sched/deadline: Improve the tracking of active utilization
authorLuca Abeni <luca.abeni@santannapisa.it>
Thu, 18 May 2017 20:13:29 +0000 (22:13 +0200)
committerIngo Molnar <mingo@kernel.org>
Thu, 8 Jun 2017 08:31:49 +0000 (10:31 +0200)
This patch implements a more theoretically sound algorithm for
tracking active utilization: instead of decreasing it when a
task blocks, use a timer (the "inactive timer", named after the
"Inactive" task state of the GRUB algorithm) to decrease the
active utilization at the so called "0-lag time".

Tested-by: Claudio Scordino <claudio@evidence.eu.com>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-3-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
include/linux/sched.h
kernel/sched/core.c
kernel/sched/deadline.c
kernel/sched/sched.h

index 1abaa3728bf78f8ce5cc5fd0ea820f9a95fbe505..f1ead2e88d3dc084446c4b27949c82754c755a5f 100644 (file)
@@ -445,16 +445,33 @@ struct sched_dl_entity {
         *
         * @dl_yielded tells if task gave up the CPU before consuming
         * all its available runtime during the last job.
+        *
+        * @dl_non_contending tells if the task is inactive while still
+        * contributing to the active utilization. In other words, it
+        * indicates if the inactive timer has been armed and its handler
+        * has not been executed yet. This flag is useful to avoid race
+        * conditions between the inactive timer handler and the wakeup
+        * code.
         */
        int                             dl_throttled;
        int                             dl_boosted;
        int                             dl_yielded;
+       int                             dl_non_contending;
 
        /*
         * Bandwidth enforcement timer. Each -deadline task has its
         * own bandwidth to be enforced, thus we need one timer per task.
         */
        struct hrtimer                  dl_timer;
+
+       /*
+        * Inactive timer, responsible for decreasing the active utilization
+        * at the "0-lag time". When a -deadline task blocks, it contributes
+        * to GRUB's active utilization until the "0-lag time", hence a
+        * timer is needed to decrease the active utilization at the correct
+        * time.
+        */
+       struct hrtimer inactive_timer;
 };
 
 union rcu_special {
index c3e50cada84d8e38070857e619900f98b1b1da79..968c655ec5d96aac2c0c9c2d681ff2a994606e12 100644 (file)
@@ -2153,6 +2153,7 @@ void __dl_clear_params(struct task_struct *p)
 
        dl_se->dl_throttled = 0;
        dl_se->dl_yielded = 0;
+       dl_se->dl_non_contending = 0;
 }
 
 /*
@@ -2184,6 +2185,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 
        RB_CLEAR_NODE(&p->dl.rb_node);
        init_dl_task_timer(&p->dl);
+       init_dl_inactive_task_timer(&p->dl);
        __dl_clear_params(p);
 
        INIT_LIST_HEAD(&p->rt.run_list);
@@ -2506,6 +2508,7 @@ static int dl_overflow(struct task_struct *p, int policy,
                   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
                __dl_clear(dl_b, p->dl.dl_bw);
                __dl_add(dl_b, new_bw);
+               dl_change_utilization(p, new_bw);
                err = 0;
        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
                __dl_clear(dl_b, p->dl.dl_bw);
index b36ecc2b1b10c6ce4e316bfaf63faa1a834cfd7e..6480a929417c74a3d669f0b9a946ee8115e05caf 100644 (file)
@@ -65,6 +65,161 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
                dl_rq->running_bw = 0;
 }
 
