drm/amd/powerplay: Mark functions of ppevvmath.h static
authorNils Wallménius <nils.wallmenius@gmail.com>
Sun, 24 Apr 2016 11:22:30 +0000 (13:22 +0200)
committerAlex Deucher <alexander.deucher@amd.com>
Fri, 29 Jul 2016 18:36:56 +0000 (14:36 -0400)
This introduces some warnings due to unused functions, that are
deleted in the following commit.

Signed-off-by: Nils Wallménius <nils.wallmenius@gmail.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h

index 009bd5963ed8c8d9c79472e6dff4c237e4caac36..a9b40ebfa8e6e35940cede722b7b36f73e0a9998 100644 (file)
@@ -50,55 +50,55 @@ typedef union _fInt {
  * Function Declarations
  *  -------------------------------------------------------------------------------
  */
-fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
-fInt Convert_ULONG_ToFraction(uint32_t);              /* Use this to convert an uint32_t to a FINT */
-fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
-int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
-
-fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
-fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
-fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
-fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
-fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
-fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
-fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */
-
-int uAbs(int);                                     /* Returns the Absolute value of the Int */
-fInt fAbs(fInt);                                   /* Returns the Absolute value of the fInt */
-int uPow(int base, int exponent);                  /* Returns base^exponent an INT */
-
-void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
-bool Equal(fInt, fInt);                         /* Returns true if two fInts are equal to each other */
-bool GreaterThan(fInt A, fInt B);               /* Returns true if A > B */
-
-fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
-fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
+static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
+static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
+static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
+static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
+
+static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
+static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
+static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
+static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
+static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
+static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
+static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */
+
+static int uAbs(int);                                     /* Returns the Absolute value of the Int */
+static fInt fAbs(fInt);                                   /* Returns the Absolute value of the fInt */
+static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */
+
+static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
+static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
+static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */
+
+static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
+static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
 
 /* Fuse decoding functions
  * -------------------------------------------------------------------------------------
  */
-fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
-fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
-fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
+static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
+static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
+static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
 
 /* Internal Support Functions - Use these ONLY for testing or adding to internal functions
  * -------------------------------------------------------------------------------------
  * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
  */
-fInt Add (int, int);                               /* Add two INTs and return Sum as FINT */
-fInt Multiply (int, int);                          /* Multiply two INTs and return Product as FINT */
-fInt Divide (int, int);                            /* You get the idea... */
-fInt fNegate(fInt);
+static fInt Add (int, int);                               /* Add two INTs and return Sum as FINT */
+static fInt Multiply (int, int);                          /* Multiply two INTs and return Product as FINT */
+static fInt Divide (int, int);                            /* You get the idea... */
+static fInt fNegate(fInt);
 
-int uGetScaledDecimal (fInt);                      /* Internal function */
-int GetReal (fInt A);                              /* Internal function */
+static int uGetScaledDecimal (fInt);                      /* Internal function */
+static int GetReal (fInt A);                              /* Internal function */
 
 /* Future Additions and Incomplete Functions
  * -------------------------------------------------------------------------------------
  */
-int GetRoundedValue(fInt);                         /* Incomplete function - Useful only when Precision is lacking */
-                                                   /* Let us say we have 2.126 but can only handle 2 decimal points. We could */
-                                                   /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
+static int GetRoundedValue(fInt);                         /* Incomplete function - Useful only when Precision is lacking */
+                                                          /* Let us say we have 2.126 but can only handle 2 decimal points. We could */
+                                                          /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
 
 /* -------------------------------------------------------------------------------------
  * TROUBLESHOOTING INFORMATION
@@ -115,7 +115,7 @@ int GetRoundedValue(fInt);                         /* Incomplete function - Usef
  * START OF CODE
  * -------------------------------------------------------------------------------------
  */
-fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
+static fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
 {
        uint32_t i;
        bool bNegated = false;
@@ -154,7 +154,7 @@ fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
        return solution;
 }
 
-fInt fNaturalLog(fInt value)
+static fInt fNaturalLog(fInt value)
 {
        uint32_t i;
        fInt upper_bound = Divide(8, 1000);
@@ -179,7 +179,7 @@ fInt fNaturalLog(fInt value)
        return (fAdd(solution, error_term));
 }
 
-fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
+static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
 {
        fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
        fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
@@ -194,7 +194,7 @@ fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t b
 }
 
 
-fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
+static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
 {
        fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
        fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
@@ -212,7 +212,7 @@ fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint
        return f_decoded_value;
 }
 
-fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
+static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
 {
        fInt fLeakage;
        fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
@@ -225,7 +225,7 @@ fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min,
        return fLeakage;
 }
 
-fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
+static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
 {
        fInt temp;
 
@@ -237,13 +237,13 @@ fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to m
        return temp;
 }
 
-fInt fNegate(fInt X)
+static fInt fNegate(fInt X)
 {
        fInt CONSTANT_NEGONE = ConvertToFraction(-1);
        return (fMultiply(X, CONSTANT_NEGONE));
 }
 
