#define F4(x, y, z) (y ^ (z & (x ^ y))) /* z ? x : y */
#define ROUND(a, b, c, d, f, k, x, s) { \
- (a) += f((b), (c), (d)) + (x) + (k); \
+ (a) += f((b), (c), (d)) + le32_to_cpu(x) + (k); \
(a) = rol32((a), (s)); \
}
return;
}
-static inline void le32_to_cpu_array(u32 *buf, unsigned int words)
-{
- while (words--) {
- le32_to_cpus(buf);
- buf++;
- }
-}
-
-static inline void cpu_to_le32_array(u32 *buf, unsigned int words)
-{
- while (words--) {
- cpu_to_le32s(buf);
- buf++;
- }
-}
-
-static inline void rmd256_transform_helper(struct rmd256_ctx *ctx)
-{
- le32_to_cpu_array(ctx->buffer, sizeof(ctx->buffer) / sizeof(u32));
- rmd256_transform(ctx->state, ctx->buffer);
-}
-
static void rmd256_init(struct crypto_tfm *tfm)
{
struct rmd256_ctx *rctx = crypto_tfm_ctx(tfm);
memcpy((char *)rctx->buffer + (sizeof(rctx->buffer) - avail),
data, avail);
- rmd256_transform_helper(rctx);
+ rmd256_transform(rctx->state, rctx->buffer);
data += avail;
len -= avail;
while (len >= sizeof(rctx->buffer)) {
memcpy(rctx->buffer, data, sizeof(rctx->buffer));
- rmd256_transform_helper(rctx);
+ rmd256_transform(rctx->state, rctx->buffer);
data += sizeof(rctx->buffer);
len -= sizeof(rctx->buffer);
}
static void rmd256_final(struct crypto_tfm *tfm, u8 *out)
{
struct rmd256_ctx *rctx = crypto_tfm_ctx(tfm);
- u32 index, padlen;
+ u32 i, index, padlen;
u64 bits;
+ u32 *dst = (u32 *)out;
static const u8 padding[64] = { 0x80, };
- bits = rctx->byte_count << 3;
+
+ bits = cpu_to_le64(rctx->byte_count << 3);
/* Pad out to 56 mod 64 */
index = rctx->byte_count & 0x3f;
rmd256_update(tfm, (const u8 *)&bits, sizeof(bits));
/* Store state in digest */
- memcpy(out, rctx->state, sizeof(rctx->state));
+ for (i = 0; i < 8; i++)
+ dst[i] = cpu_to_le32(rctx->state[i]);
/* Wipe context */
memset(rctx, 0, sizeof(*rctx));