cgroup: move cgroup files under kernel/cgroup/
authorTejun Heo <tj@kernel.org>
Tue, 27 Dec 2016 19:49:05 +0000 (14:49 -0500)
committerTejun Heo <tj@kernel.org>
Tue, 27 Dec 2016 19:49:05 +0000 (14:49 -0500)
They're growing to be too many and planned to get split further.  Move
them under their own directory.

 kernel/cgroup.c -> kernel/cgroup/cgroup.c
 kernel/cgroup_freezer.c -> kernel/cgroup/freezer.c
 kernel/cgroup_pids.c -> kernel/cgroup/pids.c
 kernel/cpuset.c -> kernel/cgroup/cpuset.c

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Acked-by: Zefan Li <lizefan@huawei.com>
kernel/Makefile
kernel/cgroup.c [deleted file]
kernel/cgroup/Makefile [new file with mode: 0644]
kernel/cgroup/cgroup.c [new file with mode: 0644]
kernel/cgroup/cpuset.c [new file with mode: 0644]
kernel/cgroup/freezer.c [new file with mode: 0644]
kernel/cgroup/pids.c [new file with mode: 0644]
kernel/cgroup_freezer.c [deleted file]
kernel/cgroup_pids.c [deleted file]
kernel/cpuset.c [deleted file]

index 12c679f769c6f82af6d65caf8f06d2707f86fb3f..b302b4731d16547a88e4ddc6db21e130ae821113 100644 (file)
@@ -64,10 +64,7 @@ obj-$(CONFIG_KEXEC) += kexec.o
 obj-$(CONFIG_KEXEC_FILE) += kexec_file.o
 obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o
 obj-$(CONFIG_COMPAT) += compat.o
-obj-$(CONFIG_CGROUPS) += cgroup.o
-obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o
-obj-$(CONFIG_CGROUP_PIDS) += cgroup_pids.o
-obj-$(CONFIG_CPUSETS) += cpuset.o
+obj-$(CONFIG_CGROUPS) += cgroup/
 obj-$(CONFIG_UTS_NS) += utsname.o
 obj-$(CONFIG_USER_NS) += user_namespace.o
 obj-$(CONFIG_PID_NS) += pid_namespace.o
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
deleted file mode 100644 (file)
index 1a815f2..0000000
+++ /dev/null
@@ -1,6705 +0,0 @@
-/*
- *  Generic process-grouping system.
- *
- *  Based originally on the cpuset system, extracted by Paul Menage
- *  Copyright (C) 2006 Google, Inc
- *
- *  Notifications support
- *  Copyright (C) 2009 Nokia Corporation
- *  Author: Kirill A. Shutemov
- *
- *  Copyright notices from the original cpuset code:
- *  --------------------------------------------------
- *  Copyright (C) 2003 BULL SA.
- *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
- *
- *  Portions derived from Patrick Mochel's sysfs code.
- *  sysfs is Copyright (c) 2001-3 Patrick Mochel
- *
- *  2003-10-10 Written by Simon Derr.
- *  2003-10-22 Updates by Stephen Hemminger.
- *  2004 May-July Rework by Paul Jackson.
- *  ---------------------------------------------------
- *
- *  This file is subject to the terms and conditions of the GNU General Public
- *  License.  See the file COPYING in the main directory of the Linux
- *  distribution for more details.
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/cgroup.h>
-#include <linux/cred.h>
-#include <linux/ctype.h>
-#include <linux/errno.h>
-#include <linux/init_task.h>
-#include <linux/kernel.h>
-#include <linux/list.h>
-#include <linux/magic.h>
-#include <linux/mm.h>
-#include <linux/mutex.h>
-#include <linux/mount.h>
-#include <linux/pagemap.h>
-#include <linux/proc_fs.h>
-#include <linux/rcupdate.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-#include <linux/spinlock.h>
-#include <linux/percpu-rwsem.h>
-#include <linux/string.h>
-#include <linux/sort.h>
-#include <linux/kmod.h>
-#include <linux/delayacct.h>
-#include <linux/cgroupstats.h>
-#include <linux/hashtable.h>
-#include <linux/pid_namespace.h>
-#include <linux/idr.h>
-#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
-#include <linux/kthread.h>
-#include <linux/delay.h>
-#include <linux/atomic.h>
-#include <linux/cpuset.h>
-#include <linux/proc_ns.h>
-#include <linux/nsproxy.h>
-#include <linux/file.h>
-#include <net/sock.h>
-
-#define CREATE_TRACE_POINTS
-#include <trace/events/cgroup.h>
-
-/*
- * pidlists linger the following amount before being destroyed.  The goal
- * is avoiding frequent destruction in the middle of consecutive read calls
- * Expiring in the middle is a performance problem not a correctness one.
- * 1 sec should be enough.
- */
-#define CGROUP_PIDLIST_DESTROY_DELAY   HZ
-
-#define CGROUP_FILE_NAME_MAX           (MAX_CGROUP_TYPE_NAMELEN +      \
-                                        MAX_CFTYPE_NAME + 2)
-
-/*
- * cgroup_mutex is the master lock.  Any modification to cgroup or its
- * hierarchy must be performed while holding it.
