               power += power_of(i);
-                               nr_running += cpu_rq(i)->cfs.nr_running;
-                       }
-
-                       capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
-
-                       if (tmp->flags & SD_POWERSAVINGS_BALANCE)
-                               nr_running /= 2;
-
-                       if (nr_running < capacity)
-                               want_sd = 0;
-               }
-
-               /*
-                * If both cpu and prev_cpu are part of this domain,
-                * cpu is a valid SD_WAKE_AFFINE target.
-                */
-               if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
-                   cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
-                       affine_sd = tmp;
-                       want_affine = 0;
-               }
-
-               if (!want_sd && !want_affine)
-                       break;
-
-               if (!(tmp->flags & sd_flag))
-                       continue;
-
-               if (want_sd)
-                       sd = tmp;
-       }
-
-       if (affine_sd) {
-               if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
-                       prev_cpu = cpu;
-
-               new_cpu = select_idle_sibling(p, prev_cpu);
-               goto unlock;
-       }
-
-       while (sd) {
-               int load_idx = sd->forkexec_idx;
-               struct sched_group *group;
-               int weight;
-
-               if (!(sd->flags & sd_flag)) {
-                       sd = sd->child;
-                       continue;
-               }
-
-               if (sd_flag & SD_BALANCE_WAKE)
-                       load_idx = sd->wake_idx;
-
-               group = find_idlest_group(sd, p, cpu, load_idx);
-               if (!group) {
-                       sd = sd->child;
-                       continue;
-               }
-
-               new_cpu = find_idlest_cpu(group, p, cpu);
-               if (new_cpu == -1 || new_cpu == cpu) {
-                       /* Now try balancing at a lower domain level of cpu */
-                       sd = sd->child;
-                       continue;
-               }
-
-               /* Now try balancing at a lower domain level of new_cpu */
-               cpu = new_cpu;
-               weight = sd->span_weight;
-               sd = NULL;
-               for_each_domain(cpu, tmp) {
-                       if (weight <= tmp->span_weight)
-                               break;
-                       if (tmp->flags & sd_flag)
-                               sd = tmp;
-               }
-               /* while loop will break here if sd == NULL */
-       }
-unlock:
-       rcu_read_unlock();
-
-       return new_cpu;
-}
-#endif /* CONFIG_SMP */
-
-static unsigned long
-wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
-{
-       unsigned long gran = sysctl_sched_wakeup_granularity;
-
-       /*
-        * Since its curr running now, convert the gran from real-time
-        * to virtual-time in his units.
-        *
-        * By using 'se' instead of 'curr' we penalize light tasks, so
-        * they get preempted easier. That is, if 'se' < 'curr' then
-        * the resulting gran will be larger, therefore penalizing the
-        * lighter, if otoh 'se' > 'curr' then the resulting gran will
-        * be smaller, again penalizing the lighter task.
-        *
-        * This is especially important for buddies when the leftmost
-        * task is higher priority than the buddy.
-        */
-       return calc_delta_fair(gran, se);
-}
-
-/*
- * Should 'se' preempt 'curr'.
- *
- *             |s1
- *        |s2
- *   |s3
- *         g
- *      |<--->|c
- *
- *  w(c, s1) = -1
- *  w(c, s2) =  0
- *  w(c, s3) =  1
- *
- */
-static int
-wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
-{
-       s64 gran, vdiff = curr->vruntime - se->vruntime;
-
-       if (vdiff <= 0)
-               return -1;
-
-       gran = wakeup_gran(curr, se);
-       if (vdiff > gran)
-               return 1;
-
-       return 0;
-}
-
-static void set_last_buddy(struct sched_entity *se)
-{
-       if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
-               return;
-
-       for_each_sched_entity(se)
-               cfs_rq_of(se)->last = se;
-}
-
-static void set_next_buddy(struct sched_entity *se)
-{
-       if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
-               return;
-
-       for_each_sched_entity(se)
-               cfs_rq_of(se)->next = se;
-}
-
-static void set_skip_buddy(struct sched_entity *se)
-{
-       for_each_sched_entity(se)
-               cfs_rq_of(se)->skip = se;
-}
-
-/*
- * Preempt the current task with a newly woken task if needed:
- */
-static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
-{
-       struct task_struct *curr = rq->curr;
-       struct sched_entity *se = &curr->se, *pse = &p->se;
-       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
-       int scale = cfs_rq->nr_running >= sched_nr_latency;
-       int next_buddy_marked = 0;
-
-       if (unlikely(se == pse))
-               return;
-
-       /*
-        * This is possible from callers such as pull_task(), in which we
-        * unconditionally check_prempt_curr() after an enqueue (which may have
-        * lead to a throttle).  This both saves work and prevents false
-        * next-buddy nomination below.
-        */
-       if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
-               return;
-
-       if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
-               set_next_buddy(pse);
-               next_buddy_marked = 1;
-       }
-
-       /*
-        * We can come here with TIF_NEED_RESCHED already set from new task
-        * wake up path.
-        *
-        * Note: this also catches the edge-case of curr being in a throttled
-        * group (e.g. via set_curr_task), since update_curr() (in the
-        * enqueue of curr) will have resulted in resched being set.  This
-        * prevents us from potentially nominating it as a false LAST_BUDDY
-        * below.
-        */
-       if (test_tsk_need_resched(curr))
-               return;
-
-       /* Idle tasks are by definition preempted by non-idle tasks. */
-       if (unlikely(curr->policy == SCHED_IDLE) &&
-           likely(p->policy != SCHED_IDLE))
-               goto preempt;
-
-       /*
-        * Batch and idle tasks do not preempt non-idle tasks (their preemption
-        * is driven by the tick):
-        */
-       if (unlikely(p->policy != SCHED_NORMAL))
-               return;
-
-       find_matching_se(&se, &pse);
-       update_curr(cfs_rq_of(se));
-       BUG_ON(!pse);
-       if (wakeup_preempt_entity(se, pse) == 1) {
-               /*
-                * Bias pick_next to pick the sched entity that is
-                * triggering this preemption.
-                */
-               if (!next_buddy_marked)
-                       set_next_buddy(pse);
-               goto preempt;
-       }
-
-       return;
-
-preempt:
-       resched_task(curr);
-       /*
-        * Only set the backward buddy when the current task is still
-        * on the rq. This can happen when a wakeup gets interleaved
-        * with schedule on the ->pre_schedule() or idle_balance()
-        * point, either of which can * drop the rq lock.
-        *
-        * Also, during early boot the idle thread is in the fair class,
-        * for obvious reasons its a bad idea to schedule back to it.
-        */
-       if (unlikely(!se->on_rq || curr == rq->idle))
-               return;
-
-       if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
-               set_last_buddy(se);
-}
-
-static struct task_struct *pick_next_task_fair(struct rq *rq)
-{
-       struct task_struct *p;
-       struct cfs_rq *cfs_rq = &rq->cfs;
-       struct sched_entity *se;
-
-       if (!cfs_rq->nr_running)
-               return NULL;
-
-       do {
-               se = pick_next_entity(cfs_rq);
-               set_next_entity(cfs_rq, se);
-               cfs_rq = group_cfs_rq(se);
-       } while (cfs_rq);
-
-       p = task_of(se);
-       hrtick_start_fair(rq, p);
-
-       return p;
-}
-
-/*
- * Account for a descheduled task:
- */
-static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
-{
-       struct sched_entity *se = &prev->se;
-       struct cfs_rq *cfs_rq;
-
-       for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
-               put_prev_entity(cfs_rq, se);
-       }
-}
-
-/*
- * sched_yield() is very simple
- *
- * The magic of dealing with the ->skip buddy is in pick_next_entity.
- */
-static void yield_task_fair(struct rq *rq)
-{
-       struct task_struct *curr = rq->curr;
-       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
-       struct sched_entity *se = &curr->se;
-
-       /*
-        * Are we the only task in the tree?
-        */
-       if (unlikely(rq->nr_running == 1))
-               return;
-
-       clear_buddies(cfs_rq, se);
-
-       if (curr->policy != SCHED_BATCH) {
-               update_rq_clock(rq);
-               /*
-                * Update run-time statistics of the 'current'.
-                */
-               update_curr(cfs_rq);
-       }
-
-       set_skip_buddy(se);
-}
-
-static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
-{
-       struct sched_entity *se = &p->se;
-
-       /* throttled hierarchies are not runnable */
-       if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
-               return false;
-
-       /* Tell the scheduler that we'd really like pse to run next. */
-       set_next_buddy(se);
-
-       yield_task_fair(rq);
-
-       return true;
-}
-
-#ifdef CONFIG_SMP
-/**************************************************
- * Fair scheduling class load-balancing methods:
- */
-
-/*
- * pull_task - move a task from a remote runqueue to the local runqueue.
- * Both runqueues must be locked.
- */
-static void pull_task(struct rq *src_rq, struct task_struct *p,
-                     struct rq *this_rq, int this_cpu)
-{
-       deactivate_task(src_rq, p, 0);
-       set_task_cpu(p, this_cpu);
-       activate_task(this_rq, p, 0);
-       check_preempt_curr(this_rq, p, 0);
-}
-
-/*
- * Is this task likely cache-hot:
- */
-static int
-task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
-{
-       s64 delta;
-
-       if (p->sched_class != &fair_sched_class)
-               return 0;
-
-       if (unlikely(p->policy == SCHED_IDLE))
-               return 0;
-
-       /*
-        * Buddy candidates are cache hot:
-        */
-       if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
-                       (&p->se == cfs_rq_of(&p->se)->next ||
-                        &p->se == cfs_rq_of(&p->se)->last))
-               return 1;
-
-       if (sysctl_sched_migration_cost == -1)
-               return 1;
-       if (sysctl_sched_migration_cost == 0)
-               return 0;
-
-       delta = now - p->se.exec_start;
-
-       return delta < (s64)sysctl_sched_migration_cost;
-}
-
-/*
- * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
- */
-static
-int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
-                    struct sched_domain *sd, enum cpu_idle_type idle,
-                    int *all_pinned)
-{
-       int tsk_cache_hot = 0;
-       /*
-        * We do not migrate tasks that are:
-        * 1) running (obviously), or
-        * 2) cannot be migrated to this CPU due to cpus_allowed, or
-        * 3) are cache-hot on their current CPU.
-        */
-       if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
-               schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
-               return 0;
-       }
-       *all_pinned = 0;
-
-       if (task_running(rq, p)) {
-               schedstat_inc(p, se.statistics.nr_failed_migrations_running);
-               return 0;
-       }
-
-       /*
-        * Aggressive migration if:
-        * 1) task is cache cold, or
-        * 2) too many balance attempts have failed.
-        */
-
-       tsk_cache_hot = task_hot(p, rq->clock_task, sd);
-       if (!tsk_cache_hot ||
-               sd->nr_balance_failed > sd->cache_nice_tries) {
-#ifdef CONFIG_SCHEDSTATS
-               if (tsk_cache_hot) {
-                       schedstat_inc(sd, lb_hot_gained[idle]);
-                       schedstat_inc(p, se.statistics.nr_forced_migrations);
-               }
-#endif
-               return 1;
-       }
-
-       if (tsk_cache_hot) {
-               schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
-               return 0;
-       }
-       return 1;
-}
-
-/*
- * move_one_task tries to move exactly one task from busiest to this_rq, as
- * part of active balancing operations within "domain".
- * Returns 1 if successful and 0 otherwise.
- *
- * Called with both runqueues locked.
- */
-static int
-move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
-             struct sched_domain *sd, enum cpu_idle_type idle)
-{
-       struct task_struct *p, *n;
-       struct cfs_rq *cfs_rq;
-       int pinned = 0;
-
-       for_each_leaf_cfs_rq(busiest, cfs_rq) {
-               list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
-                       if (throttled_lb_pair(task_group(p),
-                                             busiest->cpu, this_cpu))
-                               break;
-
-                       if (!can_migrate_task(p, busiest, this_cpu,
-                                               sd, idle, &pinned))
-                               continue;
-
-                       pull_task(busiest, p, this_rq, this_cpu);
-                       /*
-                        * Right now, this is only the second place pull_task()
-                        * is called, so we can safely collect pull_task()
-                        * stats here rather than inside pull_task().
-                        */
-                       schedstat_inc(sd, lb_gained[idle]);
-                       return 1;
-               }
-       }
-
-       return 0;
-}
-
-static unsigned long
-balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-             unsigned long max_load_move, struct sched_domain *sd,
-             enum cpu_idle_type idle, int *all_pinned,
-             struct cfs_rq *busiest_cfs_rq)
-{
-       int loops = 0, pulled = 0;
-       long rem_load_move = max_load_move;
-       struct task_struct *p, *n;
-
-       if (max_load_move == 0)
-               goto out;
-
-       list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
-               if (loops++ > sysctl_sched_nr_migrate)
-                       break;
-
-               if ((p->se.load.weight >> 1) > rem_load_move ||
-                   !can_migrate_task(p, busiest, this_cpu, sd, idle,
-                                     all_pinned))
-                       continue;
-
-               pull_task(busiest, p, this_rq, this_cpu);
-               pulled++;
-               rem_load_move -= p->se.load.weight;
-
-#ifdef CONFIG_PREEMPT
-               /*
-                * NEWIDLE balancing is a source of latency, so preemptible
-                * kernels will stop after the first task is pulled to minimize
-                * the critical section.
-                */
-               if (idle == CPU_NEWLY_IDLE)
-                       break;
-#endif
-
-               /*
-                * We only want to steal up to the prescribed amount of
-                * weighted load.
-                */
-               if (rem_load_move <= 0)
-                       break;
-       }
-out:
-       /*
-        * Right now, this is one of only two places pull_task() is called,
-        * so we can safely collect pull_task() stats here rather than
-        * inside pull_task().
-        */
-       schedstat_add(sd, lb_gained[idle], pulled);
-
-       return max_load_move - rem_load_move;
-}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-/*
- * update tg->load_weight by folding this cpu's load_avg
- */
-static int update_shares_cpu(struct task_group *tg, int cpu)
-{
-       struct cfs_rq *cfs_rq;
-       unsigned long flags;
-       struct rq *rq;
-
-       if (!tg->se[cpu])
-               return 0;
-
-       rq = cpu_rq(cpu);
-       cfs_rq = tg->cfs_rq[cpu];
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       update_rq_clock(rq);
-       update_cfs_load(cfs_rq, 1);
-
-       /*
-        * We need to update shares after updating tg->load_weight in
-        * order to adjust the weight of groups with long running tasks.
-        */
-       update_cfs_shares(cfs_rq);
-
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-       return 0;
-}
-
-static void update_shares(int cpu)
-{
-       struct cfs_rq *cfs_rq;
-       struct rq *rq = cpu_rq(cpu);
-
-       rcu_read_lock();
-       /*
-        * Iterates the task_group tree in a bottom up fashion, see
-        * list_add_leaf_cfs_rq() for details.
-        */
-       for_each_leaf_cfs_rq(rq, cfs_rq) {
-               /* throttled entities do not contribute to load */
-               if (throttled_hierarchy(cfs_rq))
-                       continue;
-
-               update_shares_cpu(cfs_rq->tg, cpu);
-       }
-       rcu_read_unlock();
-}
-
-/*
- * Compute the cpu's hierarchical load factor for each task group.
- * This needs to be done in a top-down fashion because the load of a child
- * group is a fraction of its parents load.
- */
-static int tg_load_down(struct task_group *tg, void *data)
-{
-       unsigned long load;
-       long cpu = (long)data;
-
-       if (!tg->parent) {
-               load = cpu_rq(cpu)->load.weight;
-       } else {
-               load = tg->parent->cfs_rq[cpu]->h_load;
-               load *= tg->se[cpu]->load.weight;
-               load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
-       }
-
-       tg->cfs_rq[cpu]->h_load = load;
-
-       return 0;
-}
-
-static void update_h_load(long cpu)
-{
-       walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
-}
-
-static unsigned long
-load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                 unsigned long max_load_move,
-                 struct sched_domain *sd, enum cpu_idle_type idle,
-                 int *all_pinned)
-{
-       long rem_load_move = max_load_move;
-       struct cfs_rq *busiest_cfs_rq;
-
-       rcu_read_lock();
-       update_h_load(cpu_of(busiest));
-
-       for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
-               unsigned long busiest_h_load = busiest_cfs_rq->h_load;
-               unsigned long busiest_weight = busiest_cfs_rq->load.weight;
-               u64 rem_load, moved_load;
-
-               /*
-                * empty group or part of a throttled hierarchy
-                */
-               if (!busiest_cfs_rq->task_weight ||
-                   throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
-                       continue;
-
-               rem_load = (u64)rem_load_move * busiest_weight;
-               rem_load = div_u64(rem_load, busiest_h_load + 1);
-
-               moved_load = balance_tasks(this_rq, this_cpu, busiest,
-                               rem_load, sd, idle, all_pinned,
-                               busiest_cfs_rq);
-
-               if (!moved_load)
-                       continue;
-
-               moved_load *= busiest_h_load;
-               moved_load = div_u64(moved_load, busiest_weight + 1);
-
-               rem_load_move -= moved_load;
-               if (rem_load_move < 0)
-                       break;
-       }
-       rcu_read_unlock();
-
-       return max_load_move - rem_load_move;
-}
-#else
-static inline void update_shares(int cpu)
-{
-}
-
-static unsigned long
-load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                 unsigned long max_load_move,
-                 struct sched_domain *sd, enum cpu_idle_type idle,
-                 int *all_pinned)
-{
-       return balance_tasks(this_rq, this_cpu, busiest,
-                       max_load_move, sd, idle, all_pinned,
-                       &busiest->cfs);
-}
-#endif
-
-/*
- * move_tasks tries to move up to max_load_move weighted load from busiest to
- * this_rq, as part of a balancing operation within domain "sd".
- * Returns 1 if successful and 0 otherwise.
- *
- * Called with both runqueues locked.
- */
-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
-                     unsigned long max_load_move,
-                     struct sched_domain *sd, enum cpu_idle_type idle,
-                     int *all_pinned)
-{
-       unsigned long total_load_moved = 0, load_moved;
-
-       do {
-               load_moved = load_balance_fair(this_rq, this_cpu, busiest,
-                               max_load_move - total_load_moved,
-                               sd, idle, all_pinned);
-
-               total_load_moved += load_moved;
-
-#ifdef CONFIG_PREEMPT
-               /*
-                * NEWIDLE balancing is a source of latency, so preemptible
-                * kernels will stop after the first task is pulled to minimize
-                * the critical section.
-                */
-               if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
-                       break;
-
-               if (raw_spin_is_contended(&this_rq->lock) ||
-                               raw_spin_is_contended(&busiest->lock))
-                       break;
-#endif
-       } while (load_moved && max_load_move > total_load_moved);
-
-       return total_load_moved > 0;
-}
-
-/********** Helpers for find_busiest_group ************************/
-/*
- * sd_lb_stats - Structure to store the statistics of a sched_domain
- *             during load balancing.