+void dl_change_utilization(struct task_struct *p, u64 new_bw)
+{
+       if (task_on_rq_queued(p))
+               return;
+
+       if (!p->dl.dl_non_contending)
+               return;
+
+       sub_running_bw(p->dl.dl_bw, &task_rq(p)->dl);
+       p->dl.dl_non_contending = 0;
+       /*
+        * If the timer handler is currently running and the
+        * timer cannot be cancelled, inactive_task_timer()
+        * will see that dl_not_contending is not set, and
+        * will not touch the rq's active utilization,
+        * so we are still safe.
+        */
+       if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+               put_task_struct(p);
+}
+
+/*
+ * The utilization of a task cannot be immediately removed from
+ * the rq active utilization (running_bw) when the task blocks.
+ * Instead, we have to wait for the so called "0-lag time".
+ *
+ * If a task blocks before the "0-lag time", a timer (the inactive
+ * timer) is armed, and running_bw is decreased when the timer
+ * fires.
+ *
+ * If the task wakes up again before the inactive timer fires,
+ * the timer is cancelled, whereas if the task wakes up after the
+ * inactive timer fired (and running_bw has been decreased) the
+ * task's utilization has to be added to running_bw again.
+ * A flag in the deadline scheduling entity (dl_non_contending)
+ * is used to avoid race conditions between the inactive timer handler
+ * and task wakeups.
+ *
+ * The following diagram shows how running_bw is updated. A task is
+ * "ACTIVE" when its utilization contributes to running_bw; an
+ * "ACTIVE contending" task is in the TASK_RUNNING state, while an
+ * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
+ * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
+ * time already passed, which does not contribute to running_bw anymore.
+ *                              +------------------+
+ *             wakeup           |    ACTIVE        |
+ *          +------------------>+   contending     |
+ *          | add_running_bw    |                  |
+ *          |                   +----+------+------+
+ *          |                        |      ^
+ *          |                dequeue |      |
+ * +--------+-------+                |      |
+ * |                |   t >= 0-lag   |      | wakeup
+ * |    INACTIVE    |<---------------+      |
+ * |                | sub_running_bw |      |
+ * +--------+-------+                |      |
+ *          ^                        |      |
+ *          |              t < 0-lag |      |
+ *          |                        |      |
+ *          |                        V      |
+ *          |                   +----+------+------+
+ *          | sub_running_bw    |    ACTIVE        |
+ *          +-------------------+                  |
+ *            inactive timer    |  non contending  |
+ *            fired             +------------------+
+ *
+ * The task_non_contending() function is invoked when a task
+ * blocks, and checks if the 0-lag time already passed or
+ * not (in the first case, it directly updates running_bw;
+ * in the second case, it arms the inactive timer).
+ *
+ * The task_contending() function is invoked when a task wakes
+ * up, and checks if the task is still in the "ACTIVE non contending"
+ * state or not (in the second case, it updates running_bw).
+ */
+static void task_non_contending(struct task_struct *p)
+{
+       struct sched_dl_entity *dl_se = &p->dl;
+       struct hrtimer *timer = &dl_se->inactive_timer;
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+       struct rq *rq = rq_of_dl_rq(dl_rq);
+       s64 zerolag_time;
+
+       /*
+        * If this is a non-deadline task that has been boosted,
+        * do nothing
+        */
+       if (dl_se->dl_runtime == 0)
+               return;
+
+       WARN_ON(hrtimer_active(&dl_se->inactive_timer));
+       WARN_ON(dl_se->dl_non_contending);
+
+       zerolag_time = dl_se->deadline -
+                div64_long((dl_se->runtime * dl_se->dl_period),
+                       dl_se->dl_runtime);
+
+       /*
+        * Using relative times instead of the absolute "0-lag time"
+        * allows to simplify the code
+        */
+       zerolag_time -= rq_clock(rq);
+
+       /*
+        * If the "0-lag time" already passed, decrease the active
+        * utilization now, instead of starting a timer
+        */
+       if (zerolag_time < 0) {
+               if (dl_task(p))
+                       sub_running_bw(dl_se->dl_bw, dl_rq);
+               if (!dl_task(p) || p->state == TASK_DEAD)
+                       __dl_clear_params(p);
+
+               return;
+       }
+
+       dl_se->dl_non_contending = 1;
+       get_task_struct(p);
+       hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
+}
+
+static void task_contending(struct sched_dl_entity *dl_se)
+{
+       struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+       /*
+        * If this is a non-deadline task that has been boosted,
+        * do nothing
+        */
+       if (dl_se->dl_runtime == 0)
+               return;
+
+       if (dl_se->dl_non_contending) {
+               dl_se->dl_non_contending = 0;
+               /*
+                * If the timer handler is currently running and the
+                * timer cannot be cancelled, inactive_task_timer()
+                * will see that dl_not_contending is not set, and
+                * will not touch the rq's active utilization,
+                * so we are still safe.
+                */
+               if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
+                       put_task_struct(dl_task_of(dl_se));
+       } else {
+               /*
+                * Since "dl_non_contending" is not set, the
+                * task's utilization has already been removed from
+                * active utilization (either when the task blocked,
+                * when the "inactive timer" fired).
+                * So, add it back.
+                */
+               add_running_bw(dl_se->dl_bw, dl_rq);
+       }
+}
+
 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 {
        struct sched_dl_entity *dl_se = &p->dl;
@@ -617,10 +772,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
         * The task might have changed its scheduling policy to something
         * different than SCHED_DEADLINE (through switched_from_dl()).
         */
-       if (!dl_task(p)) {
-               __dl_clear_params(p);
+       if (!dl_task(p))
                goto unlock;
-       }
 