- *
- * css_set_lock protects task->cgroups pointer, the list of css_set
- * objects, and the chain of tasks off each css_set.
- *
- * These locks are exported if CONFIG_PROVE_RCU so that accessors in
- * cgroup.h can use them for lockdep annotations.
- */
-#ifdef CONFIG_PROVE_RCU
-DEFINE_MUTEX(cgroup_mutex);
-DEFINE_SPINLOCK(css_set_lock);
-EXPORT_SYMBOL_GPL(cgroup_mutex);
-EXPORT_SYMBOL_GPL(css_set_lock);
-#else
-static DEFINE_MUTEX(cgroup_mutex);
-static DEFINE_SPINLOCK(css_set_lock);
-#endif
-
-/*
- * Protects cgroup_idr and css_idr so that IDs can be released without
- * grabbing cgroup_mutex.
- */
-static DEFINE_SPINLOCK(cgroup_idr_lock);
-
-/*
- * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
- * against file removal/re-creation across css hiding.
- */
-static DEFINE_SPINLOCK(cgroup_file_kn_lock);
-
-/*
- * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
- * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
- */
-static DEFINE_SPINLOCK(release_agent_path_lock);
-
-struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
-
-#define cgroup_assert_mutex_or_rcu_locked()                            \
-       RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
-                          !lockdep_is_held(&cgroup_mutex),             \
-                          "cgroup_mutex or RCU read lock required");
-
-/*
- * cgroup destruction makes heavy use of work items and there can be a lot
- * of concurrent destructions.  Use a separate workqueue so that cgroup
- * destruction work items don't end up filling up max_active of system_wq
- * which may lead to deadlock.
- */
-static struct workqueue_struct *cgroup_destroy_wq;
-
-/*
- * pidlist destructions need to be flushed on cgroup destruction.  Use a
- * separate workqueue as flush domain.
- */
-static struct workqueue_struct *cgroup_pidlist_destroy_wq;
-
-/* generate an array of cgroup subsystem pointers */
-#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
-static struct cgroup_subsys *cgroup_subsys[] = {
-#include <linux/cgroup_subsys.h>
-};
-#undef SUBSYS
-
-/* array of cgroup subsystem names */
-#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
-static const char *cgroup_subsys_name[] = {
-#include <linux/cgroup_subsys.h>
-};
-#undef SUBSYS
-
-/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
-#define SUBSYS(_x)                                                             \
-       DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
-       DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
-       EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
-       EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
-#include <linux/cgroup_subsys.h>
-#undef SUBSYS
-
-#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
-static struct static_key_true *cgroup_subsys_enabled_key[] = {
-#include <linux/cgroup_subsys.h>
-};
-#undef SUBSYS
-
-#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
-static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
-#include <linux/cgroup_subsys.h>
-};
-#undef SUBSYS
-
-/*
- * The default hierarchy, reserved for the subsystems that are otherwise
- * unattached - it never has more than a single cgroup, and all tasks are
- * part of that cgroup.
- */
-struct cgroup_root cgrp_dfl_root;
-EXPORT_SYMBOL_GPL(cgrp_dfl_root);
-
-/*
- * The default hierarchy always exists but is hidden until mounted for the
- * first time.  This is for backward compatibility.
- */
-static bool cgrp_dfl_visible;
-
-/* Controllers blocked by the commandline in v1 */
-static u16 cgroup_no_v1_mask;
-
-/* some controllers are not supported in the default hierarchy */
-static u16 cgrp_dfl_inhibit_ss_mask;
-
-/* some controllers are implicitly enabled on the default hierarchy */
-static unsigned long cgrp_dfl_implicit_ss_mask;
-
-/* The list of hierarchy roots */
-
-static LIST_HEAD(cgroup_roots);
-static int cgroup_root_count;
-
-/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
-static DEFINE_IDR(cgroup_hierarchy_idr);
-
-/*
- * Assign a monotonically increasing serial number to csses.  It guarantees
- * cgroups with bigger numbers are newer than those with smaller numbers.
- * Also, as csses are always appended to the parent's ->children list, it
- * guarantees that sibling csses are always sorted in the ascending serial
- * number order on the list.  Protected by cgroup_mutex.
- */
-static u64 css_serial_nr_next = 1;
-
-/*
- * These bitmask flags indicate whether tasks in the fork and exit paths have
- * fork/exit handlers to call. This avoids us having to do extra work in the
- * fork/exit path to check which subsystems have fork/exit callbacks.
