struct audit_status {
__u32 mask; /* Bit mask for valid entries */
- __u32 enabled; /* 1 = enabled, 0 = disbaled */
+ __u32 enabled; /* 1 = enabled, 0 = disabled */
__u32 failure; /* Failure-to-log action */
__u32 pid; /* pid of auditd process */
__u32 rate_limit; /* messages rate limit (per second) */
static LIST_HEAD(audit_extlist);
/* The netlink socket is only to be read by 1 CPU, which lets us assume
- * that list additions and deletions never happen simultaneiously in
+ * that list additions and deletions never happen simultaneously in
* auditsc.c */
static DECLARE_MUTEX(audit_netlink_sem);
}
}
-/* Remove queued messages from the audit_txlist and send them to userspace. */
+/* Remove queued messages from the audit_txlist and send them to user space. */
static void audit_tasklet_handler(unsigned long arg)
{
LIST_HEAD(list);
/* At syscall entry and exit time, this filter is called if the
* audit_state is not low enough that auditing cannot take place, but is
- * also not high enough that we already know we have to write and audit
+ * also not high enough that we already know we have to write an audit
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
*/
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
/* Compute a serial number for the audit record. Audit records are
* written to user-space as soon as they are generated, so a complete
* audit record may be written in several pieces. The timestamp of the
- * record and this serial number are used by the user-space daemon to
+ * record and this serial number are used by the user-space tools to
* determine which pieces belong to the same audit record. The
* (timestamp,serial) tuple is unique for each syscall and is live from
* syscall entry to syscall exit.