- */
-struct sd_lb_stats {
-       struct sched_group *busiest; /* Busiest group in this sd */
-       struct sched_group *this;  /* Local group in this sd */
-       unsigned long total_load;  /* Total load of all groups in sd */
-       unsigned long total_pwr;   /*   Total power of all groups in sd */
-       unsigned long avg_load;    /* Average load across all groups in sd */
-
-       /** Statistics of this group */
-       unsigned long this_load;
-       unsigned long this_load_per_task;
-       unsigned long this_nr_running;
-       unsigned long this_has_capacity;
-       unsigned int  this_idle_cpus;
-
-       /* Statistics of the busiest group */
-       unsigned int  busiest_idle_cpus;
-       unsigned long max_load;
-       unsigned long busiest_load_per_task;
-       unsigned long busiest_nr_running;
-       unsigned long busiest_group_capacity;
-       unsigned long busiest_has_capacity;
-       unsigned int  busiest_group_weight;
-
-       int group_imb; /* Is there imbalance in this sd */
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-       int power_savings_balance; /* Is powersave balance needed for this sd */
-       struct sched_group *group_min; /* Least loaded group in sd */
-       struct sched_group *group_leader; /* Group which relieves group_min */
-       unsigned long min_load_per_task; /* load_per_task in group_min */
-       unsigned long leader_nr_running; /* Nr running of group_leader */
-       unsigned long min_nr_running; /* Nr running of group_min */
-#endif
-};
-
-/*
- * sg_lb_stats - stats of a sched_group required for load_balancing
- */
-struct sg_lb_stats {
-       unsigned long avg_load; /*Avg load across the CPUs of the group */
-       unsigned long group_load; /* Total load over the CPUs of the group */
-       unsigned long sum_nr_running; /* Nr tasks running in the group */
-       unsigned long sum_weighted_load; /* Weighted load of group's tasks */
-       unsigned long group_capacity;
-       unsigned long idle_cpus;
-       unsigned long group_weight;
-       int group_imb; /* Is there an imbalance in the group ? */
-       int group_has_capacity; /* Is there extra capacity in the group? */
-};
-
-/**
- * get_sd_load_idx - Obtain the load index for a given sched domain.
- * @sd: The sched_domain whose load_idx is to be obtained.
- * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
- */
-static inline int get_sd_load_idx(struct sched_domain *sd,
-                                       enum cpu_idle_type idle)
-{
-       int load_idx;
-
-       switch (idle) {
-       case CPU_NOT_IDLE:
-               load_idx = sd->busy_idx;
-               break;
-
-       case CPU_NEWLY_IDLE:
-               load_idx = sd->newidle_idx;
-               break;
-       default:
-               load_idx = sd->idle_idx;
-               break;
-       }
-
-       return load_idx;
-}
-
-
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-/**
- * init_sd_power_savings_stats - Initialize power savings statistics for
- * the given sched_domain, during load balancing.
- *
- * @sd: Sched domain whose power-savings statistics are to be initialized.
- * @sds: Variable containing the statistics for sd.
- * @idle: Idle status of the CPU at which we're performing load-balancing.
- */
-static inline void init_sd_power_savings_stats(struct sched_domain *sd,
-       struct sd_lb_stats *sds, enum cpu_idle_type idle)
-{
-       /*
-        * Busy processors will not participate in power savings
-        * balance.
-        */
-       if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
-               sds->power_savings_balance = 0;
-       else {
-               sds->power_savings_balance = 1;
-               sds->min_nr_running = ULONG_MAX;
-               sds->leader_nr_running = 0;
-       }
-}
-
-/**
- * update_sd_power_savings_stats - Update the power saving stats for a
- * sched_domain while performing load balancing.
- *
- * @group: sched_group belonging to the sched_domain under consideration.
- * @sds: Variable containing the statistics of the sched_domain
- * @local_group: Does group contain the CPU for which we're performing
- *             load balancing ?
- * @sgs: Variable containing the statistics of the group.
- */
-static inline void update_sd_power_savings_stats(struct sched_group *group,
-       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
-{
-
-       if (!sds->power_savings_balance)
-               return;
-
-       /*
-        * If the local group is idle or completely loaded
-        * no need to do power savings balance at this domain
-        */
-       if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
-                               !sds->this_nr_running))
-               sds->power_savings_balance = 0;
-
-       /*
-        * If a group is already running at full capacity or idle,
-        * don't include that group in power savings calculations
-        */
-       if (!sds->power_savings_balance ||
-               sgs->sum_nr_running >= sgs->group_capacity ||
-               !sgs->sum_nr_running)
-               return;
-
-       /*
-        * Calculate the group which has the least non-idle load.
-        * This is the group from where we need to pick up the load
-        * for saving power
-        */
-       if ((sgs->sum_nr_running < sds->min_nr_running) ||
-           (sgs->sum_nr_running == sds->min_nr_running &&
-            group_first_cpu(group) > group_first_cpu(sds->group_min))) {
-               sds->group_min = group;
-               sds->min_nr_running = sgs->sum_nr_running;
-               sds->min_load_per_task = sgs->sum_weighted_load /
-                                               sgs->sum_nr_running;
-       }
-
-       /*
-        * Calculate the group which is almost near its
-        * capacity but still has some space to pick up some load
-        * from other group and save more power
-        */
-       if (sgs->sum_nr_running + 1 > sgs->group_capacity)
-               return;
-
-       if (sgs->sum_nr_running > sds->leader_nr_running ||
-           (sgs->sum_nr_running == sds->leader_nr_running &&
-            group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
-               sds->group_leader = group;
-               sds->leader_nr_running = sgs->sum_nr_running;
-       }
-}
-
-/**
- * check_power_save_busiest_group - see if there is potential for some power-savings balance
- * @sds: Variable containing the statistics of the sched_domain
- *     under consideration.
- * @this_cpu: Cpu at which we're currently performing load-balancing.
- * @imbalance: Variable to store the imbalance.
- *
- * Description:
- * Check if we have potential to perform some power-savings balance.
- * If yes, set the busiest group to be the least loaded group in the
- * sched_domain, so that it's CPUs can be put to idle.
- *
- * Returns 1 if there is potential to perform power-savings balance.
- * Else returns 0.
- */
-static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
-                                       int this_cpu, unsigned long *imbalance)
-{
-       if (!sds->power_savings_balance)
-               return 0;
-
-       if (sds->this != sds->group_leader ||
-                       sds->group_leader == sds->group_min)
-               return 0;
-
-       *imbalance = sds->min_load_per_task;
-       sds->busiest = sds->group_min;
-
-       return 1;
-
-}
-#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-static inline void init_sd_power_savings_stats(struct sched_domain *sd,
-       struct sd_lb_stats *sds, enum cpu_idle_type idle)
-{
-       return;
-}
-
-static inline void update_sd_power_savings_stats(struct sched_group *group,
-       struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
-{
-       return;
-}
-
-static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
-                                       int this_cpu, unsigned long *imbalance)
-{
-       return 0;
-}
-#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-
-
-unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
-{
-       return SCHED_POWER_SCALE;
-}
-
-unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
-{
-       return default_scale_freq_power(sd, cpu);
-}
-
-unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
-{
-       unsigned long weight = sd->span_weight;
-       unsigned long smt_gain = sd->smt_gain;
-
-       smt_gain /= weight;
-
-       return smt_gain;
-}
-
-unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
-{
-       return default_scale_smt_power(sd, cpu);
-}
-
-unsigned long scale_rt_power(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       u64 total, available;
-
-       total = sched_avg_period() + (rq->clock - rq->age_stamp);
-
-       if (unlikely(total < rq->rt_avg)) {
-               /* Ensures that power won't end up being negative */
-               available = 0;
-       } else {
-               available = total - rq->rt_avg;
-       }
-
-       if (unlikely((s64)total < SCHED_POWER_SCALE))
-               total = SCHED_POWER_SCALE;
-
-       total >>= SCHED_POWER_SHIFT;
-
-       return div_u64(available, total);
-}
-
-static void update_cpu_power(struct sched_domain *sd, int cpu)
-{
-       unsigned long weight = sd->span_weight;
-       unsigned long power = SCHED_POWER_SCALE;
-       struct sched_group *sdg = sd->groups;
-
-       if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
-               if (sched_feat(ARCH_POWER))
-                       power *= arch_scale_smt_power(sd, cpu);
-               else
-                       power *= default_scale_smt_power(sd, cpu);
-
-               power >>= SCHED_POWER_SHIFT;
-       }
-
-       sdg->sgp->power_orig = power;
-
-       if (sched_feat(ARCH_POWER))
-               power *= arch_scale_freq_power(sd, cpu);
-       else
-               power *= default_scale_freq_power(sd, cpu);
-
-       power >>= SCHED_POWER_SHIFT;
-
-       power *= scale_rt_power(cpu);
-       power >>= SCHED_POWER_SHIFT;
-
-       if (!power)
-               power = 1;
-
-       cpu_rq(cpu)->cpu_power = power;
-       sdg->sgp->power = power;
-}
-
-void update_group_power(struct sched_domain *sd, int cpu)
-{
-       struct sched_domain *child = sd->child;
-       struct sched_group *group, *sdg = sd->groups;
-       unsigned long power;
-
-       if (!child) {
-               update_cpu_power(sd, cpu);
-               return;
-       }
-
-       power = 0;
-
-       group = child->groups;
-       do {
-               power += group->sgp->power;
-               group = group->next;
-       } while (group != child->groups);
-
-       sdg->sgp->power = power;
-}
-
-/*
- * Try and fix up capacity for tiny siblings, this is needed when
- * things like SD_ASYM_PACKING need f_b_g to select another sibling
- * which on its own isn't powerful enough.
- *
- * See update_sd_pick_busiest() and check_asym_packing().
- */
-static inline int
-fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
-{
-       /*
-        * Only siblings can have significantly less than SCHED_POWER_SCALE
-        */
-       if (!(sd->flags & SD_SHARE_CPUPOWER))
-               return 0;
-
-       /*
-        * If ~90% of the cpu_power is still there, we're good.
-        */
-       if (group->sgp->power * 32 > group->sgp->power_orig * 29)
-               return 1;
-
-       return 0;
-}
-
-/**
- * update_sg_lb_stats - Update sched_group's statistics for load balancing.
- * @sd: The sched_domain whose statistics are to be updated.
- * @group: sched_group whose statistics are to be updated.
- * @this_cpu: Cpu for which load balance is currently performed.
- * @idle: Idle status of this_cpu
- * @load_idx: Load index of sched_domain of this_cpu for load calc.
- * @local_group: Does group contain this_cpu.
- * @cpus: Set of cpus considered for load balancing.
- * @balance: Should we balance.
- * @sgs: variable to hold the statistics for this group.
- */
-static inline void update_sg_lb_stats(struct sched_domain *sd,
-                       struct sched_group *group, int this_cpu,
-                       enum cpu_idle_type idle, int load_idx,
-                       int local_group, const struct cpumask *cpus,
-                       int *balance, struct sg_lb_stats *sgs)
-{
-       unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
-       int i;
-       unsigned int balance_cpu = -1, first_idle_cpu = 0;
-       unsigned long avg_load_per_task = 0;
-
-       if (local_group)
-               balance_cpu = group_first_cpu(group);
-
-       /* Tally up the load of all CPUs in the group */
-       max_cpu_load = 0;
-       min_cpu_load = ~0UL;
-       max_nr_running = 0;
-
-       for_each_cpu_and(i, sched_group_cpus(group), cpus) {
-               struct rq *rq = cpu_rq(i);
-
-               /* Bias balancing toward cpus of our domain */
-               if (local_group) {
-                       if (idle_cpu(i) && !first_idle_cpu) {
-                               first_idle_cpu = 1;
-                               balance_cpu = i;
-                       }
-
-                       load = target_load(i, load_idx);
-               } else {
-                       load = source_load(i, load_idx);
-                       if (load > max_cpu_load) {
-                               max_cpu_load = load;
-                               max_nr_running = rq->nr_running;
-                       }
-                       if (min_cpu_load > load)
-                               min_cpu_load = load;
-               }
-
-               sgs->group_load += load;
-               sgs->sum_nr_running += rq->nr_running;
-               sgs->sum_weighted_load += weighted_cpuload(i);
-               if (idle_cpu(i))
-                       sgs->idle_cpus++;
-       }
-
-       /*
-        * First idle cpu or the first cpu(busiest) in this sched group
-        * is eligible for doing load balancing at this and above
-        * domains. In the newly idle case, we will allow all the cpu's
-        * to do the newly idle load balance.
-        */
-       if (idle != CPU_NEWLY_IDLE && local_group) {
-               if (balance_cpu != this_cpu) {
-                       *balance = 0;
-                       return;
-               }
-               update_group_power(sd, this_cpu);
-       }
-
-       /* Adjust by relative CPU power of the group */
-       sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
-
-       /*
-        * Consider the group unbalanced when the imbalance is larger
-        * than the average weight of a task.
-        *
-        * APZ: with cgroup the avg task weight can vary wildly and
-        *      might not be a suitable number - should we keep a
-        *      normalized nr_running number somewhere that negates
-        *      the hierarchy?
-        */
-       if (sgs->sum_nr_running)
-               avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
-
-       if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
-               sgs->group_imb = 1;
-
-       sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
-                                               SCHED_POWER_SCALE);
-       if (!sgs->group_capacity)
-               sgs->group_capacity = fix_small_capacity(sd, group);
-       sgs->group_weight = group->group_weight;
-
-       if (sgs->group_capacity > sgs->sum_nr_running)
-               sgs->group_has_capacity = 1;
-}
-
-/**
- * update_sd_pick_busiest - return 1 on busiest group
- * @sd: sched_domain whose statistics are to be checked
- * @sds: sched_domain statistics
- * @sg: sched_group candidate to be checked for being the busiest
- * @sgs: sched_group statistics
- * @this_cpu: the current cpu
- *
- * Determine if @sg is a busier group than the previously selected
- * busiest group.
- */
-static bool update_sd_pick_busiest(struct sched_domain *sd,
-                                  struct sd_lb_stats *sds,
-                                  struct sched_group *sg,
-                                  struct sg_lb_stats *sgs,
-                                  int this_cpu)
-{
-       if (sgs->avg_load <= sds->max_load)
-               return false;
-
-       if (sgs->sum_nr_running > sgs->group_capacity)
-               return true;
-
-       if (sgs->group_imb)
-               return true;
-
-       /*
-        * ASYM_PACKING needs to move all the work to the lowest
-        * numbered CPUs in the group, therefore mark all groups
-        * higher than ourself as busy.
-        */
-       if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
-           this_cpu < group_first_cpu(sg)) {
-               if (!sds->busiest)
-                       return true;
-
-               if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
-                       return true;
-       }
-
-       return false;
-}
-
-/**
- * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
- * @sd: sched_domain whose statistics are to be updated.
- * @this_cpu: Cpu for which load balance is currently performed.
- * @idle: Idle status of this_cpu
- * @cpus: Set of cpus considered for load balancing.
- * @balance: Should we balance.
- * @sds: variable to hold the statistics for this sched_domain.
- */
-static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
-                       enum cpu_idle_type idle, const struct cpumask *cpus,
-                       int *balance, struct sd_lb_stats *sds)
-{
-       struct sched_domain *child = sd->child;
-       struct sched_group *sg = sd->groups;
-       struct sg_lb_stats sgs;
-       int load_idx, prefer_sibling = 0;
-
-       if (child && child->flags & SD_PREFER_SIBLING)
-               prefer_sibling = 1;
-
-       init_sd_power_savings_stats(sd, sds, idle);
-       load_idx = get_sd_load_idx(sd, idle);
-
-       do {
-               int local_group;
-
-               local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
-               memset(&sgs, 0, sizeof(sgs));
-               update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
-                               local_group, cpus, balance, &sgs);
-
-               if (local_group && !(*balance))
-                       return;
-
-               sds->total_load += sgs.group_load;
-               sds->total_pwr += sg->sgp->power;
-
-               /*
-                * In case the child domain prefers tasks go to siblings
-                * first, lower the sg capacity to one so that we'll try
-                * and move all the excess tasks away. We lower the capacity
-                * of a group only if the local group has the capacity to fit
-                * these excess tasks, i.e. nr_running < group_capacity. The
-                * extra check prevents the case where you always pull from the
-                * heaviest group when it is already under-utilized (possible
-                * with a large weight task outweighs the tasks on the system).
-                */
-               if (prefer_sibling && !local_group && sds->this_has_capacity)
-                       sgs.group_capacity = min(sgs.group_capacity, 1UL);
-
-               if (local_group) {
-                       sds->this_load = sgs.avg_load;
-                       sds->this = sg;
-                       sds->this_nr_running = sgs.sum_nr_running;
-                       sds->this_load_per_task = sgs.sum_weighted_load;
-                       sds->this_has_capacity = sgs.group_has_capacity;
-                       sds->this_idle_cpus = sgs.idle_cpus;
-               } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
-                       sds->max_load = sgs.avg_load;
-                       sds->busiest = sg;
-                       sds->busiest_nr_running = sgs.sum_nr_running;
-                       sds->busiest_idle_cpus = sgs.idle_cpus;
-                       sds->busiest_group_capacity = sgs.group_capacity;
-                       sds->busiest_load_per_task = sgs.sum_weighted_load;
-                       sds->busiest_has_capacity = sgs.group_has_capacity;
-                       sds->busiest_group_weight = sgs.group_weight;
-                       sds->group_imb = sgs.group_imb;
-               }
-
-               update_sd_power_savings_stats(sg, sds, local_group, &sgs);
-               sg = sg->next;
-       } while (sg != sd->groups);
-}
-
-/**
- * check_asym_packing - Check to see if the group is packed into the
- *                     sched doman.
- *
- * This is primarily intended to used at the sibling level.  Some
- * cores like POWER7 prefer to use lower numbered SMT threads.  In the
- * case of POWER7, it can move to lower SMT modes only when higher
- * threads are idle.  When in lower SMT modes, the threads will
- * perform better since they share less core resources.  Hence when we
- * have idle threads, we want them to be the higher ones.
- *
- * This packing function is run on idle threads.  It checks to see if
- * the busiest CPU in this domain (core in the P7 case) has a higher
- * CPU number than the packing function is being run on.  Here we are
- * assuming lower CPU number will be equivalent to lower a SMT thread
- * number.
- *
- * Returns 1 when packing is required and a task should be moved to
- * this CPU.  The amount of the imbalance is returned in *imbalance.
- *
- * @sd: The sched_domain whose packing is to be checked.
- * @sds: Statistics of the sched_domain which is to be packed
- * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
- * @imbalance: returns amount of imbalanced due to packing.
- */
-static int check_asym_packing(struct sched_domain *sd,
-                             struct sd_lb_stats *sds,
-                             int this_cpu, unsigned long *imbalance)
-{
-       int busiest_cpu;
-
-       if (!(sd->flags & SD_ASYM_PACKING))
-               return 0;
-
-       if (!sds->busiest)
-               return 0;
-
-       busiest_cpu = group_first_cpu(sds->busiest);
-       if (this_cpu > busiest_cpu)
-               return 0;
-
-       *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
-                                      SCHED_POWER_SCALE);
-       return 1;
-}
-
-/**
- * fix_small_imbalance - Calculate the minor imbalance that exists
- *                     amongst the groups of a sched_domain, during
- *                     load balancing.
- * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
- * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
- * @imbalance: Variable to store the imbalance.