- */
-static u16 have_fork_callback __read_mostly;
-static u16 have_exit_callback __read_mostly;
-static u16 have_free_callback __read_mostly;
-
-/* cgroup namespace for init task */
-struct cgroup_namespace init_cgroup_ns = {
-       .count          = { .counter = 2, },
-       .user_ns        = &init_user_ns,
-       .ns.ops         = &cgroupns_operations,
-       .ns.inum        = PROC_CGROUP_INIT_INO,
-       .root_cset      = &init_css_set,
-};
-
-/* Ditto for the can_fork callback. */
-static u16 have_canfork_callback __read_mostly;
-
-static struct file_system_type cgroup2_fs_type;
-static struct cftype cgroup_dfl_base_files[];
-static struct cftype cgroup_legacy_base_files[];
-
-static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
-static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
-static int cgroup_apply_control(struct cgroup *cgrp);
-static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
-static void css_task_iter_advance(struct css_task_iter *it);
-static int cgroup_destroy_locked(struct cgroup *cgrp);
-static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
-                                             struct cgroup_subsys *ss);
-static void css_release(struct percpu_ref *ref);
-static void kill_css(struct cgroup_subsys_state *css);
-static int cgroup_addrm_files(struct cgroup_subsys_state *css,
-                             struct cgroup *cgrp, struct cftype cfts[],
-                             bool is_add);
-
-/**
- * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
- * @ssid: subsys ID of interest
- *
- * cgroup_subsys_enabled() can only be used with literal subsys names which
- * is fine for individual subsystems but unsuitable for cgroup core.  This
- * is slower static_key_enabled() based test indexed by @ssid.
- */
-static bool cgroup_ssid_enabled(int ssid)
-{
-       if (CGROUP_SUBSYS_COUNT == 0)
-               return false;
-
-       return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
-}
-
-static bool cgroup_ssid_no_v1(int ssid)
-{
-       return cgroup_no_v1_mask & (1 << ssid);
-}
-
-/**
- * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
- * @cgrp: the cgroup of interest
- *
- * The default hierarchy is the v2 interface of cgroup and this function
- * can be used to test whether a cgroup is on the default hierarchy for
- * cases where a subsystem should behave differnetly depending on the
- * interface version.
- *
- * The set of behaviors which change on the default hierarchy are still
- * being determined and the mount option is prefixed with __DEVEL__.
- *
- * List of changed behaviors:
- *
- * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
- *   and "name" are disallowed.
- *
- * - When mounting an existing superblock, mount options should match.
- *
- * - Remount is disallowed.
- *
- * - rename(2) is disallowed.
- *
- * - "tasks" is removed.  Everything should be at process granularity.  Use
- *   "cgroup.procs" instead.
- *
- * - "cgroup.procs" is not sorted.  pids will be unique unless they got
- *   recycled inbetween reads.
- *
- * - "release_agent" and "notify_on_release" are removed.  Replacement
- *   notification mechanism will be implemented.
- *
- * - "cgroup.clone_children" is removed.
- *
- * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
- *   and its descendants contain no task; otherwise, 1.  The file also
- *   generates kernfs notification which can be monitored through poll and
- *   [di]notify when the value of the file changes.
- *
- * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
- *   take masks of ancestors with non-empty cpus/mems, instead of being
- *   moved to an ancestor.
- *
- * - cpuset: a task can be moved into an empty cpuset, and again it takes
- *   masks of ancestors.
- *
- * - memcg: use_hierarchy is on by default and the cgroup file for the flag
- *   is not created.
- *
- * - blkcg: blk-throttle becomes properly hierarchical.
- *
- * - debug: disallowed on the default hierarchy.
- */
-static bool cgroup_on_dfl(const struct cgroup *cgrp)
-{
-       return cgrp->root == &cgrp_dfl_root;
-}
-
-/* IDR wrappers which synchronize using cgroup_idr_lock */
-static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
-                           gfp_t gfp_mask)
-{
-       int ret;
-
-       idr_preload(gfp_mask);
-       spin_lock_bh(&cgroup_idr_lock);
-       ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
-       spin_unlock_bh(&cgroup_idr_lock);
-       idr_preload_end();
-       return ret;
-}
-
-static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
-{
-       void *ret;
-
-       spin_lock_bh(&cgroup_idr_lock);
-       ret = idr_replace(idr, ptr, id);
-       spin_unlock_bh(&cgroup_idr_lock);
-       return ret;
-}
-
-static void cgroup_idr_remove(struct idr *idr, int id)
-{
-       spin_lock_bh(&cgroup_idr_lock);
-       idr_remove(idr, id);
-       spin_unlock_bh(&cgroup_idr_lock);
-}
-
-static struct cgroup *cgroup_parent(struct cgroup *cgrp)
-{
-       struct cgroup_subsys_state *parent_css = cgrp->self.parent;
-
-       if (parent_css)
-               return container_of(parent_css, struct cgroup, self);
-       return NULL;
-}
-
-/* subsystems visibly enabled on a cgroup */
-static u16 cgroup_control(struct cgroup *cgrp)
-{
-       struct cgroup *parent = cgroup_parent(cgrp);
-       u16 root_ss_mask = cgrp->root->subsys_mask;
-
-       if (parent)
-               return parent->subtree_control;
-
-       if (cgroup_on_dfl(cgrp))
-               root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
-                                 cgrp_dfl_implicit_ss_mask);
-       return root_ss_mask;
-}
-
-/* subsystems enabled on a cgroup */
-static u16 cgroup_ss_mask(struct cgroup *cgrp)
-{
-       struct cgroup *parent = cgroup_parent(cgrp);
-
-       if (parent)
-               return parent->subtree_ss_mask;
-
-       return cgrp->root->subsys_mask;
-}
-
-/**
- * cgroup_css - obtain a cgroup's css for the specified subsystem
- * @cgrp: the cgroup of interest
- * @ss: the subsystem of interest (%NULL returns @cgrp->self)
- *
- * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
- * function must be called either under cgroup_mutex or rcu_read_lock() and
- * the caller is responsible for pinning the returned css if it wants to
- * keep accessing it outside the said locks.  This function may return
- * %NULL if @cgrp doesn't have @subsys_id enabled.