-fInt Convert_ULONG_ToFraction(uint32_t X)
+static fInt Convert_ULONG_ToFraction(uint32_t X)
 {
        fInt temp;
 
@@ -255,7 +255,7 @@ fInt Convert_ULONG_ToFraction(uint32_t X)
        return temp;
 }
 
-fInt GetScaledFraction(int X, int factor)
+static fInt GetScaledFraction(int X, int factor)
 {
        int times_shifted, factor_shifted;
        bool bNEGATED;
@@ -304,7 +304,7 @@ fInt GetScaledFraction(int X, int factor)
 }
 
 /* Addition using two fInts */
-fInt fAdd (fInt X, fInt Y)
+static fInt fAdd (fInt X, fInt Y)
 {
        fInt Sum;
 
@@ -314,7 +314,7 @@ fInt fAdd (fInt X, fInt Y)
 }
 
 /* Addition using two fInts */
-fInt fSubtract (fInt X, fInt Y)
+static fInt fSubtract (fInt X, fInt Y)
 {
        fInt Difference;
 
@@ -323,7 +323,7 @@ fInt fSubtract (fInt X, fInt Y)
        return Difference;
 }
 
-bool Equal(fInt A, fInt B)
+static bool Equal(fInt A, fInt B)
 {
        if (A.full == B.full)
                return true;
@@ -331,7 +331,7 @@ bool Equal(fInt A, fInt B)
                return false;
 }
 
-bool GreaterThan(fInt A, fInt B)
+static bool GreaterThan(fInt A, fInt B)
 {
        if (A.full > B.full)
                return true;
@@ -339,7 +339,7 @@ bool GreaterThan(fInt A, fInt B)
                return false;
 }
 
-fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
+static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
 {
        fInt Product;
        int64_t tempProduct;
@@ -363,7 +363,7 @@ fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
        return Product;
 }
 
-fInt fDivide (fInt X, fInt Y)
+static fInt fDivide (fInt X, fInt Y)
 {
        fInt fZERO, fQuotient;
        int64_t longlongX, longlongY;
@@ -384,7 +384,7 @@ fInt fDivide (fInt X, fInt Y)
        return fQuotient;
 }
 
-int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
+static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
 {
        fInt fullNumber, scaledDecimal, scaledReal;
 
@@ -397,13 +397,13 @@ int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to ch
        return fullNumber.full;
 }
 
-fInt fGetSquare(fInt A)
+static fInt fGetSquare(fInt A)
 {
        return fMultiply(A,A);
 }
 
 /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
-fInt fSqrt(fInt num)
+static fInt fSqrt(fInt num)
 {
        fInt F_divide_Fprime, Fprime;
        fInt test;
@@ -460,7 +460,7 @@ fInt fSqrt(fInt num)
        return (x_new);
 }
 
-void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
+static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
 {
        fInt *pRoots = &Roots[0];
        fInt temp, root_first, root_second;
@@ -499,7 +499,7 @@ void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
  */
 
 /* Addition using two normal ints - Temporary - Use only for testing purposes?. */
-fInt Add (int X, int Y)
+static fInt Add (int X, int Y)
 {
        fInt A, B, Sum;
 
@@ -512,13 +512,13 @@ fInt Add (int X, int Y)
 }
 
 /* Conversion Functions */
-int GetReal (fInt A)
+static int GetReal (fInt A)
 {
        return (A.full >> SHIFT_AMOUNT);
 }
 
 /* Temporarily Disabled */
-int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
+static int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
 {
        /* ROUNDING TEMPORARLY DISABLED
        int temp = A.full;
@@ -531,7 +531,7 @@ int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
        return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
 }
 
-fInt Multiply (int X, int Y)
+static fInt Multiply (int X, int Y)
 {
        fInt A, B, Product;
 
@@ -543,7 +543,7 @@ fInt Multiply (int X, int Y)
        return Product;
 }
 
-fInt Divide (int X, int Y)
+static fInt Divide (int X, int Y)
 {
        fInt A, B, Quotient;
 
@@ -555,7 +555,7 @@ fInt Divide (int X, int Y)
        return Quotient;
 }
 
-int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
+static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
 {
        int dec[PRECISION];
        int i, scaledDecimal = 0, tmp = A.partial.decimal;
@@ -570,7 +570,7 @@ int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole intege
        return scaledDecimal;
 }
 
-int uPow(int base, int power)
+static int uPow(int base, int power)
 {
        if (power == 0)
                return 1;
@@ -578,7 +578,7 @@ int uPow(int base, int power)
                return (base)*uPow(base, power - 1);
 }
 
-fInt fAbs(fInt A)
+static fInt fAbs(fInt A)
 {
        if (A.partial.real < 0)
                return (fMultiply(A, ConvertToFraction(-1)));
@@ -586,7 +586,7 @@ fInt fAbs(fInt A)
                return A;
 }
 
-int uAbs(int X)
+static int uAbs(int X)
 {
        if (X < 0)
                return (X * -1);
@@ -594,7 +594,7 @@ int uAbs(int X)
                return X;
 }
 
-fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
+static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
 {
        fInt solution;