- */
-static inline void fix_small_imbalance(struct sd_lb_stats *sds,
-                               int this_cpu, unsigned long *imbalance)
-{
-       unsigned long tmp, pwr_now = 0, pwr_move = 0;
-       unsigned int imbn = 2;
-       unsigned long scaled_busy_load_per_task;
-
-       if (sds->this_nr_running) {
-               sds->this_load_per_task /= sds->this_nr_running;
-               if (sds->busiest_load_per_task >
-                               sds->this_load_per_task)
-                       imbn = 1;
-       } else
-               sds->this_load_per_task =
-                       cpu_avg_load_per_task(this_cpu);
-
-       scaled_busy_load_per_task = sds->busiest_load_per_task
-                                        * SCHED_POWER_SCALE;
-       scaled_busy_load_per_task /= sds->busiest->sgp->power;
-
-       if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
-                       (scaled_busy_load_per_task * imbn)) {
-               *imbalance = sds->busiest_load_per_task;
-               return;
-       }
-
-       /*
-        * OK, we don't have enough imbalance to justify moving tasks,
-        * however we may be able to increase total CPU power used by
-        * moving them.
-        */
-
-       pwr_now += sds->busiest->sgp->power *
-                       min(sds->busiest_load_per_task, sds->max_load);
-       pwr_now += sds->this->sgp->power *
-                       min(sds->this_load_per_task, sds->this_load);
-       pwr_now /= SCHED_POWER_SCALE;
-
-       /* Amount of load we'd subtract */
-       tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
-               sds->busiest->sgp->power;
-       if (sds->max_load > tmp)
-               pwr_move += sds->busiest->sgp->power *
-                       min(sds->busiest_load_per_task, sds->max_load - tmp);
-
-       /* Amount of load we'd add */
-       if (sds->max_load * sds->busiest->sgp->power <
-               sds->busiest_load_per_task * SCHED_POWER_SCALE)
-               tmp = (sds->max_load * sds->busiest->sgp->power) /
-                       sds->this->sgp->power;
-       else
-               tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
-                       sds->this->sgp->power;
-       pwr_move += sds->this->sgp->power *
-                       min(sds->this_load_per_task, sds->this_load + tmp);
-       pwr_move /= SCHED_POWER_SCALE;
-
-       /* Move if we gain throughput */
-       if (pwr_move > pwr_now)
-               *imbalance = sds->busiest_load_per_task;
-}
-
-/**
- * calculate_imbalance - Calculate the amount of imbalance present within the
- *                      groups of a given sched_domain during load balance.
- * @sds: statistics of the sched_domain whose imbalance is to be calculated.
- * @this_cpu: Cpu for which currently load balance is being performed.
- * @imbalance: The variable to store the imbalance.
- */
-static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
-               unsigned long *imbalance)
-{
-       unsigned long max_pull, load_above_capacity = ~0UL;
-
-       sds->busiest_load_per_task /= sds->busiest_nr_running;
-       if (sds->group_imb) {
-               sds->busiest_load_per_task =
-                       min(sds->busiest_load_per_task, sds->avg_load);
-       }
-
-       /*
-        * In the presence of smp nice balancing, certain scenarios can have
-        * max load less than avg load(as we skip the groups at or below
-        * its cpu_power, while calculating max_load..)
-        */
-       if (sds->max_load < sds->avg_load) {
-               *imbalance = 0;
-               return fix_small_imbalance(sds, this_cpu, imbalance);
-       }
-
-       if (!sds->group_imb) {
-               /*
-                * Don't want to pull so many tasks that a group would go idle.
-                */
-               load_above_capacity = (sds->busiest_nr_running -
-                                               sds->busiest_group_capacity);
-
-               load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
-
-               load_above_capacity /= sds->busiest->sgp->power;
-       }
-
-       /*
-        * We're trying to get all the cpus to the average_load, so we don't
-        * want to push ourselves above the average load, nor do we wish to
-        * reduce the max loaded cpu below the average load. At the same time,
-        * we also don't want to reduce the group load below the group capacity
-        * (so that we can implement power-savings policies etc). Thus we look
-        * for the minimum possible imbalance.
-        * Be careful of negative numbers as they'll appear as very large values
-        * with unsigned longs.
-        */
-       max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
-
-       /* How much load to actually move to equalise the imbalance */
-       *imbalance = min(max_pull * sds->busiest->sgp->power,
-               (sds->avg_load - sds->this_load) * sds->this->sgp->power)
-                       / SCHED_POWER_SCALE;
-
-       /*
-        * if *imbalance is less than the average load per runnable task
-        * there is no guarantee that any tasks will be moved so we'll have
-        * a think about bumping its value to force at least one task to be
-        * moved
-        */
-       if (*imbalance < sds->busiest_load_per_task)
-               return fix_small_imbalance(sds, this_cpu, imbalance);
-
-}
-
-/******* find_busiest_group() helpers end here *********************/
-
-/**
- * find_busiest_group - Returns the busiest group within the sched_domain
- * if there is an imbalance. If there isn't an imbalance, and
- * the user has opted for power-savings, it returns a group whose
- * CPUs can be put to idle by rebalancing those tasks elsewhere, if
- * such a group exists.
- *
- * Also calculates the amount of weighted load which should be moved
- * to restore balance.
- *
- * @sd: The sched_domain whose busiest group is to be returned.
- * @this_cpu: The cpu for which load balancing is currently being performed.
- * @imbalance: Variable which stores amount of weighted load which should
- *             be moved to restore balance/put a group to idle.
- * @idle: The idle status of this_cpu.
- * @cpus: The set of CPUs under consideration for load-balancing.
- * @balance: Pointer to a variable indicating if this_cpu
- *     is the appropriate cpu to perform load balancing at this_level.
- *
- * Returns:    - the busiest group if imbalance exists.
- *             - If no imbalance and user has opted for power-savings balance,
- *                return the least loaded group whose CPUs can be
- *                put to idle by rebalancing its tasks onto our group.
- */
-static struct sched_group *
-find_busiest_group(struct sched_domain *sd, int this_cpu,
-                  unsigned long *imbalance, enum cpu_idle_type idle,
-                  const struct cpumask *cpus, int *balance)
-{
-       struct sd_lb_stats sds;
-
-       memset(&sds, 0, sizeof(sds));
-
-       /*
-        * Compute the various statistics relavent for load balancing at
-        * this level.
-        */
-       update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
-
-       /*
-        * this_cpu is not the appropriate cpu to perform load balancing at
-        * this level.
-        */
-       if (!(*balance))
-               goto ret;
-
-       if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
-           check_asym_packing(sd, &sds, this_cpu, imbalance))
-               return sds.busiest;
-
-       /* There is no busy sibling group to pull tasks from */
-       if (!sds.busiest || sds.busiest_nr_running == 0)
-               goto out_balanced;
-
-       sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
-
-       /*
-        * If the busiest group is imbalanced the below checks don't
-        * work because they assumes all things are equal, which typically
-        * isn't true due to cpus_allowed constraints and the like.
-        */
-       if (sds.group_imb)
-               goto force_balance;
-
-       /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
-       if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
-                       !sds.busiest_has_capacity)
-               goto force_balance;
-
-       /*
-        * If the local group is more busy than the selected busiest group
-        * don't try and pull any tasks.
-        */
-       if (sds.this_load >= sds.max_load)
-               goto out_balanced;
-
-       /*
-        * Don't pull any tasks if this group is already above the domain
-        * average load.
-        */
-       if (sds.this_load >= sds.avg_load)
-               goto out_balanced;
-
-       if (idle == CPU_IDLE) {
-               /*
-                * This cpu is idle. If the busiest group load doesn't
-                * have more tasks than the number of available cpu's and
-                * there is no imbalance between this and busiest group
-                * wrt to idle cpu's, it is balanced.
-                */
-               if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
-                   sds.busiest_nr_running <= sds.busiest_group_weight)
-                       goto out_balanced;
-       } else {
-               /*
-                * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
-                * imbalance_pct to be conservative.
-                */
-               if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
-                       goto out_balanced;
-       }
-
-force_balance:
-       /* Looks like there is an imbalance. Compute it */
-       calculate_imbalance(&sds, this_cpu, imbalance);
-       return sds.busiest;
-
-out_balanced:
-       /*
-        * There is no obvious imbalance. But check if we can do some balancing
-        * to save power.
-        */
-       if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
-               return sds.busiest;
-ret:
-       *imbalance = 0;
-       return NULL;
-}
-
-/*
- * find_busiest_queue - find the busiest runqueue among the cpus in group.
- */
-static struct rq *
-find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
-                  enum cpu_idle_type idle, unsigned long imbalance,
-                  const struct cpumask *cpus)
-{
-       struct rq *busiest = NULL, *rq;
-       unsigned long max_load = 0;
-       int i;
-
-       for_each_cpu(i, sched_group_cpus(group)) {
-               unsigned long power = power_of(i);
-               unsigned long capacity = DIV_ROUND_CLOSEST(power,
-                                                          SCHED_POWER_SCALE);
-               unsigned long wl;
-
-               if (!capacity)
-                       capacity = fix_small_capacity(sd, group);
-
-               if (!cpumask_test_cpu(i, cpus))
-                       continue;
-
-               rq = cpu_rq(i);
-               wl = weighted_cpuload(i);
-
-               /*
-                * When comparing with imbalance, use weighted_cpuload()
-                * which is not scaled with the cpu power.
-                */
-               if (capacity && rq->nr_running == 1 && wl > imbalance)
-                       continue;
-
-               /*
-                * For the load comparisons with the other cpu's, consider
-                * the weighted_cpuload() scaled with the cpu power, so that
-                * the load can be moved away from the cpu that is potentially
-                * running at a lower capacity.
-                */
-               wl = (wl * SCHED_POWER_SCALE) / power;
-
-               if (wl > max_load) {
-                       max_load = wl;
-                       busiest = rq;
-               }
-       }
-
-       return busiest;
-}
-
-/*
- * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
- * so long as it is large enough.
- */
-#define MAX_PINNED_INTERVAL    512
-
-/* Working cpumask for load_balance and load_balance_newidle. */
-DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
-
-static int need_active_balance(struct sched_domain *sd, int idle,
-                              int busiest_cpu, int this_cpu)
-{
-       if (idle == CPU_NEWLY_IDLE) {
-
-               /*
-                * ASYM_PACKING needs to force migrate tasks from busy but
-                * higher numbered CPUs in order to pack all tasks in the
-                * lowest numbered CPUs.
-                */
-               if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
-                       return 1;
-
-               /*
-                * The only task running in a non-idle cpu can be moved to this
-                * cpu in an attempt to completely freeup the other CPU
-                * package.
-                *
-                * The package power saving logic comes from
-                * find_busiest_group(). If there are no imbalance, then
-                * f_b_g() will return NULL. However when sched_mc={1,2} then
-                * f_b_g() will select a group from which a running task may be
-                * pulled to this cpu in order to make the other package idle.
-                * If there is no opportunity to make a package idle and if
-                * there are no imbalance, then f_b_g() will return NULL and no
-                * action will be taken in load_balance_newidle().
-                *
-                * Under normal task pull operation due to imbalance, there
-                * will be more than one task in the source run queue and
-                * move_tasks() will succeed.  ld_moved will be true and this
-                * active balance code will not be triggered.
-                */
-               if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
-                       return 0;
-       }
-
-       return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
-}
-
-static int active_load_balance_cpu_stop(void *data);
-
-/*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- */
-static int load_balance(int this_cpu, struct rq *this_rq,
-                       struct sched_domain *sd, enum cpu_idle_type idle,
-                       int *balance)
-{
-       int ld_moved, all_pinned = 0, active_balance = 0;
-       struct sched_group *group;
-       unsigned long imbalance;
-       struct rq *busiest;
-       unsigned long flags;
-       struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
-
-       cpumask_copy(cpus, cpu_active_mask);
-
-       schedstat_inc(sd, lb_count[idle]);
-
-redo:
-       group = find_busiest_group(sd, this_cpu, &imbalance, idle,
-                                  cpus, balance);
-
-       if (*balance == 0)
-               goto out_balanced;
-
-       if (!group) {
-               schedstat_inc(sd, lb_nobusyg[idle]);
-               goto out_balanced;
-       }
-
-       busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
-       if (!busiest) {
-               schedstat_inc(sd, lb_nobusyq[idle]);
-               goto out_balanced;
-       }
-
-       BUG_ON(busiest == this_rq);
-
-       schedstat_add(sd, lb_imbalance[idle], imbalance);
-
-       ld_moved = 0;
-       if (busiest->nr_running > 1) {
-               /*
-                * Attempt to move tasks. If find_busiest_group has found
-                * an imbalance but busiest->nr_running <= 1, the group is
-                * still unbalanced. ld_moved simply stays zero, so it is
-                * correctly treated as an imbalance.
-                */
-               all_pinned = 1;
-               local_irq_save(flags);
-               double_rq_lock(this_rq, busiest);
-               ld_moved = move_tasks(this_rq, this_cpu, busiest,
-                                     imbalance, sd, idle, &all_pinned);
-               double_rq_unlock(this_rq, busiest);
-               local_irq_restore(flags);
-
-               /*
-                * some other cpu did the load balance for us.
-                */
-               if (ld_moved && this_cpu != smp_processor_id())
-                       resched_cpu(this_cpu);
-
-               /* All tasks on this runqueue were pinned by CPU affinity */
-               if (unlikely(all_pinned)) {
-                       cpumask_clear_cpu(cpu_of(busiest), cpus);
-                       if (!cpumask_empty(cpus))
-                               goto redo;
-                       goto out_balanced;
-               }
-       }
-
-       if (!ld_moved) {
-               schedstat_inc(sd, lb_failed[idle]);
-               /*
-                * Increment the failure counter only on periodic balance.
-                * We do not want newidle balance, which can be very
-                * frequent, pollute the failure counter causing
-                * excessive cache_hot migrations and active balances.
-                */
-               if (idle != CPU_NEWLY_IDLE)
-                       sd->nr_balance_failed++;
-
-               if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
-                       raw_spin_lock_irqsave(&busiest->lock, flags);
-
-                       /* don't kick the active_load_balance_cpu_stop,
-                        * if the curr task on busiest cpu can't be
-                        * moved to this_cpu
-                        */
-                       if (!cpumask_test_cpu(this_cpu,
-                                       tsk_cpus_allowed(busiest->curr))) {
-                               raw_spin_unlock_irqrestore(&busiest->lock,
-                                                           flags);
-                               all_pinned = 1;
-                               goto out_one_pinned;
-                       }
-
-                       /*
-                        * ->active_balance synchronizes accesses to
-                        * ->active_balance_work.  Once set, it's cleared
-                        * only after active load balance is finished.
-                        */
-                       if (!busiest->active_balance) {
-                               busiest->active_balance = 1;
-                               busiest->push_cpu = this_cpu;
-                               active_balance = 1;
-                       }
-                       raw_spin_unlock_irqrestore(&busiest->lock, flags);
-
-                       if (active_balance)
-                               stop_one_cpu_nowait(cpu_of(busiest),
-                                       active_load_balance_cpu_stop, busiest,
-                                       &busiest->active_balance_work);
-
-                       /*
-                        * We've kicked active balancing, reset the failure
-                        * counter.
-                        */
-                       sd->nr_balance_failed = sd->cache_nice_tries+1;
-               }
-       } else
-               sd->nr_balance_failed = 0;
-
-       if (likely(!active_balance)) {
-               /* We were unbalanced, so reset the balancing interval */
-               sd->balance_interval = sd->min_interval;
-       } else {
-               /*
-                * If we've begun active balancing, start to back off. This
-                * case may not be covered by the all_pinned logic if there
-                * is only 1 task on the busy runqueue (because we don't call
-                * move_tasks).
-                */
-               if (sd->balance_interval < sd->max_interval)
-                       sd->balance_interval *= 2;
-       }
-
-       goto out;
-
-out_balanced:
-       schedstat_inc(sd, lb_balanced[idle]);
-
-       sd->nr_balance_failed = 0;
-
-out_one_pinned:
-       /* tune up the balancing interval */
-       if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
-                       (sd->balance_interval < sd->max_interval))
-               sd->balance_interval *= 2;
-
-       ld_moved = 0;
-out:
-       return ld_moved;
-}
-
-/*
- * idle_balance is called by schedule() if this_cpu is about to become
- * idle. Attempts to pull tasks from other CPUs.
- */
-void idle_balance(int this_cpu, struct rq *this_rq)
-{
-       struct sched_domain *sd;
-       int pulled_task = 0;
-       unsigned long next_balance = jiffies + HZ;
-
-       this_rq->idle_stamp = this_rq->clock;
-
-       if (this_rq->avg_idle < sysctl_sched_migration_cost)
-               return;
-
-       /*
-        * Drop the rq->lock, but keep IRQ/preempt disabled.
-        */
-       raw_spin_unlock(&this_rq->lock);
-
-       update_shares(this_cpu);
-       rcu_read_lock();
-       for_each_domain(this_cpu, sd) {
-               unsigned long interval;
-               int balance = 1;
-
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       continue;
-
-               if (sd->flags & SD_BALANCE_NEWIDLE) {
-                       /* If we've pulled tasks over stop searching: */
-                       pulled_task = load_balance(this_cpu, this_rq,
-                                                  sd, CPU_NEWLY_IDLE, &balance);
-               }
-
-               interval = msecs_to_jiffies(sd->balance_interval);
-               if (time_after(next_balance, sd->last_balance + interval))
-                       next_balance = sd->last_balance + interval;
-               if (pulled_task) {
-                       this_rq->idle_stamp = 0;
-                       break;
-               }
-       }
-       rcu_read_unlock();
-
-       raw_spin_lock(&this_rq->lock);
-
-       if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
-               /*
-                * We are going idle. next_balance may be set based on
-                * a busy processor. So reset next_balance.
-                */
-               this_rq->next_balance = next_balance;
-       }
-}
-
-/*
- * active_load_balance_cpu_stop is run by cpu stopper. It pushes
- * running tasks off the busiest CPU onto idle CPUs. It requires at
- * least 1 task to be running on each physical CPU where possible, and
- * avoids physical / logical imbalances.
- */
-static int active_load_balance_cpu_stop(void *data)
-{
-       struct rq *busiest_rq = data;
-       int busiest_cpu = cpu_of(busiest_rq);
-       int target_cpu = busiest_rq->push_cpu;
-       struct rq *target_rq = cpu_rq(target_cpu);
-       struct sched_domain *sd;
-
-       raw_spin_lock_irq(&busiest_rq->lock);
-
-       /* make sure the requested cpu hasn't gone down in the meantime */
-       if (unlikely(busiest_cpu != smp_processor_id() ||
-                    !busiest_rq->active_balance))
-               goto out_unlock;
-
-       /* Is there any task to move? */
-       if (busiest_rq->nr_running <= 1)
-               goto out_unlock;
-
-       /*
-        * This condition is "impossible", if it occurs
-        * we need to fix it. Originally reported by
-        * Bjorn Helgaas on a 128-cpu setup.
-        */
-       BUG_ON(busiest_rq == target_rq);
-
-       /* move a task from busiest_rq to target_rq */
-       double_lock_balance(busiest_rq, target_rq);
-
-       /* Search for an sd spanning us and the target CPU. */
-       rcu_read_lock();
-       for_each_domain(target_cpu, sd) {
-               if ((sd->flags & SD_LOAD_BALANCE) &&
-                   cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
-                               break;
-       }
-
-       if (likely(sd)) {
-               schedstat_inc(sd, alb_count);
-
-               if (move_one_task(target_rq, target_cpu, busiest_rq,
-                                 sd, CPU_IDLE))
-                       schedstat_inc(sd, alb_pushed);
-               else
-                       schedstat_inc(sd, alb_failed);
-       }
-       rcu_read_unlock();
-       double_unlock_balance(busiest_rq, target_rq);
-out_unlock:
-       busiest_rq->active_balance = 0;
-       raw_spin_unlock_irq(&busiest_rq->lock);
-       return 0;
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * idle load balancing details
- * - One of the idle CPUs nominates itself as idle load_balancer, while
- *   entering idle.