- */
-static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
-                                             struct cgroup_subsys *ss)
-{
-       if (ss)
-               return rcu_dereference_check(cgrp->subsys[ss->id],
-                                       lockdep_is_held(&cgroup_mutex));
-       else
-               return &cgrp->self;
-}
-
-/**
- * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
- * @cgrp: the cgroup of interest
- * @ss: the subsystem of interest (%NULL returns @cgrp->self)
- *
- * Similar to cgroup_css() but returns the effective css, which is defined
- * as the matching css of the nearest ancestor including self which has @ss
- * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
- * function is guaranteed to return non-NULL css.
- */
-static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
-                                               struct cgroup_subsys *ss)
-{
-       lockdep_assert_held(&cgroup_mutex);
-
-       if (!ss)
-               return &cgrp->self;
-
-       /*
-        * This function is used while updating css associations and thus
-        * can't test the csses directly.  Test ss_mask.
-        */
-       while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
-               cgrp = cgroup_parent(cgrp);
-               if (!cgrp)
-                       return NULL;
-       }
-
-       return cgroup_css(cgrp, ss);
-}
-
-/**
- * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
- * @cgrp: the cgroup of interest
- * @ss: the subsystem of interest
- *
- * Find and get the effective css of @cgrp for @ss.  The effective css is
- * defined as the matching css of the nearest ancestor including self which
- * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
- * the root css is returned, so this function always returns a valid css.
- * The returned css must be put using css_put().
- */
-struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
-                                            struct cgroup_subsys *ss)
-{
-       struct cgroup_subsys_state *css;
-
-       rcu_read_lock();
-
-       do {
-               css = cgroup_css(cgrp, ss);
-
-               if (css && css_tryget_online(css))
-                       goto out_unlock;
-               cgrp = cgroup_parent(cgrp);
-       } while (cgrp);
-
-       css = init_css_set.subsys[ss->id];
-       css_get(css);
-out_unlock:
-       rcu_read_unlock();
-       return css;
-}
-
-/* convenient tests for these bits */
-static inline bool cgroup_is_dead(const struct cgroup *cgrp)
-{
-       return !(cgrp->self.flags & CSS_ONLINE);
-}
-
-static void cgroup_get(struct cgroup *cgrp)
-{
-       WARN_ON_ONCE(cgroup_is_dead(cgrp));
-       css_get(&cgrp->self);
-}
-
-static bool cgroup_tryget(struct cgroup *cgrp)
-{
-       return css_tryget(&cgrp->self);
-}
-
-struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
-{
-       struct cgroup *cgrp = of->kn->parent->priv;
-       struct cftype *cft = of_cft(of);
-
-       /*
-        * This is open and unprotected implementation of cgroup_css().
-        * seq_css() is only called from a kernfs file operation which has
-        * an active reference on the file.  Because all the subsystem
-        * files are drained before a css is disassociated with a cgroup,
-        * the matching css from the cgroup's subsys table is guaranteed to
-        * be and stay valid until the enclosing operation is complete.
-        */
-       if (cft->ss)
-               return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
-       else
-               return &cgrp->self;
-}
-EXPORT_SYMBOL_GPL(of_css);
-
-static int notify_on_release(const struct cgroup *cgrp)
-{
-       return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
-}
-
-/**
- * for_each_css - iterate all css's of a cgroup
- * @css: the iteration cursor
- * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
- * @cgrp: the target cgroup to iterate css's of
- *
- * Should be called under cgroup_[tree_]mutex.
- */
-#define for_each_css(css, ssid, cgrp)                                  \
-       for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
-               if (!((css) = rcu_dereference_check(                    \
-                               (cgrp)->subsys[(ssid)],                 \
-                               lockdep_is_held(&cgroup_mutex)))) { }   \
-               else
-
-/**
- * for_each_e_css - iterate all effective css's of a cgroup
- * @css: the iteration cursor
- * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
- * @cgrp: the target cgroup to iterate css's of
- *
- * Should be called under cgroup_[tree_]mutex.