        /*
         * The task might have been boosted by someone else and might be in the
@@ -839,6 +992,49 @@ throttle:
        }
 }
 
+static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
+{
+       struct sched_dl_entity *dl_se = container_of(timer,
+                                                    struct sched_dl_entity,
+                                                    inactive_timer);
+       struct task_struct *p = dl_task_of(dl_se);
+       struct rq_flags rf;
+       struct rq *rq;
+
+       rq = task_rq_lock(p, &rf);
+
+       if (!dl_task(p) || p->state == TASK_DEAD) {
+               if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
+                       sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
+                       dl_se->dl_non_contending = 0;
+               }
+               __dl_clear_params(p);
+
+               goto unlock;
+       }
+       if (dl_se->dl_non_contending == 0)
+               goto unlock;
+
+       sched_clock_tick();
+       update_rq_clock(rq);
+
+       sub_running_bw(dl_se->dl_bw, &rq->dl);
+       dl_se->dl_non_contending = 0;
+unlock:
+       task_rq_unlock(rq, p, &rf);
+       put_task_struct(p);
+
+       return HRTIMER_NORESTART;
+}
+
+void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
+{
+       struct hrtimer *timer = &dl_se->inactive_timer;
+
+       hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+       timer->function = inactive_task_timer;
+}
+
 #ifdef CONFIG_SMP
 
 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
@@ -971,9 +1167,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
         * we want a replenishment of its runtime.
         */
        if (flags & ENQUEUE_WAKEUP) {
-               struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
-
-               add_running_bw(dl_se->dl_bw, dl_rq);
+               task_contending(dl_se);
                update_dl_entity(dl_se, pi_se);
        } else if (flags & ENQUEUE_REPLENISH) {
                replenish_dl_entity(dl_se, pi_se);
@@ -1042,7 +1236,9 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
         * add_running_bw().
         */
        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
-               add_running_bw(p->dl.dl_bw, &rq->dl);
+               if (flags & ENQUEUE_WAKEUP)
+                       task_contending(&p->dl);
+
                return;
        }
 
@@ -1067,7 +1263,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
                sub_running_bw(p->dl.dl_bw, &rq->dl);
 
        /*
-        * This check allows to decrease the active utilization in two cases:
+        * This check allows to start the inactive timer (or to immediately
+        * decrease the active utilization, if needed) in two cases:
         * when the task blocks and when it is terminating
         * (p->state == TASK_DEAD). We can handle the two cases in the same
         * way, because from GRUB's point of view the same thing is happening
@@ -1075,7 +1272,7 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
         * or "inactive")
         */
        if (flags & DEQUEUE_SLEEP)
-               sub_running_bw(p->dl.dl_bw, &rq->dl);
+               task_non_contending(p);
 }
 