- * - This idle load balancer CPU will also go into tickless mode when
- *   it is idle, just like all other idle CPUs
- * - When one of the busy CPUs notice that there may be an idle rebalancing
- *   needed, they will kick the idle load balancer, which then does idle
- *   load balancing for all the idle CPUs.
- */
-static struct {
-       atomic_t load_balancer;
-       atomic_t first_pick_cpu;
-       atomic_t second_pick_cpu;
-       cpumask_var_t idle_cpus_mask;
-       cpumask_var_t grp_idle_mask;
-       unsigned long next_balance;     /* in jiffy units */
-} nohz ____cacheline_aligned;
-
-int get_nohz_load_balancer(void)
-{
-       return atomic_read(&nohz.load_balancer);
-}
-
-#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-/**
- * lowest_flag_domain - Return lowest sched_domain containing flag.
- * @cpu:       The cpu whose lowest level of sched domain is to
- *             be returned.
- * @flag:      The flag to check for the lowest sched_domain
- *             for the given cpu.
- *
- * Returns the lowest sched_domain of a cpu which contains the given flag.
- */
-static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
-{
-       struct sched_domain *sd;
-
-       for_each_domain(cpu, sd)
-               if (sd->flags & flag)
-                       break;
-
-       return sd;
-}
-
-/**
- * for_each_flag_domain - Iterates over sched_domains containing the flag.
- * @cpu:       The cpu whose domains we're iterating over.
- * @sd:                variable holding the value of the power_savings_sd
- *             for cpu.
- * @flag:      The flag to filter the sched_domains to be iterated.
- *
- * Iterates over all the scheduler domains for a given cpu that has the 'flag'
- * set, starting from the lowest sched_domain to the highest.
- */
-#define for_each_flag_domain(cpu, sd, flag) \
-       for (sd = lowest_flag_domain(cpu, flag); \
-               (sd && (sd->flags & flag)); sd = sd->parent)
-
-/**
- * is_semi_idle_group - Checks if the given sched_group is semi-idle.
- * @ilb_group: group to be checked for semi-idleness
- *
- * Returns:    1 if the group is semi-idle. 0 otherwise.
- *
- * We define a sched_group to be semi idle if it has atleast one idle-CPU
- * and atleast one non-idle CPU. This helper function checks if the given
- * sched_group is semi-idle or not.
- */
-static inline int is_semi_idle_group(struct sched_group *ilb_group)
-{
-       cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
-                                       sched_group_cpus(ilb_group));
-
-       /*
-        * A sched_group is semi-idle when it has atleast one busy cpu
-        * and atleast one idle cpu.
-        */
-       if (cpumask_empty(nohz.grp_idle_mask))
-               return 0;
-
-       if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
-               return 0;
-
-       return 1;
-}
-/**
- * find_new_ilb - Finds the optimum idle load balancer for nomination.
- * @cpu:       The cpu which is nominating a new idle_load_balancer.
- *
- * Returns:    Returns the id of the idle load balancer if it exists,
- *             Else, returns >= nr_cpu_ids.
- *
- * This algorithm picks the idle load balancer such that it belongs to a
- * semi-idle powersavings sched_domain. The idea is to try and avoid
- * completely idle packages/cores just for the purpose of idle load balancing
- * when there are other idle cpu's which are better suited for that job.
- */
-static int find_new_ilb(int cpu)
-{
-       struct sched_domain *sd;
-       struct sched_group *ilb_group;
-       int ilb = nr_cpu_ids;
-
-       /*
-        * Have idle load balancer selection from semi-idle packages only
-        * when power-aware load balancing is enabled
-        */
-       if (!(sched_smt_power_savings || sched_mc_power_savings))
-               goto out_done;
-
-       /*
-        * Optimize for the case when we have no idle CPUs or only one
-        * idle CPU. Don't walk the sched_domain hierarchy in such cases
-        */
-       if (cpumask_weight(nohz.idle_cpus_mask) < 2)
-               goto out_done;
-
-       rcu_read_lock();
-       for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
-               ilb_group = sd->groups;
-
-               do {
-                       if (is_semi_idle_group(ilb_group)) {
-                               ilb = cpumask_first(nohz.grp_idle_mask);
-                               goto unlock;
-                       }
-
-                       ilb_group = ilb_group->next;
-
-               } while (ilb_group != sd->groups);
-       }
-unlock:
-       rcu_read_unlock();
-
-out_done:
-       return ilb;
-}
-#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
-static inline int find_new_ilb(int call_cpu)
-{
-       return nr_cpu_ids;
-}
-#endif
-
-/*
- * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
- * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
- * CPU (if there is one).
- */
-static void nohz_balancer_kick(int cpu)
-{
-       int ilb_cpu;
-
-       nohz.next_balance++;
-
-       ilb_cpu = get_nohz_load_balancer();
-
-       if (ilb_cpu >= nr_cpu_ids) {
-               ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
-               if (ilb_cpu >= nr_cpu_ids)
-                       return;
-       }
-
-       if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
-               cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
-
-               smp_mb();
-               /*
-                * Use smp_send_reschedule() instead of resched_cpu().
-                * This way we generate a sched IPI on the target cpu which
-                * is idle. And the softirq performing nohz idle load balance
-                * will be run before returning from the IPI.
-                */
-               smp_send_reschedule(ilb_cpu);
-       }
-       return;
-}
-
-/*
- * This routine will try to nominate the ilb (idle load balancing)
- * owner among the cpus whose ticks are stopped. ilb owner will do the idle
- * load balancing on behalf of all those cpus.
- *
- * When the ilb owner becomes busy, we will not have new ilb owner until some
- * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
- * idle load balancing by kicking one of the idle CPUs.
- *
- * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
- * ilb owner CPU in future (when there is a need for idle load balancing on
- * behalf of all idle CPUs).
- */
-void select_nohz_load_balancer(int stop_tick)
-{
-       int cpu = smp_processor_id();
-
-       if (stop_tick) {
-               if (!cpu_active(cpu)) {
-                       if (atomic_read(&nohz.load_balancer) != cpu)
-                               return;
-
-                       /*
-                        * If we are going offline and still the leader,
-                        * give up!
-                        */
-                       if (atomic_cmpxchg(&nohz.load_balancer, cpu,
-                                          nr_cpu_ids) != cpu)
-                               BUG();
-
-                       return;
-               }
-
-               cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
-
-               if (atomic_read(&nohz.first_pick_cpu) == cpu)
-                       atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
-               if (atomic_read(&nohz.second_pick_cpu) == cpu)
-                       atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
-
-               if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
-                       int new_ilb;
-
-                       /* make me the ilb owner */
-                       if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
-                                          cpu) != nr_cpu_ids)
-                               return;
-
-                       /*
-                        * Check to see if there is a more power-efficient
-                        * ilb.
-                        */
-                       new_ilb = find_new_ilb(cpu);
-                       if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
-                               atomic_set(&nohz.load_balancer, nr_cpu_ids);
-                               resched_cpu(new_ilb);
-                               return;
-                       }
-                       return;
-               }
-       } else {
-               if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
-                       return;
-
-               cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
-
-               if (atomic_read(&nohz.load_balancer) == cpu)
-                       if (atomic_cmpxchg(&nohz.load_balancer, cpu,
-                                          nr_cpu_ids) != cpu)
-                               BUG();
-       }
-       return;
-}
-#endif
-
-static DEFINE_SPINLOCK(balancing);
-
-static unsigned long __read_mostly max_load_balance_interval = HZ/10;
-
-/*
- * Scale the max load_balance interval with the number of CPUs in the system.
- * This trades load-balance latency on larger machines for less cross talk.
- */
-void update_max_interval(void)
-{
-       max_load_balance_interval = HZ*num_online_cpus()/10;
-}
-
-/*
- * It checks each scheduling domain to see if it is due to be balanced,
- * and initiates a balancing operation if so.
- *
- * Balancing parameters are set up in arch_init_sched_domains.
- */
-static void rebalance_domains(int cpu, enum cpu_idle_type idle)
-{
-       int balance = 1;
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long interval;
-       struct sched_domain *sd;
-       /* Earliest time when we have to do rebalance again */
-       unsigned long next_balance = jiffies + 60*HZ;
-       int update_next_balance = 0;
-       int need_serialize;
-
-       update_shares(cpu);
-
-       rcu_read_lock();
-       for_each_domain(cpu, sd) {
-               if (!(sd->flags & SD_LOAD_BALANCE))
-                       continue;
-
-               interval = sd->balance_interval;
-               if (idle != CPU_IDLE)
-                       interval *= sd->busy_factor;
-
-               /* scale ms to jiffies */
-               interval = msecs_to_jiffies(interval);
-               interval = clamp(interval, 1UL, max_load_balance_interval);
-
-               need_serialize = sd->flags & SD_SERIALIZE;
-
-               if (need_serialize) {
-                       if (!spin_trylock(&balancing))
-                               goto out;
-               }
-
-               if (time_after_eq(jiffies, sd->last_balance + interval)) {
-                       if (load_balance(cpu, rq, sd, idle, &balance)) {
-                               /*
-                                * We've pulled tasks over so either we're no
-                                * longer idle.
-                                */
-                               idle = CPU_NOT_IDLE;
-                       }
-                       sd->last_balance = jiffies;
-               }
-               if (need_serialize)
-                       spin_unlock(&balancing);
-out:
-               if (time_after(next_balance, sd->last_balance + interval)) {
-                       next_balance = sd->last_balance + interval;
-                       update_next_balance = 1;
-               }
-
-               /*
-                * Stop the load balance at this level. There is another
-                * CPU in our sched group which is doing load balancing more
-                * actively.
-                */
-               if (!balance)
-                       break;
-       }
-       rcu_read_unlock();
-
-       /*
-        * next_balance will be updated only when there is a need.
-        * When the cpu is attached to null domain for ex, it will not be
-        * updated.
-        */
-       if (likely(update_next_balance))
-               rq->next_balance = next_balance;
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * In CONFIG_NO_HZ case, the idle balance kickee will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
- */
-static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
-{
-       struct rq *this_rq = cpu_rq(this_cpu);
-       struct rq *rq;
-       int balance_cpu;
-
-       if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
-               return;
-
-       for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
-               if (balance_cpu == this_cpu)
-                       continue;
-
-               /*
-                * If this cpu gets work to do, stop the load balancing
-                * work being done for other cpus. Next load
-                * balancing owner will pick it up.
-                */
-               if (need_resched()) {
-                       this_rq->nohz_balance_kick = 0;
-                       break;
-               }
-
-               raw_spin_lock_irq(&this_rq->lock);
-               update_rq_clock(this_rq);
-               update_cpu_load(this_rq);
-               raw_spin_unlock_irq(&this_rq->lock);
-
-               rebalance_domains(balance_cpu, CPU_IDLE);
-
-               rq = cpu_rq(balance_cpu);
-               if (time_after(this_rq->next_balance, rq->next_balance))
-                       this_rq->next_balance = rq->next_balance;
-       }
-       nohz.next_balance = this_rq->next_balance;
-       this_rq->nohz_balance_kick = 0;
-}
-
-/*
- * Current heuristic for kicking the idle load balancer
- * - first_pick_cpu is the one of the busy CPUs. It will kick
- *   idle load balancer when it has more than one process active. This
- *   eliminates the need for idle load balancing altogether when we have
- *   only one running process in the system (common case).
- * - If there are more than one busy CPU, idle load balancer may have
- *   to run for active_load_balance to happen (i.e., two busy CPUs are
- *   SMT or core siblings and can run better if they move to different
- *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
- *   which will kick idle load balancer as soon as it has any load.
- */
-static inline int nohz_kick_needed(struct rq *rq, int cpu)
-{
-       unsigned long now = jiffies;
-       int ret;
-       int first_pick_cpu, second_pick_cpu;
-
-       if (time_before(now, nohz.next_balance))
-               return 0;
-
-       if (idle_cpu(cpu))
-               return 0;
-
-       first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
-       second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
-
-       if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
-           second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
-               return 0;
-
-       ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
-       if (ret == nr_cpu_ids || ret == cpu) {
-               atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
-               if (rq->nr_running > 1)
-                       return 1;
-       } else {
-               ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
-               if (ret == nr_cpu_ids || ret == cpu) {
-                       if (rq->nr_running)
-                               return 1;
-               }
-       }
-       return 0;
-}
-#else
-static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
-#endif
-
-/*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
- */
-static void run_rebalance_domains(struct softirq_action *h)
-{
-       int this_cpu = smp_processor_id();
-       struct rq *this_rq = cpu_rq(this_cpu);
-       enum cpu_idle_type idle = this_rq->idle_balance ?
-                                               CPU_IDLE : CPU_NOT_IDLE;
-
-       rebalance_domains(this_cpu, idle);
-
-       /*
-        * If this cpu has a pending nohz_balance_kick, then do the
-        * balancing on behalf of the other idle cpus whose ticks are
-        * stopped.
-        */
-       nohz_idle_balance(this_cpu, idle);
-}
-
-static inline int on_null_domain(int cpu)
-{
-       return !rcu_dereference_sched(cpu_rq(cpu)->sd);
-}
-
-/*
- * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
- */
-void trigger_load_balance(struct rq *rq, int cpu)
-{
-       /* Don't need to rebalance while attached to NULL domain */
-       if (time_after_eq(jiffies, rq->next_balance) &&
-           likely(!on_null_domain(cpu)))
-               raise_softirq(SCHED_SOFTIRQ);
-#ifdef CONFIG_NO_HZ
-       else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
-               nohz_balancer_kick(cpu);
-#endif
-}
-
-static void rq_online_fair(struct rq *rq)
-{
-       update_sysctl();
-}
-
-static void rq_offline_fair(struct rq *rq)
-{
-       update_sysctl();
-}
-
-#endif /* CONFIG_SMP */
-
-/*
- * scheduler tick hitting a task of our scheduling class:
- */
-static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
-{
-       struct cfs_rq *cfs_rq;
-       struct sched_entity *se = &curr->se;
-
-       for_each_sched_entity(se) {
-               cfs_rq = cfs_rq_of(se);
-               entity_tick(cfs_rq, se, queued);
-       }
-}
-
-/*
- * called on fork with the child task as argument from the parent's context
- *  - child not yet on the tasklist
- *  - preemption disabled
- */
-static void task_fork_fair(struct task_struct *p)
-{
-       struct cfs_rq *cfs_rq = task_cfs_rq(current);
-       struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
-       int this_cpu = smp_processor_id();
-       struct rq *rq = this_rq();
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       update_rq_clock(rq);
-
-       if (unlikely(task_cpu(p) != this_cpu)) {
-               rcu_read_lock();
-               __set_task_cpu(p, this_cpu);
-               rcu_read_unlock();
-       }
-
-       update_curr(cfs_rq);
-
-       if (curr)
-               se->vruntime = curr->vruntime;
-       place_entity(cfs_rq, se, 1);
-
-       if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
-               /*
-                * Upon rescheduling, sched_class::put_prev_task() will place
-                * 'current' within the tree based on its new key value.
-                */
-               swap(curr->vruntime, se->vruntime);
-               resched_task(rq->curr);
-       }
-
-       se->vruntime -= cfs_rq->min_vruntime;
-
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-/*
- * Priority of the task has changed. Check to see if we preempt
- * the current task.
- */
-static void
-prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
-{
-       if (!p->se.on_rq)
-               return;
-
-       /*
-        * Reschedule if we are currently running on this runqueue and
-        * our priority decreased, or if we are not currently running on
-        * this runqueue and our priority is higher than the current's
-        */
-       if (rq->curr == p) {
-               if (p->prio > oldprio)
-                       resched_task(rq->curr);
-       } else
-               check_preempt_curr(rq, p, 0);
-}
-
-static void switched_from_fair(struct rq *rq, struct task_struct *p)
-{
-       struct sched_entity *se = &p->se;
-       struct cfs_rq *cfs_rq = cfs_rq_of(se);
-
-       /*
-        * Ensure the task's vruntime is normalized, so that when its
-        * switched back to the fair class the enqueue_entity(.flags=0) will
-        * do the right thing.
-        *
-        * If it was on_rq, then the dequeue_entity(.flags=0) will already
-        * have normalized the vruntime, if it was !on_rq, then only when
-        * the task is sleeping will it still have non-normalized vruntime.
-        */
-       if (!se->on_rq && p->state != TASK_RUNNING) {
-               /*
-                * Fix up our vruntime so that the current sleep doesn't
-                * cause 'unlimited' sleep bonus.
-                */
-               place_entity(cfs_rq, se, 0);
-               se->vruntime -= cfs_rq->min_vruntime;
-       }
-}
-
-/*
- * We switched to the sched_fair class.
- */
-static void switched_to_fair(struct rq *rq, struct task_struct *p)
-{
-       if (!p->se.on_rq)
-               return;
-
-       /*
-        * We were most likely switched from sched_rt, so
-        * kick off the schedule if running, otherwise just see
-        * if we can still preempt the current task.
-        */
-       if (rq->curr == p)
-               resched_task(rq->curr);
-       else
-               check_preempt_curr(rq, p, 0);
-}
-
-/* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
-static void set_curr_task_fair(struct rq *rq)
-{
-       struct sched_entity *se = &rq->curr->se;
-
-       for_each_sched_entity(se) {
-               struct cfs_rq *cfs_rq = cfs_rq_of(se);
-
-               set_next_entity(cfs_rq, se);
-               /* ensure bandwidth has been allocated on our new cfs_rq */
-               account_cfs_rq_runtime(cfs_rq, 0);
-       }
-}
-
-void init_cfs_rq(struct cfs_rq *cfs_rq)
-{
-       cfs_rq->tasks_timeline = RB_ROOT;
-       INIT_LIST_HEAD(&cfs_rq->tasks);
-       cfs_rq->min_vruntime = (u64)(-(1LL << 20));
-#ifndef CONFIG_64BIT
-       cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
-#endif
-}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static void task_move_group_fair(struct task_struct *p, int on_rq)
-{
-       /*
-        * If the task was not on the rq at the time of this cgroup movement
-        * it must have been asleep, sleeping tasks keep their ->vruntime
-        * absolute on their old rq until wakeup (needed for the fair sleeper
-        * bonus in place_entity()).
-        *
-        * If it was on the rq, we've just 'preempted' it, which does convert
-        * ->vruntime to a relative base.
-        *
-        * Make sure both cases convert their relative position when migrating
-        * to another cgroup's rq. This does somewhat interfere with the
-        * fair sleeper stuff for the first placement, but who cares.