- */
-#define for_each_e_css(css, ssid, cgrp)                                        \
-       for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
-               if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
-                       ;                                               \
-               else
-
-/**
- * for_each_subsys - iterate all enabled cgroup subsystems
- * @ss: the iteration cursor
- * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
- */
-#define for_each_subsys(ss, ssid)                                      \
-       for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&                \
-            (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
-
-/**
- * do_each_subsys_mask - filter for_each_subsys with a bitmask
- * @ss: the iteration cursor
- * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
- * @ss_mask: the bitmask
- *
- * The block will only run for cases where the ssid-th bit (1 << ssid) of
- * @ss_mask is set.
- */
-#define do_each_subsys_mask(ss, ssid, ss_mask) do {                    \
-       unsigned long __ss_mask = (ss_mask);                            \
-       if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
-               (ssid) = 0;                                             \
-               break;                                                  \
-       }                                                               \
-       for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
-               (ss) = cgroup_subsys[ssid];                             \
-               {
-
-#define while_each_subsys_mask()                                       \
-               }                                                       \
-       }                                                               \
-} while (false)
-
-/* iterate across the hierarchies */
-#define for_each_root(root)                                            \
-       list_for_each_entry((root), &cgroup_roots, root_list)
-
-/* iterate over child cgrps, lock should be held throughout iteration */
-#define cgroup_for_each_live_child(child, cgrp)                                \
-       list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
-               if (({ lockdep_assert_held(&cgroup_mutex);              \
-                      cgroup_is_dead(child); }))                       \
-                       ;                                               \
-               else
-
-/* walk live descendants in preorder */
-#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)         \
-       css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
-               if (({ lockdep_assert_held(&cgroup_mutex);              \
-                      (dsct) = (d_css)->cgroup;                        \
-                      cgroup_is_dead(dsct); }))                        \
-                       ;                                               \
-               else
-
-/* walk live descendants in postorder */
-#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)                \
-       css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
-               if (({ lockdep_assert_held(&cgroup_mutex);              \
-                      (dsct) = (d_css)->cgroup;                        \
-                      cgroup_is_dead(dsct); }))                        \
-                       ;                                               \
-               else
-
-static void cgroup_release_agent(struct work_struct *work);
-static void check_for_release(struct cgroup *cgrp);
-
-/*
- * A cgroup can be associated with multiple css_sets as different tasks may
- * belong to different cgroups on different hierarchies.  In the other
- * direction, a css_set is naturally associated with multiple cgroups.
- * This M:N relationship is represented by the following link structure
- * which exists for each association and allows traversing the associations
- * from both sides.
- */
-struct cgrp_cset_link {
-       /* the cgroup and css_set this link associates */
-       struct cgroup           *cgrp;
-       struct css_set          *cset;
-
-       /* list of cgrp_cset_links anchored at cgrp->cset_links */
-       struct list_head        cset_link;
-
-       /* list of cgrp_cset_links anchored at css_set->cgrp_links */
-       struct list_head        cgrp_link;
-};
-
-/*
- * The default css_set - used by init and its children prior to any
- * hierarchies being mounted. It contains a pointer to the root state
- * for each subsystem. Also used to anchor the list of css_sets. Not
- * reference-counted, to improve performance when child cgroups
- * haven't been created.
- */
-struct css_set init_css_set = {
-       .refcount               = ATOMIC_INIT(1),
-       .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
-       .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
-       .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
-       .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
-       .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
-       .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
-};
-
-static int css_set_count       = 1;    /* 1 for init_css_set */
-
-/**
- * css_set_populated - does a css_set contain any tasks?
- * @cset: target css_set
- */
-static bool css_set_populated(struct css_set *cset)
-{
-       lockdep_assert_held(&css_set_lock);
-
-       return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
-}
-
-/**
- * cgroup_update_populated - updated populated count of a cgroup
- * @cgrp: the target cgroup
- * @populated: inc or dec populated count
- *
- * One of the css_sets associated with @cgrp is either getting its first
- * task or losing the last.  Update @cgrp->populated_cnt accordingly.  The
- * count is propagated towards root so that a given cgroup's populated_cnt
- * is zero iff the cgroup and all its descendants don't contain any tasks.
- *
- * @cgrp's interface file "cgroup.populated" is zero if
- * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
- * changes from or to zero, userland is notified that the content of the
- * interface file has changed.  This can be used to detect when @cgrp and
- * its descendants become populated or empty.
- */
-static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
-{
-       lockdep_assert_held(&css_set_lock);
-
-       do {
-               bool trigger;
-
-               if (populated)
-                       trigger = !cgrp->populated_cnt++;
-               else
-                       trigger = !--cgrp->populated_cnt;
-
-               if (!trigger)
-                       break;
-
-               check_for_release(cgrp);
-               cgroup_file_notify(&cgrp->events_file);
-
-               cgrp = cgroup_parent(cgrp);
-       } while (cgrp);
-}
-
-/**
- * css_set_update_populated - update populated state of a css_set
- * @cset: target css_set
- * @populated: whether @cset is populated or depopulated
- *
- * @cset is either getting the first task or losing the last.  Update the
- * ->populated_cnt of all associated cgroups accordingly.
