static struct msr __percpu *msrs;
+/*
+ * count successfully initialized driver instances for setup_pci_device()
+ */
+static atomic_t drv_instances = ATOMIC_INIT(0);
+
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
-static struct amd64_pvt **pvts;
static struct ecc_settings **ecc_stngs;
/*
* Use pvt->F2 which contains the F2 CPU PCI device to get the related
* F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
*/
-static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
- u16 f3_id)
+static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
{
/* Reserve the ADDRESS MAP Device */
pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
return 0;
}
-static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
+static void free_mc_sibling_devs(struct amd64_pvt *pvt)
{
pci_dev_put(pvt->F1);
pci_dev_put(pvt->F3);
* Retrieve the hardware registers of the memory controller (this includes the
* 'Address Map' and 'Misc' device regs)
*/
-static void amd64_read_mc_registers(struct amd64_pvt *pvt)
+static void read_mc_regs(struct amd64_pvt *pvt)
{
u64 msr_val;
u32 tmp;
* Initialize the array of csrow attribute instances, based on the values
* from pci config hardware registers.
*/
-static int amd64_init_csrows(struct mem_ctl_info *mci)
+static int init_csrows(struct mem_ctl_info *mci)
{
struct csrow_info *csrow;
struct amd64_pvt *pvt = mci->pvt_info;
return ret;
}
-static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
+static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
+ struct pci_dev *F3)
{
- u8 nid = pvt->mc_node_id;
- struct ecc_settings *s = ecc_stngs[nid];
u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
if (!s->nbctl_valid)
return;
- amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
+ amd64_read_pci_cfg(F3, K8_NBCTL, &value);
value &= ~mask;
value |= s->old_nbctl;
- pci_write_config_dword(pvt->F3, K8_NBCTL, value);
+ pci_write_config_dword(F3, K8_NBCTL, value);
/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
if (!s->flags.nb_ecc_prev) {
- amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
+ amd64_read_pci_cfg(F3, K8_NBCFG, &value);
value &= ~K8_NBCFG_ECC_ENABLE;
- pci_write_config_dword(pvt->F3, K8_NBCFG, value);
+ pci_write_config_dword(F3, K8_NBCFG, value);
}
/* restore the NB Enable MCGCTL bit */
struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
-static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
+static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
unsigned int i = 0, j = 0;
mci->mc_driver_sysfs_attributes = sysfs_attrs;
}
-static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
+static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
{
struct amd64_pvt *pvt = NULL;
struct amd64_family_type *fam_type = NULL;
+ struct mem_ctl_info *mci = NULL;
int err = 0, ret;
+ u8 nid = get_node_id(F2);
ret = -ENOMEM;
pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
if (!pvt)
- goto err_exit;
+ goto err_ret;
- pvt->mc_node_id = get_node_id(F2);
+ pvt->mc_node_id = nid;
pvt->F2 = F2;
ret = -EINVAL;
goto err_free;
ret = -ENODEV;
- err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
- fam_type->f3_id);
+ err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
if (err)
goto err_free;
- /*
- * Save the pointer to the private data for use in 2nd initialization
- * stage
- */
- pvts[pvt->mc_node_id] = pvt;
-
- return 0;
-
-err_free:
- kfree(pvt);
-
-err_exit:
- return ret;
-}
-
-/*
- * This is the finishing stage of the init code. Needs to be performed after all
- * MCs' hardware have been prepped for accessing extended config space.
- */
-static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
-{
- int node_id = pvt->mc_node_id;
- struct mem_ctl_info *mci;
- int ret = -ENODEV;
-
- amd64_read_mc_registers(pvt);
+ read_mc_regs(pvt);
/*
* We need to determine how many memory channels there are. Then use
* that information for calculating the size of the dynamic instance
- * tables in the 'mci' structure
+ * tables in the 'mci' structure.