-        */
-       if (!on_rq)
-               p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
-       set_task_rq(p, task_cpu(p));
-       if (!on_rq)
-               p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
-}
-
-void free_fair_sched_group(struct task_group *tg)
-{
-       int i;
-
-       destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
-
-       for_each_possible_cpu(i) {
-               if (tg->cfs_rq)
-                       kfree(tg->cfs_rq[i]);
-               if (tg->se)
-                       kfree(tg->se[i]);
-       }
-
-       kfree(tg->cfs_rq);
-       kfree(tg->se);
-}
-
-int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
-{
-       struct cfs_rq *cfs_rq;
-       struct sched_entity *se;
-       int i;
-
-       tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
-       if (!tg->cfs_rq)
-               goto err;
-       tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
-       if (!tg->se)
-               goto err;
-
-       tg->shares = NICE_0_LOAD;
-
-       init_cfs_bandwidth(tg_cfs_bandwidth(tg));
-
-       for_each_possible_cpu(i) {
-               cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
-                                     GFP_KERNEL, cpu_to_node(i));
-               if (!cfs_rq)
-                       goto err;
-
-               se = kzalloc_node(sizeof(struct sched_entity),
-                                 GFP_KERNEL, cpu_to_node(i));
-               if (!se)
-                       goto err_free_rq;
-
-               init_cfs_rq(cfs_rq);
-               init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
-       }
-
-       return 1;
-
-err_free_rq:
-       kfree(cfs_rq);
-err:
-       return 0;
-}
-
-void unregister_fair_sched_group(struct task_group *tg, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-       /*
-       * Only empty task groups can be destroyed; so we can speculatively
-       * check on_list without danger of it being re-added.
-       */
-       if (!tg->cfs_rq[cpu]->on_list)
-               return;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-       list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
-                       struct sched_entity *se, int cpu,
-                       struct sched_entity *parent)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-       cfs_rq->tg = tg;
-       cfs_rq->rq = rq;
-#ifdef CONFIG_SMP
-       /* allow initial update_cfs_load() to truncate */
-       cfs_rq->load_stamp = 1;
-#endif
-       init_cfs_rq_runtime(cfs_rq);
-
-       tg->cfs_rq[cpu] = cfs_rq;
-       tg->se[cpu] = se;
-
-       /* se could be NULL for root_task_group */
-       if (!se)
-               return;
-
-       if (!parent)
-               se->cfs_rq = &rq->cfs;
-       else
-               se->cfs_rq = parent->my_q;
-
-       se->my_q = cfs_rq;
-       update_load_set(&se->load, 0);
-       se->parent = parent;
-}
-
-static DEFINE_MUTEX(shares_mutex);
-
-int sched_group_set_shares(struct task_group *tg, unsigned long shares)
-{
-       int i;
-       unsigned long flags;
-
-       /*
-        * We can't change the weight of the root cgroup.
-        */
-       if (!tg->se[0])
-               return -EINVAL;
-
-       shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
-
-       mutex_lock(&shares_mutex);
-       if (tg->shares == shares)
-               goto done;
-
-       tg->shares = shares;
-       for_each_possible_cpu(i) {
-               struct rq *rq = cpu_rq(i);
-               struct sched_entity *se;
-
-               se = tg->se[i];
-               /* Propagate contribution to hierarchy */
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               for_each_sched_entity(se)
-                       update_cfs_shares(group_cfs_rq(se));
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-       }
-
-done:
-       mutex_unlock(&shares_mutex);
-       return 0;
-}
-#else /* CONFIG_FAIR_GROUP_SCHED */
-
-void free_fair_sched_group(struct task_group *tg) { }
-
-int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
-{
-       return 1;
-}
-
-void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
-
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-
-static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
-{
-       struct sched_entity *se = &task->se;
-       unsigned int rr_interval = 0;
-
-       /*
-        * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
-        * idle runqueue:
-        */
-       if (rq->cfs.load.weight)
-               rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
-
-       return rr_interval;
-}
-
-/*
- * All the scheduling class methods:
- */
-const struct sched_class fair_sched_class = {
-       .next                   = &idle_sched_class,
-       .enqueue_task           = enqueue_task_fair,
-       .dequeue_task           = dequeue_task_fair,
-       .yield_task             = yield_task_fair,
-       .yield_to_task          = yield_to_task_fair,
-
-       .check_preempt_curr     = check_preempt_wakeup,
-
-       .pick_next_task         = pick_next_task_fair,
-       .put_prev_task          = put_prev_task_fair,
-
-#ifdef CONFIG_SMP
-       .select_task_rq         = select_task_rq_fair,
-
-       .rq_online              = rq_online_fair,
-       .rq_offline             = rq_offline_fair,
-
-       .task_waking            = task_waking_fair,
-#endif
-
-       .set_curr_task          = set_curr_task_fair,
-       .task_tick              = task_tick_fair,
-       .task_fork              = task_fork_fair,
-
-       .prio_changed           = prio_changed_fair,
-       .switched_from          = switched_from_fair,
-       .switched_to            = switched_to_fair,
-
-       .get_rr_interval        = get_rr_interval_fair,
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       .task_move_group        = task_move_group_fair,
-#endif
-};
-
-#ifdef CONFIG_SCHED_DEBUG
-void print_cfs_stats(struct seq_file *m, int cpu)
-{
-       struct cfs_rq *cfs_rq;
-
-       rcu_read_lock();
-       for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
-               print_cfs_rq(m, cpu, cfs_rq);
-       rcu_read_unlock();
-}
-#endif
-
-__init void init_sched_fair_class(void)
-{
-#ifdef CONFIG_SMP
-       open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
-
-#ifdef CONFIG_NO_HZ
-       zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
-       alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
-       atomic_set(&nohz.load_balancer, nr_cpu_ids);
-       atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
-       atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
-#endif
-#endif /* SMP */
-
-}
diff --git a/kernel/sched_features.h b/kernel/sched_features.h
deleted file mode 100644 (file)
index 8480224..0000000
+++ /dev/null
@@ -1,70 +0,0 @@
-/*
- * Only give sleepers 50% of their service deficit. This allows
- * them to run sooner, but does not allow tons of sleepers to
- * rip the spread apart.
- */
-SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1)
-
-/*
- * Place new tasks ahead so that they do not starve already running
- * tasks
- */
-SCHED_FEAT(START_DEBIT, 1)
-
-/*
- * Based on load and program behaviour, see if it makes sense to place
- * a newly woken task on the same cpu as the task that woke it --
- * improve cache locality. Typically used with SYNC wakeups as
- * generated by pipes and the like, see also SYNC_WAKEUPS.
- */
-SCHED_FEAT(AFFINE_WAKEUPS, 1)
-
-/*
- * Prefer to schedule the task we woke last (assuming it failed
- * wakeup-preemption), since its likely going to consume data we
- * touched, increases cache locality.
- */
-SCHED_FEAT(NEXT_BUDDY, 0)
-
-/*
- * Prefer to schedule the task that ran last (when we did
- * wake-preempt) as that likely will touch the same data, increases
- * cache locality.
- */
-SCHED_FEAT(LAST_BUDDY, 1)
-
-/*
- * Consider buddies to be cache hot, decreases the likelyness of a
- * cache buddy being migrated away, increases cache locality.
- */
-SCHED_FEAT(CACHE_HOT_BUDDY, 1)
-
-/*
- * Use arch dependent cpu power functions
- */
-SCHED_FEAT(ARCH_POWER, 0)
-
-SCHED_FEAT(HRTICK, 0)
-SCHED_FEAT(DOUBLE_TICK, 0)
-SCHED_FEAT(LB_BIAS, 1)
-
-/*
- * Spin-wait on mutex acquisition when the mutex owner is running on
- * another cpu -- assumes that when the owner is running, it will soon
- * release the lock. Decreases scheduling overhead.
- */
-SCHED_FEAT(OWNER_SPIN, 1)
-
-/*
- * Decrement CPU power based on time not spent running tasks
- */
-SCHED_FEAT(NONTASK_POWER, 1)
-
-/*
- * Queue remote wakeups on the target CPU and process them
- * using the scheduler IPI. Reduces rq->lock contention/bounces.
- */
-SCHED_FEAT(TTWU_QUEUE, 1)
-
-SCHED_FEAT(FORCE_SD_OVERLAP, 0)
-SCHED_FEAT(RT_RUNTIME_SHARE, 1)
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
deleted file mode 100644 (file)
index 91b4c95..0000000
+++ /dev/null
@@ -1,99 +0,0 @@
-#include "sched.h"
-
-/*
- * idle-task scheduling class.
- *
- * (NOTE: these are not related to SCHED_IDLE tasks which are
- *  handled in sched_fair.c)
- */
-
-#ifdef CONFIG_SMP
-static int
-select_task_rq_idle(struct task_struct *p, int sd_flag, int flags)
-{
-       return task_cpu(p); /* IDLE tasks as never migrated */
-}
-#endif /* CONFIG_SMP */
-/*
- * Idle tasks are unconditionally rescheduled:
- */
-static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags)
-{
-       resched_task(rq->idle);
-}
-
-static struct task_struct *pick_next_task_idle(struct rq *rq)
-{
-       schedstat_inc(rq, sched_goidle);
-       calc_load_account_idle(rq);
-       return rq->idle;
-}
-
-/*
- * It is not legal to sleep in the idle task - print a warning
- * message if some code attempts to do it:
- */
-static void
-dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
-{
-       raw_spin_unlock_irq(&rq->lock);
-       printk(KERN_ERR "bad: scheduling from the idle thread!\n");
-       dump_stack();
-       raw_spin_lock_irq(&rq->lock);
-}
-
-static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
-{
-}
-
-static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
-{
-}
-
-static void set_curr_task_idle(struct rq *rq)
-{
-}
-
-static void switched_to_idle(struct rq *rq, struct task_struct *p)
-{
-       BUG();
-}
-
-static void
-prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
-{
-       BUG();
-}
-
-static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task)
-{
-       return 0;
-}
-
-/*
- * Simple, special scheduling class for the per-CPU idle tasks:
- */
-const struct sched_class idle_sched_class = {
-       /* .next is NULL */
-       /* no enqueue/yield_task for idle tasks */
-
-       /* dequeue is not valid, we print a debug message there: */
-       .dequeue_task           = dequeue_task_idle,
-
-       .check_preempt_curr     = check_preempt_curr_idle,
-
-       .pick_next_task         = pick_next_task_idle,
-       .put_prev_task          = put_prev_task_idle,
-
-#ifdef CONFIG_SMP
-       .select_task_rq         = select_task_rq_idle,
-#endif
-
-       .set_curr_task          = set_curr_task_idle,
-       .task_tick              = task_tick_idle,
-
-       .get_rr_interval        = get_rr_interval_idle,
-
-       .prio_changed           = prio_changed_idle,
-       .switched_to            = switched_to_idle,
-};
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
deleted file mode 100644 (file)
index 023b355..0000000
+++ /dev/null
@@ -1,2045 +0,0 @@
-/*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
-
-#include "sched.h"
-
-#include <linux/slab.h>
-
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
-
-struct rt_bandwidth def_rt_bandwidth;
-
-static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
-{
-       struct rt_bandwidth *rt_b =
-               container_of(timer, struct rt_bandwidth, rt_period_timer);
-       ktime_t now;
-       int overrun;
-       int idle = 0;
-
-       for (;;) {
-               now = hrtimer_cb_get_time(timer);
-               overrun = hrtimer_forward(timer, now, rt_b->rt_period);
-
-               if (!overrun)
-                       break;
-
-               idle = do_sched_rt_period_timer(rt_b, overrun);
-       }
-
-       return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
-}
-
-void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
-{
-       rt_b->rt_period = ns_to_ktime(period);
-       rt_b->rt_runtime = runtime;
-
-       raw_spin_lock_init(&rt_b->rt_runtime_lock);
-
-       hrtimer_init(&rt_b->rt_period_timer,
-                       CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-       rt_b->rt_period_timer.function = sched_rt_period_timer;
-}
-
-static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
-{
-       if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
-               return;
-
-       if (hrtimer_active(&rt_b->rt_period_timer))
-               return;
-
-       raw_spin_lock(&rt_b->rt_runtime_lock);
-       start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
-       raw_spin_unlock(&rt_b->rt_runtime_lock);
-}
-
-void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
-{
-       struct rt_prio_array *array;
-       int i;
-
-       array = &rt_rq->active;
-       for (i = 0; i < MAX_RT_PRIO; i++) {
-               INIT_LIST_HEAD(array->queue + i);
-               __clear_bit(i, array->bitmap);
-       }
-       /* delimiter for bitsearch: */
-       __set_bit(MAX_RT_PRIO, array->bitmap);
-
-#if defined CONFIG_SMP
-       rt_rq->highest_prio.curr = MAX_RT_PRIO;
-       rt_rq->highest_prio.next = MAX_RT_PRIO;
-       rt_rq->rt_nr_migratory = 0;
-       rt_rq->overloaded = 0;
-       plist_head_init(&rt_rq->pushable_tasks);
-#endif
-
-       rt_rq->rt_time = 0;
-       rt_rq->rt_throttled = 0;
-       rt_rq->rt_runtime = 0;
-       raw_spin_lock_init(&rt_rq->rt_runtime_lock);
-}
-
-#ifdef CONFIG_RT_GROUP_SCHED
-static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
-{
-       hrtimer_cancel(&rt_b->rt_period_timer);
-}
-
-#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
-
-static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
-{
-#ifdef CONFIG_SCHED_DEBUG
-       WARN_ON_ONCE(!rt_entity_is_task(rt_se));
-#endif
-       return container_of(rt_se, struct task_struct, rt);
-}
-
-static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
-{
-       return rt_rq->rq;
-}
-
-static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
-{
-       return rt_se->rt_rq;
-}
-
-void free_rt_sched_group(struct task_group *tg)
-{
-       int i;
-
-       if (tg->rt_se)
-               destroy_rt_bandwidth(&tg->rt_bandwidth);
-
-       for_each_possible_cpu(i) {
-               if (tg->rt_rq)
-                       kfree(tg->rt_rq[i]);
-               if (tg->rt_se)
-                       kfree(tg->rt_se[i]);
-       }
-
-       kfree(tg->rt_rq);
-       kfree(tg->rt_se);
-}
-
-void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
-               struct sched_rt_entity *rt_se, int cpu,
-               struct sched_rt_entity *parent)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-       rt_rq->highest_prio.curr = MAX_RT_PRIO;
-       rt_rq->rt_nr_boosted = 0;
-       rt_rq->rq = rq;
-       rt_rq->tg = tg;
-
-       tg->rt_rq[cpu] = rt_rq;
-       tg->rt_se[cpu] = rt_se;
-
-       if (!rt_se)
-               return;
-
-       if (!parent)
-               rt_se->rt_rq = &rq->rt;
-       else
-               rt_se->rt_rq = parent->my_q;
-
-       rt_se->my_q = rt_rq;
-       rt_se->parent = parent;
-       INIT_LIST_HEAD(&rt_se->run_list);
-}
-
-int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
-{
-       struct rt_rq *rt_rq;
-       struct sched_rt_entity *rt_se;
-       int i;
-
-       tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
-       if (!tg->rt_rq)
-               goto err;
-       tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
-       if (!tg->rt_se)
-               goto err;
-
-       init_rt_bandwidth(&tg->rt_bandwidth,
-                       ktime_to_ns(def_rt_bandwidth.rt_period), 0);
-
-       for_each_possible_cpu(i) {
-               rt_rq = kzalloc_node(sizeof(struct rt_rq),
-                                    GFP_KERNEL, cpu_to_node(i));
-               if (!rt_rq)
-                       goto err;
-
-               rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
-                                    GFP_KERNEL, cpu_to_node(i));
-               if (!rt_se)
-                       goto err_free_rq;
-
-               init_rt_rq(rt_rq, cpu_rq(i));
-               rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
-               init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
-       }
-
-       return 1;
-
-err_free_rq:
-       kfree(rt_rq);
-err:
-       return 0;
-}
-
-#else /* CONFIG_RT_GROUP_SCHED */
-
-#define rt_entity_is_task(rt_se) (1)
-
-static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
-{
-       return container_of(rt_se, struct task_struct, rt);
-}
-
-static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
-{
-       return container_of(rt_rq, struct rq, rt);
-}
-
-static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
-{
-       struct task_struct *p = rt_task_of(rt_se);
-       struct rq *rq = task_rq(p);
-
-       return &rq->rt;
-}
-
-void free_rt_sched_group(struct task_group *tg) { }
-
-int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
-{
-       return 1;
-}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_SMP
-
-static inline int rt_overloaded(struct rq *rq)
-{
-       return atomic_read(&rq->rd->rto_count);
-}
-
-static inline void rt_set_overload(struct rq *rq)
-{
-       if (!rq->online)
-               return;
-
-       cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
-       /*
-        * Make sure the mask is visible before we set
-        * the overload count. That is checked to determine
-        * if we should look at the mask. It would be a shame
-        * if we looked at the mask, but the mask was not
-        * updated yet.