- */
-static void css_set_update_populated(struct css_set *cset, bool populated)
-{
-       struct cgrp_cset_link *link;
-
-       lockdep_assert_held(&css_set_lock);
-
-       list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
-               cgroup_update_populated(link->cgrp, populated);
-}
-
-/**
- * css_set_move_task - move a task from one css_set to another
- * @task: task being moved
- * @from_cset: css_set @task currently belongs to (may be NULL)
- * @to_cset: new css_set @task is being moved to (may be NULL)
- * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
- *
- * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
- * css_set, @from_cset can be NULL.  If @task is being disassociated
- * instead of moved, @to_cset can be NULL.
- *
- * This function automatically handles populated_cnt updates and
- * css_task_iter adjustments but the caller is responsible for managing
- * @from_cset and @to_cset's reference counts.
- */
-static void css_set_move_task(struct task_struct *task,
-                             struct css_set *from_cset, struct css_set *to_cset,
-                             bool use_mg_tasks)
-{
-       lockdep_assert_held(&css_set_lock);
-
-       if (to_cset && !css_set_populated(to_cset))
-               css_set_update_populated(to_cset, true);
-
-       if (from_cset) {
-               struct css_task_iter *it, *pos;
-
-               WARN_ON_ONCE(list_empty(&task->cg_list));
-
-               /*
-                * @task is leaving, advance task iterators which are
-                * pointing to it so that they can resume at the next
-                * position.  Advancing an iterator might remove it from
-                * the list, use safe walk.  See css_task_iter_advance*()
-                * for details.
-                */
-               list_for_each_entry_safe(it, pos, &from_cset->task_iters,
-                                        iters_node)
-                       if (it->task_pos == &task->cg_list)
-                               css_task_iter_advance(it);
-
-               list_del_init(&task->cg_list);
-               if (!css_set_populated(from_cset))
-                       css_set_update_populated(from_cset, false);
-       } else {
-               WARN_ON_ONCE(!list_empty(&task->cg_list));
-       }
-
-       if (to_cset) {
-               /*
-                * We are synchronized through cgroup_threadgroup_rwsem
-                * against PF_EXITING setting such that we can't race
-                * against cgroup_exit() changing the css_set to
-                * init_css_set and dropping the old one.
-                */
-               WARN_ON_ONCE(task->flags & PF_EXITING);
-
-               rcu_assign_pointer(task->cgroups, to_cset);
-               list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
-                                                            &to_cset->tasks);
-       }
-}
-
-/*
- * hash table for cgroup groups. This improves the performance to find
- * an existing css_set. This hash doesn't (currently) take into
- * account cgroups in empty hierarchies.
- */
-#define CSS_SET_HASH_BITS      7
-static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
-
-static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
-{
-       unsigned long key = 0UL;
-       struct cgroup_subsys *ss;
-       int i;
-
-       for_each_subsys(ss, i)
-               key += (unsigned long)css[i];
-       key = (key >> 16) ^ key;
-
-       return key;
-}
-
-static void put_css_set_locked(struct css_set *cset)
-{
-       struct cgrp_cset_link *link, *tmp_link;
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       lockdep_assert_held(&css_set_lock);
-
-       if (!atomic_dec_and_test(&cset->refcount))
-               return;
-
-       /* This css_set is dead. unlink it and release cgroup and css refs */
-       for_each_subsys(ss, ssid) {
-               list_del(&cset->e_cset_node[ssid]);
-               css_put(cset->subsys[ssid]);
-       }
-       hash_del(&cset->hlist);
-       css_set_count--;
-
-       list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
-               list_del(&link->cset_link);
-               list_del(&link->cgrp_link);
-               if (cgroup_parent(link->cgrp))
-                       cgroup_put(link->cgrp);
-               kfree(link);
-       }
-
-       kfree_rcu(cset, rcu_head);
-}
-
-static void put_css_set(struct css_set *cset)
-{
-       unsigned long flags;
-
-       /*
-        * Ensure that the refcount doesn't hit zero while any readers
-        * can see it. Similar to atomic_dec_and_lock(), but for an
-        * rwlock
-        */
-       if (atomic_add_unless(&cset->refcount, -1, 1))
-               return;
-
-       spin_lock_irqsave(&css_set_lock, flags);
-       put_css_set_locked(cset);
-       spin_unlock_irqrestore(&css_set_lock, flags);
-}
-
-/*
- * refcounted get/put for css_set objects
- */
-static inline void get_css_set(struct css_set *cset)
-{
-       atomic_inc(&cset->refcount);
-}
-
-/**
- * compare_css_sets - helper function for find_existing_css_set().
- * @cset: candidate css_set being tested
- * @old_cset: existing css_set for a task
- * @new_cgrp: cgroup that's being entered by the task
- * @template: desired set of css pointers in css_set (pre-calculated)
- *
- * Returns true if "cset" matches "old_cset" except for the hierarchy
- * which "new_cgrp" belongs to, for which it should match "new_cgrp".
- */
-static bool compare_css_sets(struct css_set *cset,
-                            struct css_set *old_cset,
-                            struct cgroup *new_cgrp,
-                            struct cgroup_subsys_state *template[])
-{
-       struct list_head *l1, *l2;
-
-       /*
-        * On the default hierarchy, there can be csets which are
-        * associated with the same set of cgroups but different csses.