 /*
@@ -1153,6 +1350,35 @@ out:
        return cpu;
 }
 
+static void migrate_task_rq_dl(struct task_struct *p)
+{
+       struct rq *rq;
+
+       if (!(p->state == TASK_WAKING) || !(p->dl.dl_non_contending))
+               return;
+
+       rq = task_rq(p);
+       /*
+        * Since p->state == TASK_WAKING, set_task_cpu() has been called
+        * from try_to_wake_up(). Hence, p->pi_lock is locked, but
+        * rq->lock is not... So, lock it
+        */
+       raw_spin_lock(&rq->lock);
+       sub_running_bw(p->dl.dl_bw, &rq->dl);
+       p->dl.dl_non_contending = 0;
+       /*
+        * If the timer handler is currently running and the
+        * timer cannot be cancelled, inactive_task_timer()
+        * will see that dl_not_contending is not set, and
+        * will not touch the rq's active utilization,
+        * so we are still safe.
+        */
+       if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+               put_task_struct(p);
+
+       raw_spin_unlock(&rq->lock);
+}
+
 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
 {
        /*
@@ -1794,13 +2020,23 @@ void __init init_sched_dl_class(void)
 static void switched_from_dl(struct rq *rq, struct task_struct *p)
 {
        /*
-        * Start the deadline timer; if we switch back to dl before this we'll
-        * continue consuming our current CBS slice. If we stay outside of
-        * SCHED_DEADLINE until the deadline passes, the timer will reset the
-        * task.
+        * task_non_contending() can start the "inactive timer" (if the 0-lag
+        * time is in the future). If the task switches back to dl before
+        * the "inactive timer" fires, it can continue to consume its current
+        * runtime using its current deadline. If it stays outside of
+        * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
+        * will reset the task parameters.
         */
-       if (!start_dl_timer(p))
-               __dl_clear_params(p);
+       if (task_on_rq_queued(p) && p->dl.dl_runtime)
+               task_non_contending(p);
+
+       /*
+        * We cannot use inactive_task_timer() to invoke sub_running_bw()
+        * at the 0-lag time, because the task could have been migrated
+        * while SCHED_OTHER in the meanwhile.
+        */
+       if (p->dl.dl_non_contending)
+               p->dl.dl_non_contending = 0;
 
        /*
         * Since this might be the only -deadline task on the rq,
@@ -1819,6 +2055,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
  */
 static void switched_to_dl(struct rq *rq, struct task_struct *p)
 {
+       if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+               put_task_struct(p);
 
        /* If p is not queued we will update its parameters at next wakeup. */
        if (!task_on_rq_queued(p))
@@ -1893,6 +2131,7 @@ const struct sched_class dl_sched_class = {
 
 #ifdef CONFIG_SMP
        .select_task_rq         = select_task_rq_dl,
+       .migrate_task_rq        = migrate_task_rq_dl,
        .set_cpus_allowed       = set_cpus_allowed_dl,
        .rq_online              = rq_online_dl,
        .rq_offline             = rq_offline_dl,
index ee26867da339aa518c9654b686009d7ffb635bec..c58f38905e0ab8f174b11abe9a3442de42bbfbb9 100644 (file)
@@ -244,6 +244,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
               dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 }
 
+void dl_change_utilization(struct task_struct *p, u64 new_bw);
 extern void init_dl_bw(struct dl_bw *dl_b);
 
 #ifdef CONFIG_CGROUP_SCHED
@@ -1493,6 +1494,7 @@ extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime
 extern struct dl_bandwidth def_dl_bandwidth;
 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
 
 unsigned long to_ratio(u64 period, u64 runtime);