-        */
-       wmb();
-       atomic_inc(&rq->rd->rto_count);
-}
-
-static inline void rt_clear_overload(struct rq *rq)
-{
-       if (!rq->online)
-               return;
-
-       /* the order here really doesn't matter */
-       atomic_dec(&rq->rd->rto_count);
-       cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
-}
-
-static void update_rt_migration(struct rt_rq *rt_rq)
-{
-       if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
-               if (!rt_rq->overloaded) {
-                       rt_set_overload(rq_of_rt_rq(rt_rq));
-                       rt_rq->overloaded = 1;
-               }
-       } else if (rt_rq->overloaded) {
-               rt_clear_overload(rq_of_rt_rq(rt_rq));
-               rt_rq->overloaded = 0;
-       }
-}
-
-static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       if (!rt_entity_is_task(rt_se))
-               return;
-
-       rt_rq = &rq_of_rt_rq(rt_rq)->rt;
-
-       rt_rq->rt_nr_total++;
-       if (rt_se->nr_cpus_allowed > 1)
-               rt_rq->rt_nr_migratory++;
-
-       update_rt_migration(rt_rq);
-}
-
-static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       if (!rt_entity_is_task(rt_se))
-               return;
-
-       rt_rq = &rq_of_rt_rq(rt_rq)->rt;
-
-       rt_rq->rt_nr_total--;
-       if (rt_se->nr_cpus_allowed > 1)
-               rt_rq->rt_nr_migratory--;
-
-       update_rt_migration(rt_rq);
-}
-
-static inline int has_pushable_tasks(struct rq *rq)
-{
-       return !plist_head_empty(&rq->rt.pushable_tasks);
-}
-
-static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-       plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
-       plist_node_init(&p->pushable_tasks, p->prio);
-       plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
-
-       /* Update the highest prio pushable task */
-       if (p->prio < rq->rt.highest_prio.next)
-               rq->rt.highest_prio.next = p->prio;
-}
-
-static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-       plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
-
-       /* Update the new highest prio pushable task */
-       if (has_pushable_tasks(rq)) {
-               p = plist_first_entry(&rq->rt.pushable_tasks,
-                                     struct task_struct, pushable_tasks);
-               rq->rt.highest_prio.next = p->prio;
-       } else
-               rq->rt.highest_prio.next = MAX_RT_PRIO;
-}
-
-#else
-
-static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline
-void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-}
-
-static inline
-void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-}
-
-#endif /* CONFIG_SMP */
-
-static inline int on_rt_rq(struct sched_rt_entity *rt_se)
-{
-       return !list_empty(&rt_se->run_list);
-}
-
-#ifdef CONFIG_RT_GROUP_SCHED
-
-static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
-{
-       if (!rt_rq->tg)
-               return RUNTIME_INF;
-
-       return rt_rq->rt_runtime;
-}
-
-static inline u64 sched_rt_period(struct rt_rq *rt_rq)
-{
-       return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
-}
-
-typedef struct task_group *rt_rq_iter_t;
-
-static inline struct task_group *next_task_group(struct task_group *tg)
-{
-       do {
-               tg = list_entry_rcu(tg->list.next,
-                       typeof(struct task_group), list);
-       } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
-
-       if (&tg->list == &task_groups)
-               tg = NULL;
-
-       return tg;
-}
-
-#define for_each_rt_rq(rt_rq, iter, rq)                                        \
-       for (iter = container_of(&task_groups, typeof(*iter), list);    \
-               (iter = next_task_group(iter)) &&                       \
-               (rt_rq = iter->rt_rq[cpu_of(rq)]);)
-
-static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
-{
-       list_add_rcu(&rt_rq->leaf_rt_rq_list,
-                       &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
-}
-
-static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
-{
-       list_del_rcu(&rt_rq->leaf_rt_rq_list);
-}
-
-#define for_each_leaf_rt_rq(rt_rq, rq) \
-       list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
-
-#define for_each_sched_rt_entity(rt_se) \
-       for (; rt_se; rt_se = rt_se->parent)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
-       return rt_se->my_q;
-}
-
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
-
-static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
-{
-       struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
-       struct sched_rt_entity *rt_se;
-
-       int cpu = cpu_of(rq_of_rt_rq(rt_rq));
-
-       rt_se = rt_rq->tg->rt_se[cpu];
-
-       if (rt_rq->rt_nr_running) {
-               if (rt_se && !on_rt_rq(rt_se))
-                       enqueue_rt_entity(rt_se, false);
-               if (rt_rq->highest_prio.curr < curr->prio)
-                       resched_task(curr);
-       }
-}
-
-static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
-{
-       struct sched_rt_entity *rt_se;
-       int cpu = cpu_of(rq_of_rt_rq(rt_rq));
-
-       rt_se = rt_rq->tg->rt_se[cpu];
-
-       if (rt_se && on_rt_rq(rt_se))
-               dequeue_rt_entity(rt_se);
-}
-
-static inline int rt_rq_throttled(struct rt_rq *rt_rq)
-{
-       return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
-}
-
-static int rt_se_boosted(struct sched_rt_entity *rt_se)
-{
-       struct rt_rq *rt_rq = group_rt_rq(rt_se);
-       struct task_struct *p;
-
-       if (rt_rq)
-               return !!rt_rq->rt_nr_boosted;
-
-       p = rt_task_of(rt_se);
-       return p->prio != p->normal_prio;
-}
-
-#ifdef CONFIG_SMP
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
-       return cpu_rq(smp_processor_id())->rd->span;
-}
-#else
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
-       return cpu_online_mask;
-}
-#endif
-
-static inline
-struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
-{
-       return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
-}
-
-static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
-{
-       return &rt_rq->tg->rt_bandwidth;
-}
-
-#else /* !CONFIG_RT_GROUP_SCHED */
-
-static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
-{
-       return rt_rq->rt_runtime;
-}
-
-static inline u64 sched_rt_period(struct rt_rq *rt_rq)
-{
-       return ktime_to_ns(def_rt_bandwidth.rt_period);
-}
-
-typedef struct rt_rq *rt_rq_iter_t;
-
-#define for_each_rt_rq(rt_rq, iter, rq) \
-       for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
-
-static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
-{
-}
-
-static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
-{
-}
-
-#define for_each_leaf_rt_rq(rt_rq, rq) \
-       for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
-
-#define for_each_sched_rt_entity(rt_se) \
-       for (; rt_se; rt_se = NULL)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
-       return NULL;
-}
-
-static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
-{
-       if (rt_rq->rt_nr_running)
-               resched_task(rq_of_rt_rq(rt_rq)->curr);
-}
-
-static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
-{
-}
-
-static inline int rt_rq_throttled(struct rt_rq *rt_rq)
-{
-       return rt_rq->rt_throttled;
-}
-
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
-       return cpu_online_mask;
-}
-
-static inline
-struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
-{
-       return &cpu_rq(cpu)->rt;
-}
-
-static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
-{
-       return &def_rt_bandwidth;
-}
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_SMP
-/*
- * We ran out of runtime, see if we can borrow some from our neighbours.
- */
-static int do_balance_runtime(struct rt_rq *rt_rq)
-{
-       struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
-       struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
-       int i, weight, more = 0;
-       u64 rt_period;
-
-       weight = cpumask_weight(rd->span);
-
-       raw_spin_lock(&rt_b->rt_runtime_lock);
-       rt_period = ktime_to_ns(rt_b->rt_period);
-       for_each_cpu(i, rd->span) {
-               struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
-               s64 diff;
-
-               if (iter == rt_rq)
-                       continue;
-
-               raw_spin_lock(&iter->rt_runtime_lock);
-               /*
-                * Either all rqs have inf runtime and there's nothing to steal
-                * or __disable_runtime() below sets a specific rq to inf to
-                * indicate its been disabled and disalow stealing.
-                */
-               if (iter->rt_runtime == RUNTIME_INF)
-                       goto next;
-
-               /*
-                * From runqueues with spare time, take 1/n part of their
-                * spare time, but no more than our period.
-                */
-               diff = iter->rt_runtime - iter->rt_time;
-               if (diff > 0) {
-                       diff = div_u64((u64)diff, weight);
-                       if (rt_rq->rt_runtime + diff > rt_period)
-                               diff = rt_period - rt_rq->rt_runtime;
-                       iter->rt_runtime -= diff;
-                       rt_rq->rt_runtime += diff;
-                       more = 1;
-                       if (rt_rq->rt_runtime == rt_period) {
-                               raw_spin_unlock(&iter->rt_runtime_lock);
-                               break;
-                       }
-               }
-next:
-               raw_spin_unlock(&iter->rt_runtime_lock);
-       }
-       raw_spin_unlock(&rt_b->rt_runtime_lock);
-
-       return more;
-}
-
-/*
- * Ensure this RQ takes back all the runtime it lend to its neighbours.
- */
-static void __disable_runtime(struct rq *rq)
-{
-       struct root_domain *rd = rq->rd;
-       rt_rq_iter_t iter;
-       struct rt_rq *rt_rq;
-
-       if (unlikely(!scheduler_running))
-               return;
-
-       for_each_rt_rq(rt_rq, iter, rq) {
-               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
-               s64 want;
-               int i;
-
-               raw_spin_lock(&rt_b->rt_runtime_lock);
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               /*
-                * Either we're all inf and nobody needs to borrow, or we're
-                * already disabled and thus have nothing to do, or we have
-                * exactly the right amount of runtime to take out.
-                */
-               if (rt_rq->rt_runtime == RUNTIME_INF ||
-                               rt_rq->rt_runtime == rt_b->rt_runtime)
-                       goto balanced;
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-
-               /*
-                * Calculate the difference between what we started out with
-                * and what we current have, that's the amount of runtime
-                * we lend and now have to reclaim.
-                */
-               want = rt_b->rt_runtime - rt_rq->rt_runtime;
-
-               /*
-                * Greedy reclaim, take back as much as we can.
-                */
-               for_each_cpu(i, rd->span) {
-                       struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
-                       s64 diff;
-
-                       /*
-                        * Can't reclaim from ourselves or disabled runqueues.
-                        */
-                       if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
-                               continue;
-
-                       raw_spin_lock(&iter->rt_runtime_lock);
-                       if (want > 0) {
-                               diff = min_t(s64, iter->rt_runtime, want);
-                               iter->rt_runtime -= diff;
-                               want -= diff;
-                       } else {
-                               iter->rt_runtime -= want;
-                               want -= want;
-                       }
-                       raw_spin_unlock(&iter->rt_runtime_lock);
-
-                       if (!want)
-                               break;
-               }
-
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               /*
-                * We cannot be left wanting - that would mean some runtime
-                * leaked out of the system.
-                */
-               BUG_ON(want);
-balanced:
-               /*
-                * Disable all the borrow logic by pretending we have inf
-                * runtime - in which case borrowing doesn't make sense.
-                */
-               rt_rq->rt_runtime = RUNTIME_INF;
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-               raw_spin_unlock(&rt_b->rt_runtime_lock);
-       }
-}
-
-static void disable_runtime(struct rq *rq)
-{
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-       __disable_runtime(rq);
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-static void __enable_runtime(struct rq *rq)
-{
-       rt_rq_iter_t iter;
-       struct rt_rq *rt_rq;
-
-       if (unlikely(!scheduler_running))
-               return;
-
-       /*
-        * Reset each runqueue's bandwidth settings
-        */
-       for_each_rt_rq(rt_rq, iter, rq) {
-               struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
-
-               raw_spin_lock(&rt_b->rt_runtime_lock);
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               rt_rq->rt_runtime = rt_b->rt_runtime;
-               rt_rq->rt_time = 0;
-               rt_rq->rt_throttled = 0;
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-               raw_spin_unlock(&rt_b->rt_runtime_lock);
-       }
-}
-
-static void enable_runtime(struct rq *rq)
-{
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-       __enable_runtime(rq);
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
-       int cpu = (int)(long)hcpu;
-
-       switch (action) {
-       case CPU_DOWN_PREPARE:
-       case CPU_DOWN_PREPARE_FROZEN:
-               disable_runtime(cpu_rq(cpu));
-               return NOTIFY_OK;
-
-       case CPU_DOWN_FAILED:
-       case CPU_DOWN_FAILED_FROZEN:
-       case CPU_ONLINE:
-       case CPU_ONLINE_FROZEN:
-               enable_runtime(cpu_rq(cpu));
-               return NOTIFY_OK;
-
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-static int balance_runtime(struct rt_rq *rt_rq)
-{
-       int more = 0;
-
-       if (!sched_feat(RT_RUNTIME_SHARE))
-               return more;
-
-       if (rt_rq->rt_time > rt_rq->rt_runtime) {
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-               more = do_balance_runtime(rt_rq);
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-       }
-
-       return more;
-}
-#else /* !CONFIG_SMP */
-static inline int balance_runtime(struct rt_rq *rt_rq)
-{
-       return 0;
-}
-#endif /* CONFIG_SMP */
-
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
-{
-       int i, idle = 1;
-       const struct cpumask *span;
-
-       if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
-               return 1;
-
-       span = sched_rt_period_mask();
-       for_each_cpu(i, span) {
-               int enqueue = 0;
-               struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
-               struct rq *rq = rq_of_rt_rq(rt_rq);
-
-               raw_spin_lock(&rq->lock);
-               if (rt_rq->rt_time) {
-                       u64 runtime;
-
-                       raw_spin_lock(&rt_rq->rt_runtime_lock);
-                       if (rt_rq->rt_throttled)
-                               balance_runtime(rt_rq);
-                       runtime = rt_rq->rt_runtime;
-                       rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
-                       if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
-                               rt_rq->rt_throttled = 0;
-                               enqueue = 1;
-
-                               /*
-                                * Force a clock update if the CPU was idle,
-                                * lest wakeup -> unthrottle time accumulate.
-                                */
-                               if (rt_rq->rt_nr_running && rq->curr == rq->idle)
-                                       rq->skip_clock_update = -1;
-                       }
-                       if (rt_rq->rt_time || rt_rq->rt_nr_running)
-                               idle = 0;
-                       raw_spin_unlock(&rt_rq->rt_runtime_lock);
-               } else if (rt_rq->rt_nr_running) {
-                       idle = 0;
-                       if (!rt_rq_throttled(rt_rq))
-                               enqueue = 1;
-               }
-
-               if (enqueue)
-                       sched_rt_rq_enqueue(rt_rq);
-               raw_spin_unlock(&rq->lock);
-       }
-
-       return idle;
-}
-
-static inline int rt_se_prio(struct sched_rt_entity *rt_se)
-{
-#ifdef CONFIG_RT_GROUP_SCHED
-       struct rt_rq *rt_rq = group_rt_rq(rt_se);
-
-       if (rt_rq)
-               return rt_rq->highest_prio.curr;
-#endif
-
-       return rt_task_of(rt_se)->prio;
-}
-
-static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
-{
-       u64 runtime = sched_rt_runtime(rt_rq);
-
-       if (rt_rq->rt_throttled)
-               return rt_rq_throttled(rt_rq);
-
-       if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
-               return 0;
-
-       balance_runtime(rt_rq);
-       runtime = sched_rt_runtime(rt_rq);
-       if (runtime == RUNTIME_INF)
-               return 0;
-
-       if (rt_rq->rt_time > runtime) {
-               rt_rq->rt_throttled = 1;
-               printk_once(KERN_WARNING "sched: RT throttling activated\n");
-               if (rt_rq_throttled(rt_rq)) {
-                       sched_rt_rq_dequeue(rt_rq);
-                       return 1;
-               }
-       }
-
-       return 0;
-}
-
-/*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
-static void update_curr_rt(struct rq *rq)
-{
-       struct task_struct *curr = rq->curr;
-       struct sched_rt_entity *rt_se = &curr->rt;
-       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
-       u64 delta_exec;
-
-       if (curr->sched_class != &rt_sched_class)
-               return;
-
-       delta_exec = rq->clock_task - curr->se.exec_start;
-       if (unlikely((s64)delta_exec < 0))
-               delta_exec = 0;
-
-       schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
-
-       curr->se.sum_exec_runtime += delta_exec;
-       account_group_exec_runtime(curr, delta_exec);
-
-       curr->se.exec_start = rq->clock_task;
-       cpuacct_charge(curr, delta_exec);
-
-       sched_rt_avg_update(rq, delta_exec);
-
-       if (!rt_bandwidth_enabled())
-               return;
-
-       for_each_sched_rt_entity(rt_se) {
-               rt_rq = rt_rq_of_se(rt_se);
-
-               if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
-                       raw_spin_lock(&rt_rq->rt_runtime_lock);
-                       rt_rq->rt_time += delta_exec;
-                       if (sched_rt_runtime_exceeded(rt_rq))
-                               resched_task(curr);
-                       raw_spin_unlock(&rt_rq->rt_runtime_lock);
-               }
-       }
-}
-
-#if defined CONFIG_SMP
-
-static void
-inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
-{
-       struct rq *rq = rq_of_rt_rq(rt_rq);
-
-       if (rq->online && prio < prev_prio)
-               cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
-}
-
-static void
-dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
-{
-       struct rq *rq = rq_of_rt_rq(rt_rq);
-
-       if (rq->online && rt_rq->highest_prio.curr != prev_prio)
-               cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
-}
-
-#else /* CONFIG_SMP */
-
-static inline
-void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-static inline
-void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-
-#endif /* CONFIG_SMP */
-
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-static void
-inc_rt_prio(struct rt_rq *rt_rq, int prio)
-{
-       int prev_prio = rt_rq->highest_prio.curr;
-
-       if (prio < prev_prio)
-               rt_rq->highest_prio.curr = prio;
-
-       inc_rt_prio_smp(rt_rq, prio, prev_prio);
-}
-
-static void
-dec_rt_prio(struct rt_rq *rt_rq, int prio)
-{
-       int prev_prio = rt_rq->highest_prio.curr;
-
-       if (rt_rq->rt_nr_running) {
-
-               WARN_ON(prio < prev_prio);
-
-               /*
-                * This may have been our highest task, and therefore
-                * we may have some recomputation to do
-                */
-               if (prio == prev_prio) {
-                       struct rt_prio_array *array = &rt_rq->active;
-
-                       rt_rq->highest_prio.curr =
-                               sched_find_first_bit(array->bitmap);
-               }
-
-       } else
-               rt_rq->highest_prio.curr = MAX_RT_PRIO;
-
-       dec_rt_prio_smp(rt_rq, prio, prev_prio);
-}
-
-#else
-
-static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
-static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
-
-#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_RT_GROUP_SCHED
-
-static void
-inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       if (rt_se_boosted(rt_se))
-               rt_rq->rt_nr_boosted++;
-
-       if (rt_rq->tg)
-               start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
-}
-
-static void
-dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       if (rt_se_boosted(rt_se))
-               rt_rq->rt_nr_boosted--;
-
-       WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
-}
-
-#else /* CONFIG_RT_GROUP_SCHED */
-
-static void
-inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       start_rt_bandwidth(&def_rt_bandwidth);
-}
-
-static inline
-void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-static inline
-void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       int prio = rt_se_prio(rt_se);
-
-       WARN_ON(!rt_prio(prio));
-       rt_rq->rt_nr_running++;
-
-       inc_rt_prio(rt_rq, prio);
-       inc_rt_migration(rt_se, rt_rq);
-       inc_rt_group(rt_se, rt_rq);
-}
-
-static inline
-void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-       WARN_ON(!rt_prio(rt_se_prio(rt_se)));
-       WARN_ON(!rt_rq->rt_nr_running);
-       rt_rq->rt_nr_running--;
-
-       dec_rt_prio(rt_rq, rt_se_prio(rt_se));
-       dec_rt_migration(rt_se, rt_rq);
-       dec_rt_group(rt_se, rt_rq);
-}
-
-static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
-{
-       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
-       struct rt_prio_array *array = &rt_rq->active;
-       struct rt_rq *group_rq = group_rt_rq(rt_se);
-       struct list_head *queue = array->queue + rt_se_prio(rt_se);
-
-       /*
-        * Don't enqueue the group if its throttled, or when empty.
-        * The latter is a consequence of the former when a child group
-        * get throttled and the current group doesn't have any other
-        * active members.
-        */
-       if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
-               return;
-
-       if (!rt_rq->rt_nr_running)
-               list_add_leaf_rt_rq(rt_rq);
-
-       if (head)
-               list_add(&rt_se->run_list, queue);
-       else
-               list_add_tail(&rt_se->run_list, queue);
-       __set_bit(rt_se_prio(rt_se), array->bitmap);
-
-       inc_rt_tasks(rt_se, rt_rq);
-}
-
-static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
-{
-       struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
-       struct rt_prio_array *array = &rt_rq->active;
-
-       list_del_init(&rt_se->run_list);
-       if (list_empty(array->queue + rt_se_prio(rt_se)))
-               __clear_bit(rt_se_prio(rt_se), array->bitmap);
-
-       dec_rt_tasks(rt_se, rt_rq);
-       if (!rt_rq->rt_nr_running)
-               list_del_leaf_rt_rq(rt_rq);
-}
-
-/*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
-static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
-{
-       struct sched_rt_entity *back = NULL;
-
-       for_each_sched_rt_entity(rt_se) {
-               rt_se->back = back;
-               back = rt_se;
-       }
-
-       for (rt_se = back; rt_se; rt_se = rt_se->back) {
-               if (on_rt_rq(rt_se))
-                       __dequeue_rt_entity(rt_se);
-       }
-}
-
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
-{
-       dequeue_rt_stack(rt_se);
-       for_each_sched_rt_entity(rt_se)
-               __enqueue_rt_entity(rt_se, head);
-}
-
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
-{
-       dequeue_rt_stack(rt_se);
-
-       for_each_sched_rt_entity(rt_se) {
-               struct rt_rq *rt_rq = group_rt_rq(rt_se);
-
-               if (rt_rq && rt_rq->rt_nr_running)
-                       __enqueue_rt_entity(rt_se, false);
-       }
-}
-
-/*
- * Adding/removing a task to/from a priority array:
- */
-static void
-enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
-{
-       struct sched_rt_entity *rt_se = &p->rt;
-
-       if (flags & ENQUEUE_WAKEUP)
-               rt_se->timeout = 0;
-
-       enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
-
-       if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
-               enqueue_pushable_task(rq, p);
-
-       inc_nr_running(rq);
-}
-
-static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
-{
-       struct sched_rt_entity *rt_se = &p->rt;
-
-       update_curr_rt(rq);
-       dequeue_rt_entity(rt_se);
-
-       dequeue_pushable_task(rq, p);
-
-       dec_nr_running(rq);
-}
-
-/*
- * Put task to the head or the end of the run list without the overhead of
- * dequeue followed by enqueue.