-        * Let's first ensure that csses match.
-        */
-       if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
-               return false;
-
-       /*
-        * Compare cgroup pointers in order to distinguish between
-        * different cgroups in hierarchies.  As different cgroups may
-        * share the same effective css, this comparison is always
-        * necessary.
-        */
-       l1 = &cset->cgrp_links;
-       l2 = &old_cset->cgrp_links;
-       while (1) {
-               struct cgrp_cset_link *link1, *link2;
-               struct cgroup *cgrp1, *cgrp2;
-
-               l1 = l1->next;
-               l2 = l2->next;
-               /* See if we reached the end - both lists are equal length. */
-               if (l1 == &cset->cgrp_links) {
-                       BUG_ON(l2 != &old_cset->cgrp_links);
-                       break;
-               } else {
-                       BUG_ON(l2 == &old_cset->cgrp_links);
-               }
-               /* Locate the cgroups associated with these links. */
-               link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
-               link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
-               cgrp1 = link1->cgrp;
-               cgrp2 = link2->cgrp;
-               /* Hierarchies should be linked in the same order. */
-               BUG_ON(cgrp1->root != cgrp2->root);
-
-               /*
-                * If this hierarchy is the hierarchy of the cgroup
-                * that's changing, then we need to check that this
-                * css_set points to the new cgroup; if it's any other
-                * hierarchy, then this css_set should point to the
-                * same cgroup as the old css_set.
-                */
-               if (cgrp1->root == new_cgrp->root) {
-                       if (cgrp1 != new_cgrp)
-                               return false;
-               } else {
-                       if (cgrp1 != cgrp2)
-                               return false;
-               }
-       }
-       return true;
-}
-
-/**
- * find_existing_css_set - init css array and find the matching css_set
- * @old_cset: the css_set that we're using before the cgroup transition
- * @cgrp: the cgroup that we're moving into
- * @template: out param for the new set of csses, should be clear on entry
- */
-static struct css_set *find_existing_css_set(struct css_set *old_cset,
-                                       struct cgroup *cgrp,
-                                       struct cgroup_subsys_state *template[])
-{
-       struct cgroup_root *root = cgrp->root;
-       struct cgroup_subsys *ss;
-       struct css_set *cset;
-       unsigned long key;
-       int i;
-
-       /*
-        * Build the set of subsystem state objects that we want to see in the
-        * new css_set. while subsystems can change globally, the entries here
-        * won't change, so no need for locking.
-        */
-       for_each_subsys(ss, i) {
-               if (root->subsys_mask & (1UL << i)) {
-                       /*
-                        * @ss is in this hierarchy, so we want the
-                        * effective css from @cgrp.
-                        */
-                       template[i] = cgroup_e_css(cgrp, ss);
-               } else {
-                       /*
-                        * @ss is not in this hierarchy, so we don't want
-                        * to change the css.
-                        */
-                       template[i] = old_cset->subsys[i];
-               }
-       }
-
-       key = css_set_hash(template);
-       hash_for_each_possible(css_set_table, cset, hlist, key) {
-               if (!compare_css_sets(cset, old_cset, cgrp, template))
-                       continue;
-
-               /* This css_set matches what we need */
-               return cset;
-       }
-
-       /* No existing cgroup group matched */
-       return NULL;
-}
-
-static void free_cgrp_cset_links(struct list_head *links_to_free)
-{
-       struct cgrp_cset_link *link, *tmp_link;
-
-       list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
-               list_del(&link->cset_link);
-               kfree(link);
-       }
-}
-
-/**
- * allocate_cgrp_cset_links - allocate cgrp_cset_links
- * @count: the number of links to allocate
- * @tmp_links: list_head the allocated links are put on
- *
- * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
- * through ->cset_link.  Returns 0 on success or -errno.
- */
-static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
-{
-       struct cgrp_cset_link *link;
-       int i;
-
-       INIT_LIST_HEAD(tmp_links);
-
-       for (i = 0; i < count; i++) {
-               link = kzalloc(sizeof(*link), GFP_KERNEL);
-               if (!link) {
-                       free_cgrp_cset_links(tmp_links);
-                       return -ENOMEM;
-               }
-               list_add(&link->cset_link, tmp_links);
-       }
-       return 0;
-}
-
-/**
- * link_css_set - a helper function to link a css_set to a cgroup
- * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
- * @cset: the css_set to be linked
- * @cgrp: the destination cgroup
- */
-static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
-                        struct cgroup *cgrp)
-{
-       struct cgrp_cset_link *link;
-
-       BUG_ON(list_empty(tmp_links));
-
-       if (cgroup_on_dfl(cgrp))
-               cset->dfl_cgrp = cgrp;
-
-       link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
-       link->cset = cset;
-       link->cgrp = cgrp;
-
-       /*
-        * Always add links to the tail of the lists so that the lists are
-        * in choronological order.