*/
+ ret = -EINVAL;
pvt->channel_count = pvt->ops->early_channel_count(pvt);
if (pvt->channel_count < 0)
- goto err_exit;
+ goto err_siblings;
ret = -ENOMEM;
- mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
+ mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
if (!mci)
- goto err_exit;
+ goto err_siblings;
mci->pvt_info = pvt;
-
mci->dev = &pvt->F2->dev;
- amd64_setup_mci_misc_attributes(mci);
- if (amd64_init_csrows(mci))
+ setup_mci_misc_attrs(mci);
+
+ if (init_csrows(mci))
mci->edac_cap = EDAC_FLAG_NONE;
- amd64_set_mc_sysfs_attributes(mci);
+ set_mc_sysfs_attrs(mci);
ret = -ENODEV;
if (edac_mc_add_mc(mci)) {
goto err_add_mc;
}
- mcis[node_id] = mci;
- pvts[node_id] = NULL;
-
/* register stuff with EDAC MCE */
if (report_gart_errors)
amd_report_gart_errors(true);
amd_register_ecc_decoder(amd64_decode_bus_error);
+ mcis[nid] = mci;
+
+ atomic_inc(&drv_instances);
+
return 0;
err_add_mc:
edac_mc_free(mci);
-err_exit:
- debugf0("failure to init 2nd stage: ret=%d\n", ret);
+err_siblings:
+ free_mc_sibling_devs(pvt);
- amd64_restore_ecc_error_reporting(pvt);
-
- amd64_free_mc_sibling_devices(pvt);
-
- kfree(pvts[pvt->mc_node_id]);
- pvts[node_id] = NULL;
+err_free:
+ kfree(pvt);
+err_ret:
return ret;
}
-
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
const struct pci_device_id *mc_type)
{
}
ret = amd64_init_one_instance(pdev);
- if (ret < 0)
+ if (ret < 0) {
amd64_err("Error probing instance: %d\n", nid);
+ restore_ecc_error_reporting(s, nid, F3);
+ }
return ret;
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
+ u8 nid = get_node_id(pdev);
+ struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+ struct ecc_settings *s = ecc_stngs[nid];
/* Remove from EDAC CORE tracking list */
mci = edac_mc_del_mc(&pdev->dev);
pvt = mci->pvt_info;
- amd64_restore_ecc_error_reporting(pvt);
+ restore_ecc_error_reporting(s, nid, F3);
- amd64_free_mc_sibling_devices(pvt);
+ free_mc_sibling_devs(pvt);
/* unregister from EDAC MCE */
amd_report_gart_errors(false);
amd_unregister_ecc_decoder(amd64_decode_bus_error);
- kfree(ecc_stngs[pvt->mc_node_id]);
- ecc_stngs[pvt->mc_node_id] = NULL;
+ kfree(ecc_stngs[nid]);
+ ecc_stngs[nid] = NULL;
/* Free the EDAC CORE resources */
mci->pvt_info = NULL;
- mcis[pvt->mc_node_id] = NULL;
+ mcis[nid] = NULL;
kfree(pvt);
edac_mc_free(mci);
.id_table = amd64_pci_table,
};
-static void amd64_setup_pci_device(void)
+static void setup_pci_device(void)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
static int __init amd64_edac_init(void)
{
- int nb, err = -ENODEV;
- bool load_ok = false;
+ int err = -ENODEV;
edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
goto err_ret;
err = -ENOMEM;
- pvts = kzalloc(amd_nb_num() * sizeof(pvts[0]), GFP_KERNEL);
mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
- if (!(pvts && mcis && ecc_stngs))
+ if (!(mcis && ecc_stngs))
goto err_ret;
msrs = msrs_alloc();
if (!msrs)
- goto err_ret;
+ goto err_free;
err = pci_register_driver(&amd64_pci_driver);
if (err)
goto err_pci;
- /*
- * At this point, the array 'pvts[]' contains pointers to alloc'd
- * amd64_pvt structs. These will be used in the 2nd stage init function
- * to finish initialization of the MC instances.
- */
err = -ENODEV;
- for (nb = 0; nb < amd_nb_num(); nb++) {
- if (!pvts[nb])
- continue;
-
- err = amd64_init_2nd_stage(pvts[nb]);
- if (err)
- goto err_2nd_stage;
-
- load_ok = true;
- }
+ if (!atomic_read(&drv_instances))
+ goto err_no_instances;
- if (load_ok) {
- amd64_setup_pci_device();
- return 0;
- }
+ setup_pci_device();
+ return 0;
-err_2nd_stage:
+err_no_instances:
pci_unregister_driver(&amd64_pci_driver);
err_pci:
msrs_free(msrs);
msrs = NULL;
+err_free:
+ kfree(mcis);
+ mcis = NULL;
+
+ kfree(ecc_stngs);
+ ecc_stngs = NULL;
+
err_ret:
return err;
}
kfree(mcis);
mcis = NULL;
- kfree(pvts);
- pvts = NULL;
-
msrs_free(msrs);
msrs = NULL;
}