- */
-static void
-requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
-{
-       if (on_rt_rq(rt_se)) {
-               struct rt_prio_array *array = &rt_rq->active;
-               struct list_head *queue = array->queue + rt_se_prio(rt_se);
-
-               if (head)
-                       list_move(&rt_se->run_list, queue);
-               else
-                       list_move_tail(&rt_se->run_list, queue);
-       }
-}
-
-static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
-{
-       struct sched_rt_entity *rt_se = &p->rt;
-       struct rt_rq *rt_rq;
-
-       for_each_sched_rt_entity(rt_se) {
-               rt_rq = rt_rq_of_se(rt_se);
-               requeue_rt_entity(rt_rq, rt_se, head);
-       }
-}
-
-static void yield_task_rt(struct rq *rq)
-{
-       requeue_task_rt(rq, rq->curr, 0);
-}
-
-#ifdef CONFIG_SMP
-static int find_lowest_rq(struct task_struct *task);
-
-static int
-select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
-{
-       struct task_struct *curr;
-       struct rq *rq;
-       int cpu;
-
-       cpu = task_cpu(p);
-
-       /* For anything but wake ups, just return the task_cpu */
-       if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
-               goto out;
-
-       rq = cpu_rq(cpu);
-
-       rcu_read_lock();
-       curr = ACCESS_ONCE(rq->curr); /* unlocked access */
-
-       /*
-        * If the current task on @p's runqueue is an RT task, then
-        * try to see if we can wake this RT task up on another
-        * runqueue. Otherwise simply start this RT task
-        * on its current runqueue.
-        *
-        * We want to avoid overloading runqueues. If the woken
-        * task is a higher priority, then it will stay on this CPU
-        * and the lower prio task should be moved to another CPU.
-        * Even though this will probably make the lower prio task
-        * lose its cache, we do not want to bounce a higher task
-        * around just because it gave up its CPU, perhaps for a
-        * lock?
-        *
-        * For equal prio tasks, we just let the scheduler sort it out.
-        *
-        * Otherwise, just let it ride on the affined RQ and the
-        * post-schedule router will push the preempted task away
-        *
-        * This test is optimistic, if we get it wrong the load-balancer
-        * will have to sort it out.
-        */
-       if (curr && unlikely(rt_task(curr)) &&
-           (curr->rt.nr_cpus_allowed < 2 ||
-            curr->prio <= p->prio) &&
-           (p->rt.nr_cpus_allowed > 1)) {
-               int target = find_lowest_rq(p);
-
-               if (target != -1)
-                       cpu = target;
-       }
-       rcu_read_unlock();
-
-out:
-       return cpu;
-}
-
-static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
-{
-       if (rq->curr->rt.nr_cpus_allowed == 1)
-               return;
-
-       if (p->rt.nr_cpus_allowed != 1
-           && cpupri_find(&rq->rd->cpupri, p, NULL))
-               return;
-
-       if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
-               return;
-
-       /*
-        * There appears to be other cpus that can accept
-        * current and none to run 'p', so lets reschedule
-        * to try and push current away:
-        */
-       requeue_task_rt(rq, p, 1);
-       resched_task(rq->curr);
-}
-
-#endif /* CONFIG_SMP */
-
-/*
- * Preempt the current task with a newly woken task if needed:
- */
-static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
-{
-       if (p->prio < rq->curr->prio) {
-               resched_task(rq->curr);
-               return;
-       }
-
-#ifdef CONFIG_SMP
-       /*
-        * If:
-        *
-        * - the newly woken task is of equal priority to the current task
-        * - the newly woken task is non-migratable while current is migratable
-        * - current will be preempted on the next reschedule
-        *
-        * we should check to see if current can readily move to a different
-        * cpu.  If so, we will reschedule to allow the push logic to try
-        * to move current somewhere else, making room for our non-migratable
-        * task.
-        */
-       if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
-               check_preempt_equal_prio(rq, p);
-#endif
-}
-
-static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
-                                                  struct rt_rq *rt_rq)
-{
-       struct rt_prio_array *array = &rt_rq->active;
-       struct sched_rt_entity *next = NULL;
-       struct list_head *queue;
-       int idx;
-
-       idx = sched_find_first_bit(array->bitmap);
-       BUG_ON(idx >= MAX_RT_PRIO);
-
-       queue = array->queue + idx;
-       next = list_entry(queue->next, struct sched_rt_entity, run_list);
-
-       return next;
-}
-
-static struct task_struct *_pick_next_task_rt(struct rq *rq)
-{
-       struct sched_rt_entity *rt_se;
-       struct task_struct *p;
-       struct rt_rq *rt_rq;
-
-       rt_rq = &rq->rt;
-
-       if (!rt_rq->rt_nr_running)
-               return NULL;
-
-       if (rt_rq_throttled(rt_rq))
-               return NULL;
-
-       do {
-               rt_se = pick_next_rt_entity(rq, rt_rq);
-               BUG_ON(!rt_se);
-               rt_rq = group_rt_rq(rt_se);
-       } while (rt_rq);
-
-       p = rt_task_of(rt_se);
-       p->se.exec_start = rq->clock_task;
-
-       return p;
-}
-
-static struct task_struct *pick_next_task_rt(struct rq *rq)
-{
-       struct task_struct *p = _pick_next_task_rt(rq);
-
-       /* The running task is never eligible for pushing */
-       if (p)
-               dequeue_pushable_task(rq, p);
-
-#ifdef CONFIG_SMP
-       /*
-        * We detect this state here so that we can avoid taking the RQ
-        * lock again later if there is no need to push
-        */
-       rq->post_schedule = has_pushable_tasks(rq);
-#endif
-
-       return p;
-}
-
-static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
-{
-       update_curr_rt(rq);
-
-       /*
-        * The previous task needs to be made eligible for pushing
-        * if it is still active
-        */
-       if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
-               enqueue_pushable_task(rq, p);
-}
-
-#ifdef CONFIG_SMP
-
-/* Only try algorithms three times */
-#define RT_MAX_TRIES 3
-
-static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
-{
-       if (!task_running(rq, p) &&
-           (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
-           (p->rt.nr_cpus_allowed > 1))
-               return 1;
-       return 0;
-}
-
-/* Return the second highest RT task, NULL otherwise */
-static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
-{
-       struct task_struct *next = NULL;
-       struct sched_rt_entity *rt_se;
-       struct rt_prio_array *array;
-       struct rt_rq *rt_rq;
-       int idx;
-
-       for_each_leaf_rt_rq(rt_rq, rq) {
-               array = &rt_rq->active;
-               idx = sched_find_first_bit(array->bitmap);
-next_idx:
-               if (idx >= MAX_RT_PRIO)
-                       continue;
-               if (next && next->prio < idx)
-                       continue;
-               list_for_each_entry(rt_se, array->queue + idx, run_list) {
-                       struct task_struct *p;
-
-                       if (!rt_entity_is_task(rt_se))
-                               continue;
-
-                       p = rt_task_of(rt_se);
-                       if (pick_rt_task(rq, p, cpu)) {
-                               next = p;
-                               break;
-                       }
-               }
-               if (!next) {
-                       idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
-                       goto next_idx;
-               }
-       }
-
-       return next;
-}
-
-static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
-
-static int find_lowest_rq(struct task_struct *task)
-{
-       struct sched_domain *sd;
-       struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
-       int this_cpu = smp_processor_id();
-       int cpu      = task_cpu(task);
-
-       /* Make sure the mask is initialized first */
-       if (unlikely(!lowest_mask))
-               return -1;
-
-       if (task->rt.nr_cpus_allowed == 1)
-               return -1; /* No other targets possible */
-
-       if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
-               return -1; /* No targets found */
-
-       /*
-        * At this point we have built a mask of cpus representing the
-        * lowest priority tasks in the system.  Now we want to elect
-        * the best one based on our affinity and topology.
-        *
-        * We prioritize the last cpu that the task executed on since
-        * it is most likely cache-hot in that location.
-        */
-       if (cpumask_test_cpu(cpu, lowest_mask))
-               return cpu;
-
-       /*
-        * Otherwise, we consult the sched_domains span maps to figure
-        * out which cpu is logically closest to our hot cache data.
-        */
-       if (!cpumask_test_cpu(this_cpu, lowest_mask))
-               this_cpu = -1; /* Skip this_cpu opt if not among lowest */
-
-       rcu_read_lock();
-       for_each_domain(cpu, sd) {
-               if (sd->flags & SD_WAKE_AFFINE) {
-                       int best_cpu;
-
-                       /*
-                        * "this_cpu" is cheaper to preempt than a
-                        * remote processor.
-                        */
-                       if (this_cpu != -1 &&
-                           cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
-                               rcu_read_unlock();
-                               return this_cpu;
-                       }
-
-                       best_cpu = cpumask_first_and(lowest_mask,
-                                                    sched_domain_span(sd));
-                       if (best_cpu < nr_cpu_ids) {
-                               rcu_read_unlock();
-                               return best_cpu;
-                       }
-               }
-       }
-       rcu_read_unlock();
-
-       /*
-        * And finally, if there were no matches within the domains
-        * just give the caller *something* to work with from the compatible
-        * locations.
-        */
-       if (this_cpu != -1)
-               return this_cpu;
-
-       cpu = cpumask_any(lowest_mask);
-       if (cpu < nr_cpu_ids)
-               return cpu;
-       return -1;
-}
-
-/* Will lock the rq it finds */
-static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
-{
-       struct rq *lowest_rq = NULL;
-       int tries;
-       int cpu;
-
-       for (tries = 0; tries < RT_MAX_TRIES; tries++) {
-               cpu = find_lowest_rq(task);
-
-               if ((cpu == -1) || (cpu == rq->cpu))
-                       break;
-
-               lowest_rq = cpu_rq(cpu);
-
-               /* if the prio of this runqueue changed, try again */
-               if (double_lock_balance(rq, lowest_rq)) {
-                       /*
-                        * We had to unlock the run queue. In
-                        * the mean time, task could have
-                        * migrated already or had its affinity changed.
-                        * Also make sure that it wasn't scheduled on its rq.
-                        */
-                       if (unlikely(task_rq(task) != rq ||
-                                    !cpumask_test_cpu(lowest_rq->cpu,
-                                                      tsk_cpus_allowed(task)) ||
-                                    task_running(rq, task) ||
-                                    !task->on_rq)) {
-
-                               raw_spin_unlock(&lowest_rq->lock);
-                               lowest_rq = NULL;
-                               break;
-                       }
-               }
-
-               /* If this rq is still suitable use it. */
-               if (lowest_rq->rt.highest_prio.curr > task->prio)
-                       break;
-
-               /* try again */
-               double_unlock_balance(rq, lowest_rq);
-               lowest_rq = NULL;
-       }
-
-       return lowest_rq;
-}
-
-static struct task_struct *pick_next_pushable_task(struct rq *rq)
-{
-       struct task_struct *p;
-
-       if (!has_pushable_tasks(rq))
-               return NULL;
-
-       p = plist_first_entry(&rq->rt.pushable_tasks,
-                             struct task_struct, pushable_tasks);
-
-       BUG_ON(rq->cpu != task_cpu(p));
-       BUG_ON(task_current(rq, p));
-       BUG_ON(p->rt.nr_cpus_allowed <= 1);
-
-       BUG_ON(!p->on_rq);
-       BUG_ON(!rt_task(p));
-
-       return p;
-}
-
-/*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
-static int push_rt_task(struct rq *rq)
-{
-       struct task_struct *next_task;
-       struct rq *lowest_rq;
-       int ret = 0;
-
-       if (!rq->rt.overloaded)
-               return 0;
-
-       next_task = pick_next_pushable_task(rq);
-       if (!next_task)
-               return 0;
-
-retry:
-       if (unlikely(next_task == rq->curr)) {
-               WARN_ON(1);
-               return 0;
-       }
-
-       /*
-        * It's possible that the next_task slipped in of
-        * higher priority than current. If that's the case
-        * just reschedule current.
-        */
-       if (unlikely(next_task->prio < rq->curr->prio)) {
-               resched_task(rq->curr);
-               return 0;
-       }
-
-       /* We might release rq lock */
-       get_task_struct(next_task);
-
-       /* find_lock_lowest_rq locks the rq if found */
-       lowest_rq = find_lock_lowest_rq(next_task, rq);
-       if (!lowest_rq) {
-               struct task_struct *task;
-               /*
-                * find_lock_lowest_rq releases rq->lock
-                * so it is possible that next_task has migrated.
-                *
-                * We need to make sure that the task is still on the same
-                * run-queue and is also still the next task eligible for
-                * pushing.
-                */
-               task = pick_next_pushable_task(rq);
-               if (task_cpu(next_task) == rq->cpu && task == next_task) {
-                       /*
-                        * The task hasn't migrated, and is still the next
-                        * eligible task, but we failed to find a run-queue
-                        * to push it to.  Do not retry in this case, since
-                        * other cpus will pull from us when ready.
-                        */
-                       goto out;
-               }
-
-               if (!task)
-                       /* No more tasks, just exit */
-                       goto out;
-
-               /*
-                * Something has shifted, try again.
-                */
-               put_task_struct(next_task);
-               next_task = task;
-               goto retry;
-       }
-
-       deactivate_task(rq, next_task, 0);
-       set_task_cpu(next_task, lowest_rq->cpu);
-       activate_task(lowest_rq, next_task, 0);
-       ret = 1;
-
-       resched_task(lowest_rq->curr);
-
-       double_unlock_balance(rq, lowest_rq);
-
-out:
-       put_task_struct(next_task);
-
-       return ret;
-}
-
-static void push_rt_tasks(struct rq *rq)
-{
-       /* push_rt_task will return true if it moved an RT */
-       while (push_rt_task(rq))
-               ;
-}
-
-static int pull_rt_task(struct rq *this_rq)
-{
-       int this_cpu = this_rq->cpu, ret = 0, cpu;
-       struct task_struct *p;
-       struct rq *src_rq;
-
-       if (likely(!rt_overloaded(this_rq)))
-               return 0;
-
-       for_each_cpu(cpu, this_rq->rd->rto_mask) {
-               if (this_cpu == cpu)
-                       continue;
-
-               src_rq = cpu_rq(cpu);
-
-               /*
-                * Don't bother taking the src_rq->lock if the next highest
-                * task is known to be lower-priority than our current task.
-                * This may look racy, but if this value is about to go
-                * logically higher, the src_rq will push this task away.
-                * And if its going logically lower, we do not care
-                */
-               if (src_rq->rt.highest_prio.next >=
-                   this_rq->rt.highest_prio.curr)
-                       continue;
-
-               /*
-                * We can potentially drop this_rq's lock in
-                * double_lock_balance, and another CPU could
-                * alter this_rq
-                */
-               double_lock_balance(this_rq, src_rq);
-
-               /*
-                * Are there still pullable RT tasks?
-                */
-               if (src_rq->rt.rt_nr_running <= 1)
-                       goto skip;
-
-               p = pick_next_highest_task_rt(src_rq, this_cpu);
-
-               /*
-                * Do we have an RT task that preempts
-                * the to-be-scheduled task?
-                */
-               if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
-                       WARN_ON(p == src_rq->curr);
-                       WARN_ON(!p->on_rq);
-
-                       /*
-                        * There's a chance that p is higher in priority
-                        * than what's currently running on its cpu.
-                        * This is just that p is wakeing up and hasn't
-                        * had a chance to schedule. We only pull
-                        * p if it is lower in priority than the
-                        * current task on the run queue
-                        */
-                       if (p->prio < src_rq->curr->prio)
-                               goto skip;
-
-                       ret = 1;
-
-                       deactivate_task(src_rq, p, 0);
-                       set_task_cpu(p, this_cpu);
-                       activate_task(this_rq, p, 0);
-                       /*
-                        * We continue with the search, just in
-                        * case there's an even higher prio task
-                        * in another runqueue. (low likelihood
-                        * but possible)
-                        */
-               }
-skip:
-               double_unlock_balance(this_rq, src_rq);
-       }
-
-       return ret;
-}
-
-static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
-{
-       /* Try to pull RT tasks here if we lower this rq's prio */
-       if (rq->rt.highest_prio.curr > prev->prio)
-               pull_rt_task(rq);
-}
-
-static void post_schedule_rt(struct rq *rq)
-{
-       push_rt_tasks(rq);
-}
-
-/*
- * If we are not running and we are not going to reschedule soon, we should
- * try to push tasks away now
- */
-static void task_woken_rt(struct rq *rq, struct task_struct *p)
-{
-       if (!task_running(rq, p) &&
-           !test_tsk_need_resched(rq->curr) &&
-           has_pushable_tasks(rq) &&
-           p->rt.nr_cpus_allowed > 1 &&
-           rt_task(rq->curr) &&
-           (rq->curr->rt.nr_cpus_allowed < 2 ||
-            rq->curr->prio <= p->prio))
-               push_rt_tasks(rq);
-}
-
-static void set_cpus_allowed_rt(struct task_struct *p,
-                               const struct cpumask *new_mask)
-{
-       int weight = cpumask_weight(new_mask);
-
-       BUG_ON(!rt_task(p));
-
-       /*
-        * Update the migration status of the RQ if we have an RT task
-        * which is running AND changing its weight value.
-        */
-       if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
-               struct rq *rq = task_rq(p);
-
-               if (!task_current(rq, p)) {
-                       /*
-                        * Make sure we dequeue this task from the pushable list
-                        * before going further.  It will either remain off of
-                        * the list because we are no longer pushable, or it
-                        * will be requeued.
-                        */
-                       if (p->rt.nr_cpus_allowed > 1)
-                               dequeue_pushable_task(rq, p);
-
-                       /*
-                        * Requeue if our weight is changing and still > 1
-                        */
-                       if (weight > 1)
-                               enqueue_pushable_task(rq, p);
-
-               }
-
-               if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
-                       rq->rt.rt_nr_migratory++;
-               } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
-                       BUG_ON(!rq->rt.rt_nr_migratory);
-                       rq->rt.rt_nr_migratory--;
-               }
-
-               update_rt_migration(&rq->rt);
-       }
-}
-
-/* Assumes rq->lock is held */
-static void rq_online_rt(struct rq *rq)
-{
-       if (rq->rt.overloaded)
-               rt_set_overload(rq);
-
-       __enable_runtime(rq);
-
-       cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
-}
-
-/* Assumes rq->lock is held */
-static void rq_offline_rt(struct rq *rq)
-{
-       if (rq->rt.overloaded)
-               rt_clear_overload(rq);
-
-       __disable_runtime(rq);
-
-       cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
-}
-
-/*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
-static void switched_from_rt(struct rq *rq, struct task_struct *p)
-{
-       /*
-        * If there are other RT tasks then we will reschedule
-        * and the scheduling of the other RT tasks will handle
-        * the balancing. But if we are the last RT task
-        * we may need to handle the pulling of RT tasks
-        * now.
-        */
-       if (p->on_rq && !rq->rt.rt_nr_running)
-               pull_rt_task(rq);
-}
-
-void init_sched_rt_class(void)
-{
-       unsigned int i;
-
-       for_each_possible_cpu(i) {
-               zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
-                                       GFP_KERNEL, cpu_to_node(i));
-       }
-}
-#endif /* CONFIG_SMP */
-
-/*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
-static void switched_to_rt(struct rq *rq, struct task_struct *p)
-{
-       int check_resched = 1;
-
-       /*
-        * If we are already running, then there's nothing
-        * that needs to be done. But if we are not running
-        * we may need to preempt the current running task.
-        * If that current running task is also an RT task
-        * then see if we can move to another run queue.
-        */
-       if (p->on_rq && rq->curr != p) {
-#ifdef CONFIG_SMP
-               if (rq->rt.overloaded && push_rt_task(rq) &&
-                   /* Don't resched if we changed runqueues */
-                   rq != task_rq(p))
-                       check_resched = 0;
-#endif /* CONFIG_SMP */
-               if (check_resched && p->prio < rq->curr->prio)
-                       resched_task(rq->curr);
-       }
-}
-
-/*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
-static void
-prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
-{
-       if (!p->on_rq)
-               return;
-
-       if (rq->curr == p) {
-#ifdef CONFIG_SMP
-               /*
-                * If our priority decreases while running, we
-                * may need to pull tasks to this runqueue.
-                */
-               if (oldprio < p->prio)
-                       pull_rt_task(rq);
-               /*
-                * If there's a higher priority task waiting to run
-                * then reschedule. Note, the above pull_rt_task
-                * can release the rq lock and p could migrate.
-                * Only reschedule if p is still on the same runqueue.
-                */
-               if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
-                       resched_task(p);
-#else
-               /* For UP simply resched on drop of prio */
-               if (oldprio < p->prio)
-                       resched_task(p);
-#endif /* CONFIG_SMP */
-       } else {
-               /*
-                * This task is not running, but if it is
-                * greater than the current running task
-                * then reschedule.
-                */
-               if (p->prio < rq->curr->prio)
-                       resched_task(rq->curr);
-       }
-}
-
-static void watchdog(struct rq *rq, struct task_struct *p)
-{
-       unsigned long soft, hard;
-
-       /* max may change after cur was read, this will be fixed next tick */
-       soft = task_rlimit(p, RLIMIT_RTTIME);
-       hard = task_rlimit_max(p, RLIMIT_RTTIME);
-
-       if (soft != RLIM_INFINITY) {
-               unsigned long next;
-
-               p->rt.timeout++;
-               next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
-               if (p->rt.timeout > next)
-                       p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
-       }
-}
-
-static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
-{
-       update_curr_rt(rq);
-
-       watchdog(rq, p);
-
-       /*
-        * RR tasks need a special form of timeslice management.
-        * FIFO tasks have no timeslices.
-        */
-       if (p->policy != SCHED_RR)
-               return;
-
-       if (--p->rt.time_slice)
-               return;
-
-       p->rt.time_slice = DEF_TIMESLICE;
-
-       /*
-        * Requeue to the end of queue if we are not the only element
-        * on the queue:
-        */
-       if (p->rt.run_list.prev != p->rt.run_list.next) {
-               requeue_task_rt(rq, p, 0);
-               set_tsk_need_resched(p);
-       }
-}
-
-static void set_curr_task_rt(struct rq *rq)
-{
-       struct task_struct *p = rq->curr;
-
-       p->se.exec_start = rq->clock_task;
-
-       /* The running task is never eligible for pushing */
-       dequeue_pushable_task(rq, p);
-}
-
-static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
-{
-       /*
-        * Time slice is 0 for SCHED_FIFO tasks
-        */
-       if (task->policy == SCHED_RR)
-               return DEF_TIMESLICE;
-       else
-               return 0;
-}
-
-const struct sched_class rt_sched_class = {
-       .next                   = &fair_sched_class,
-       .enqueue_task           = enqueue_task_rt,
-       .dequeue_task           = dequeue_task_rt,
-       .yield_task             = yield_task_rt,
-
-       .check_preempt_curr     = check_preempt_curr_rt,
-
-       .pick_next_task         = pick_next_task_rt,
-       .put_prev_task          = put_prev_task_rt,
-
-#ifdef CONFIG_SMP
-       .select_task_rq         = select_task_rq_rt,
-
-       .set_cpus_allowed       = set_cpus_allowed_rt,
-       .rq_online              = rq_online_rt,
-       .rq_offline             = rq_offline_rt,
-       .pre_schedule           = pre_schedule_rt,
-       .post_schedule          = post_schedule_rt,
-       .task_woken             = task_woken_rt,
-       .switched_from          = switched_from_rt,
-#endif
-
-       .set_curr_task          = set_curr_task_rt,
-       .task_tick              = task_tick_rt,
-
-       .get_rr_interval        = get_rr_interval_rt,
-
-       .prio_changed           = prio_changed_rt,
-       .switched_to            = switched_to_rt,
-};
-
-#ifdef CONFIG_SCHED_DEBUG
-extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
-
-void print_rt_stats(struct seq_file *m, int cpu)
-{
-       rt_rq_iter_t iter;
-       struct rt_rq *rt_rq;
-
-       rcu_read_lock();
-       for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
-               print_rt_rq(m, cpu, rt_rq);
-       rcu_read_unlock();
-}
-#endif /* CONFIG_SCHED_DEBUG */
diff --git a/kernel/sched_stats.c b/kernel/sched_stats.c
deleted file mode 100644 (file)
index 2a581ba..0000000
+++ /dev/null
@@ -1,111 +0,0 @@
-
-#include <linux/slab.h>
-#include <linux/fs.h>
-#include <linux/seq_file.h>
-#include <linux/proc_fs.h>
-
-#include "sched.h"
-
-/*
- * bump this up when changing the output format or the meaning of an existing
- * format, so that tools can adapt (or abort)
- */
-#define SCHEDSTAT_VERSION 15
-
-static int show_schedstat(struct seq_file *seq, void *v)
-{
-       int cpu;
-       int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9;
-       char *mask_str = kmalloc(mask_len, GFP_KERNEL);
-
-       if (mask_str == NULL)
-               return -ENOMEM;
-
-       seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
-       seq_printf(seq, "timestamp %lu\n", jiffies);
-       for_each_online_cpu(cpu) {
-               struct rq *rq = cpu_rq(cpu);
-#ifdef CONFIG_SMP
-               struct sched_domain *sd;
-               int dcount = 0;
-#endif
-
-               /* runqueue-specific stats */
-               seq_printf(seq,
-                   "cpu%d %u %u %u %u %u %u %llu %llu %lu",
-                   cpu, rq->yld_count,
-                   rq->sched_switch, rq->sched_count, rq->sched_goidle,
-                   rq->ttwu_count, rq->ttwu_local,
-                   rq->rq_cpu_time,
-                   rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
-
-               seq_printf(seq, "\n");
-
-#ifdef CONFIG_SMP
-               /* domain-specific stats */
-               rcu_read_lock();
-               for_each_domain(cpu, sd) {
-                       enum cpu_idle_type itype;
-
-                       cpumask_scnprintf(mask_str, mask_len,
-                                         sched_domain_span(sd));
-                       seq_printf(seq, "domain%d %s", dcount++, mask_str);
-                       for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
-                                       itype++) {
-                               seq_printf(seq, " %u %u %u %u %u %u %u %u",
-                                   sd->lb_count[itype],
-                                   sd->lb_balanced[itype],
-                                   sd->lb_failed[itype],
-                                   sd->lb_imbalance[itype],
-                                   sd->lb_gained[itype],
-                                   sd->lb_hot_gained[itype],
-                                   sd->lb_nobusyq[itype],
-                                   sd->lb_nobusyg[itype]);
-                       }
-                       seq_printf(seq,
-                                  " %u %u %u %u %u %u %u %u %u %u %u %u\n",
-                           sd->alb_count, sd->alb_failed, sd->alb_pushed,
-                           sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
-                           sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
-                           sd->ttwu_wake_remote, sd->ttwu_move_affine,
-                           sd->ttwu_move_balance);
-               }
-               rcu_read_unlock();
-#endif
-       }
-       kfree(mask_str);
-       return 0;
-}
-
-static int schedstat_open(struct inode *inode, struct file *file)
-{
-       unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
-       char *buf = kmalloc(size, GFP_KERNEL);
-       struct seq_file *m;
-       int res;
-
-       if (!buf)
-               return -ENOMEM;
-       res = single_open(file, show_schedstat, NULL);
-       if (!res) {
-               m = file->private_data;
-               m->buf = buf;
-               m->size = size;
-       } else
-               kfree(buf);
-       return res;
-}
-
-static const struct file_operations proc_schedstat_operations = {
-       .open    = schedstat_open,
-       .read    = seq_read,
-       .llseek  = seq_lseek,
-       .release = single_release,
-};
-
-static int __init proc_schedstat_init(void)
-{
-       proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
-       return 0;
-}
-module_init(proc_schedstat_init);
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h
deleted file mode 100644 (file)
index ea2b6f0..0000000
+++ /dev/null
@@ -1,233 +0,0 @@
-
-#ifdef CONFIG_SCHEDSTATS
-
-/*
- * Expects runqueue lock to be held for atomicity of update
- */
-static inline void
-rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
-{
-       if (rq) {
-               rq->rq_sched_info.run_delay += delta;
-               rq->rq_sched_info.pcount++;
-       }
-}
-
-/*
- * Expects runqueue lock to be held for atomicity of update
- */
-static inline void
-rq_sched_info_depart(struct rq *rq, unsigned long long delta)
-{
-       if (rq)
-               rq->rq_cpu_time += delta;
-}
-
-static inline void
-rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
-{
-       if (rq)
-               rq->rq_sched_info.run_delay += delta;
-}
-# define schedstat_inc(rq, field)      do { (rq)->field++; } while (0)
-# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
-# define schedstat_set(var, val)       do { var = (val); } while (0)
-#else /* !CONFIG_SCHEDSTATS */
-static inline void
-rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
-{}
-static inline void
-rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
-{}
-static inline void
-rq_sched_info_depart(struct rq *rq, unsigned long long delta)
-{}
-# define schedstat_inc(rq, field)      do { } while (0)
-# define schedstat_add(rq, field, amt) do { } while (0)
-# define schedstat_set(var, val)       do { } while (0)
-#endif
-
-#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-static inline void sched_info_reset_dequeued(struct task_struct *t)
-{
-       t->sched_info.last_queued = 0;
-}
-
-/*
- * We are interested in knowing how long it was from the *first* time a
- * task was queued to the time that it finally hit a cpu, we call this routine
- * from dequeue_task() to account for possible rq->clock skew across cpus. The
- * delta taken on each cpu would annul the skew.
- */
-static inline void sched_info_dequeued(struct task_struct *t)
-{
-       unsigned long long now = task_rq(t)->clock, delta = 0;
-
-       if (unlikely(sched_info_on()))
-               if (t->sched_info.last_queued)
-                       delta = now - t->sched_info.last_queued;
-       sched_info_reset_dequeued(t);
-       t->sched_info.run_delay += delta;
-
-       rq_sched_info_dequeued(task_rq(t), delta);
-}
-
-/*
- * Called when a task finally hits the cpu.  We can now calculate how
- * long it was waiting to run.  We also note when it began so that we
- * can keep stats on how long its timeslice is.
- */
-static void sched_info_arrive(struct task_struct *t)
-{
-       unsigned long long now = task_rq(t)->clock, delta = 0;
-
-       if (t->sched_info.last_queued)
-               delta = now - t->sched_info.last_queued;
-       sched_info_reset_dequeued(t);
-       t->sched_info.run_delay += delta;
-       t->sched_info.last_arrival = now;
-       t->sched_info.pcount++;
-
-       rq_sched_info_arrive(task_rq(t), delta);
-}
-
-/*
- * This function is only called from enqueue_task(), but also only updates
- * the timestamp if it is already not set.  It's assumed that
- * sched_info_dequeued() will clear that stamp when appropriate.
- */
-static inline void sched_info_queued(struct task_struct *t)
-{
-       if (unlikely(sched_info_on()))
-               if (!t->sched_info.last_queued)
-                       t->sched_info.last_queued = task_rq(t)->clock;
-}
-
-/*
- * Called when a process ceases being the active-running process, either
- * voluntarily or involuntarily.  Now we can calculate how long we ran.
- * Also, if the process is still in the TASK_RUNNING state, call
- * sched_info_queued() to mark that it has now again started waiting on
- * the runqueue.
- */
-static inline void sched_info_depart(struct task_struct *t)
-{
-       unsigned long long delta = task_rq(t)->clock -
-                                       t->sched_info.last_arrival;
-
-       rq_sched_info_depart(task_rq(t), delta);
-
-       if (t->state == TASK_RUNNING)
-               sched_info_queued(t);
-}
-
-/*
- * Called when tasks are switched involuntarily due, typically, to expiring
- * their time slice.  (This may also be called when switching to or from
- * the idle task.)  We are only called when prev != next.
- */
-static inline void
-__sched_info_switch(struct task_struct *prev, struct task_struct *next)
-{
-       struct rq *rq = task_rq(prev);
-
-       /*
-        * prev now departs the cpu.  It's not interesting to record
-        * stats about how efficient we were at scheduling the idle
-        * process, however.
-        */
-       if (prev != rq->idle)
-               sched_info_depart(prev);
-
-       if (next != rq->idle)
-               sched_info_arrive(next);
-}
-static inline void
-sched_info_switch(struct task_struct *prev, struct task_struct *next)
-{
-       if (unlikely(sched_info_on()))
-               __sched_info_switch(prev, next);
-}
-#else
-#define sched_info_queued(t)                   do { } while (0)
-#define sched_info_reset_dequeued(t)   do { } while (0)
-#define sched_info_dequeued(t)                 do { } while (0)
-#define sched_info_switch(t, next)             do { } while (0)
-#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
-
-/*
- * The following are functions that support scheduler-internal time accounting.
- * These functions are generally called at the timer tick.  None of this depends
- * on CONFIG_SCHEDSTATS.
- */
-
-/**
- * account_group_user_time - Maintain utime for a thread group.
- *
- * @tsk:       Pointer to task structure.
- * @cputime:   Time value by which to increment the utime field of the
- *             thread_group_cputime structure.
- *
- * If thread group time is being maintained, get the structure for the
- * running CPU and update the utime field there.
- */
-static inline void account_group_user_time(struct task_struct *tsk,
-                                          cputime_t cputime)
-{
-       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
-
-       if (!cputimer->running)
-               return;
-
-       raw_spin_lock(&cputimer->lock);
-       cputimer->cputime.utime =
-               cputime_add(cputimer->cputime.utime, cputime);
-       raw_spin_unlock(&cputimer->lock);
-}
-
-/**
- * account_group_system_time - Maintain stime for a thread group.
- *
- * @tsk:       Pointer to task structure.
- * @cputime:   Time value by which to increment the stime field of the
- *             thread_group_cputime structure.
- *
- * If thread group time is being maintained, get the structure for the
- * running CPU and update the stime field there.
- */
-static inline void account_group_system_time(struct task_struct *tsk,
-                                            cputime_t cputime)
-{
-       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
-
-       if (!cputimer->running)
-               return;
-
-       raw_spin_lock(&cputimer->lock);
-       cputimer->cputime.stime =
-               cputime_add(cputimer->cputime.stime, cputime);
-       raw_spin_unlock(&cputimer->lock);
-}
-
-/**
- * account_group_exec_runtime - Maintain exec runtime for a thread group.
- *
- * @tsk:       Pointer to task structure.
- * @ns:                Time value by which to increment the sum_exec_runtime field
- *             of the thread_group_cputime structure.
- *
- * If thread group time is being maintained, get the structure for the
- * running CPU and update the sum_exec_runtime field there.
- */
-static inline void account_group_exec_runtime(struct task_struct *tsk,
-                                             unsigned long long ns)
-{
-       struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
-
-       if (!cputimer->running)
-               return;
-
-       raw_spin_lock(&cputimer->lock);
-       cputimer->cputime.sum_exec_runtime += ns;
-       raw_spin_unlock(&cputimer->lock);
-}
diff --git a/kernel/sched_stoptask.c b/kernel/sched_stoptask.c
deleted file mode 100644 (file)
index 7b386e8..0000000
+++ /dev/null
@@ -1,108 +0,0 @@
-#include "sched.h"
-
-/*
- * stop-task scheduling class.
- *
- * The stop task is the highest priority task in the system, it preempts
- * everything and will be preempted by nothing.
- *
- * See kernel/stop_machine.c
- */
-
-#ifdef CONFIG_SMP
-static int
-select_task_rq_stop(struct task_struct *p, int sd_flag, int flags)
-{
-       return task_cpu(p); /* stop tasks as never migrate */
-}
-#endif /* CONFIG_SMP */
-
-static void
-check_preempt_curr_stop(struct rq *rq, struct task_struct *p, int flags)
-{
-       /* we're never preempted */
-}
-
-static struct task_struct *pick_next_task_stop(struct rq *rq)
-{
-       struct task_struct *stop = rq->stop;
-
-       if (stop && stop->on_rq)
-               return stop;
-
-       return NULL;
-}
-
-static void
-enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
-{
-       inc_nr_running(rq);
-}
-
-static void
-dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
-{
-       dec_nr_running(rq);
-}
-
-static void yield_task_stop(struct rq *rq)
-{
-       BUG(); /* the stop task should never yield, its pointless. */
-}
-
-static void put_prev_task_stop(struct rq *rq, struct task_struct *prev)
-{
-}
-
-static void task_tick_stop(struct rq *rq, struct task_struct *curr, int queued)
-{
-}
-
-static void set_curr_task_stop(struct rq *rq)
-{
-}
-
-static void switched_to_stop(struct rq *rq, struct task_struct *p)
-{
-       BUG(); /* its impossible to change to this class */
-}
-
-static void
-prio_changed_stop(struct rq *rq, struct task_struct *p, int oldprio)
-{
-       BUG(); /* how!?, what priority? */
-}
-
-static unsigned int
-get_rr_interval_stop(struct rq *rq, struct task_struct *task)
-{
-       return 0;
-}
-
-/*
- * Simple, special scheduling class for the per-CPU stop tasks:
- */
-const struct sched_class stop_sched_class = {
-       .next                   = &rt_sched_class,
-
-       .enqueue_task           = enqueue_task_stop,
-       .dequeue_task           = dequeue_task_stop,
-       .yield_task             = yield_task_stop,
-
-       .check_preempt_curr     = check_preempt_curr_stop,
-
-       .pick_next_task         = pick_next_task_stop,
-       .put_prev_task          = put_prev_task_stop,
-
-#ifdef CONFIG_SMP
-       .select_task_rq         = select_task_rq_stop,
-#endif
-
-       .set_curr_task          = set_curr_task_stop,
-       .task_tick              = task_tick_stop,
-
-       .get_rr_interval        = get_rr_interval_stop,
-
-       .prio_changed           = prio_changed_stop,
-       .switched_to            = switched_to_stop,
-};