-        */
-       list_move_tail(&link->cset_link, &cgrp->cset_links);
-       list_add_tail(&link->cgrp_link, &cset->cgrp_links);
-
-       if (cgroup_parent(cgrp))
-               cgroup_get(cgrp);
-}
-
-/**
- * find_css_set - return a new css_set with one cgroup updated
- * @old_cset: the baseline css_set
- * @cgrp: the cgroup to be updated
- *
- * Return a new css_set that's equivalent to @old_cset, but with @cgrp
- * substituted into the appropriate hierarchy.
- */
-static struct css_set *find_css_set(struct css_set *old_cset,
-                                   struct cgroup *cgrp)
-{
-       struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
-       struct css_set *cset;
-       struct list_head tmp_links;
-       struct cgrp_cset_link *link;
-       struct cgroup_subsys *ss;
-       unsigned long key;
-       int ssid;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       /* First see if we already have a cgroup group that matches
-        * the desired set */
-       spin_lock_irq(&css_set_lock);
-       cset = find_existing_css_set(old_cset, cgrp, template);
-       if (cset)
-               get_css_set(cset);
-       spin_unlock_irq(&css_set_lock);
-
-       if (cset)
-               return cset;
-
-       cset = kzalloc(sizeof(*cset), GFP_KERNEL);
-       if (!cset)
-               return NULL;
-
-       /* Allocate all the cgrp_cset_link objects that we'll need */
-       if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
-               kfree(cset);
-               return NULL;
-       }
-
-       atomic_set(&cset->refcount, 1);
-       INIT_LIST_HEAD(&cset->tasks);
-       INIT_LIST_HEAD(&cset->mg_tasks);
-       INIT_LIST_HEAD(&cset->task_iters);
-       INIT_HLIST_NODE(&cset->hlist);
-       INIT_LIST_HEAD(&cset->cgrp_links);
-       INIT_LIST_HEAD(&cset->mg_preload_node);
-       INIT_LIST_HEAD(&cset->mg_node);
-
-       /* Copy the set of subsystem state objects generated in
-        * find_existing_css_set() */
-       memcpy(cset->subsys, template, sizeof(cset->subsys));
-
-       spin_lock_irq(&css_set_lock);
-       /* Add reference counts and links from the new css_set. */
-       list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
-               struct cgroup *c = link->cgrp;
-
-               if (c->root == cgrp->root)
-                       c = cgrp;
-               link_css_set(&tmp_links, cset, c);
-       }
-
-       BUG_ON(!list_empty(&tmp_links));
-
-       css_set_count++;
-
-       /* Add @cset to the hash table */
-       key = css_set_hash(cset->subsys);
-       hash_add(css_set_table, &cset->hlist, key);
-
-       for_each_subsys(ss, ssid) {
-               struct cgroup_subsys_state *css = cset->subsys[ssid];
-
-               list_add_tail(&cset->e_cset_node[ssid],
-                             &css->cgroup->e_csets[ssid]);
-               css_get(css);
-       }
-
-       spin_unlock_irq(&css_set_lock);
-
-       return cset;
-}
-
-static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
-{
-       struct cgroup *root_cgrp = kf_root->kn->priv;
-
-       return root_cgrp->root;
-}
-
-static int cgroup_init_root_id(struct cgroup_root *root)
-{
-       int id;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
-       if (id < 0)
-               return id;
-
-       root->hierarchy_id = id;
-       return 0;
-}
-
-static void cgroup_exit_root_id(struct cgroup_root *root)
-{
-       lockdep_assert_held(&cgroup_mutex);
-
-       idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
-}
-
-static void cgroup_free_root(struct cgroup_root *root)
-{
-       if (root) {
-               idr_destroy(&root->cgroup_idr);
-               kfree(root);
-       }
-}
-
-static void cgroup_destroy_root(struct cgroup_root *root)
-{
-       struct cgroup *cgrp = &root->cgrp;
-       struct cgrp_cset_link *link, *tmp_link;
-
-       trace_cgroup_destroy_root(root);
-
-       cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
-
-       BUG_ON(atomic_read(&root->nr_cgrps));
-       BUG_ON(!list_empty(&cgrp->self.children));
-
-       /* Rebind all subsystems back to the default hierarchy */
-       WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
-
-       /*
-        * Release all the links from cset_links to this hierarchy's
-        * root cgroup
-        */
-       spin_lock_irq(&css_set_lock);
-
-       list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
-               list_del(&link->cset_link);
-               list_del(&link->cgrp_link);
-               kfree(link);
-       }
-
-       spin_unlock_irq(&css_set_lock);
-
-       if (!list_empty(&root->root_list)) {
-               list_del(&root->root_list);
-               cgroup_root_count--;
-       }
-
-       cgroup_exit_root_id(root);
-
-       mutex_unlock(&cgroup_mutex);
-
-       kernfs_destroy_root(root->kf_root);
-       cgroup_free_root(root);
-}
-
-/*
- * look up cgroup associated with current task's cgroup namespace on the
- * specified hierarchy
- */
-static struct cgroup *
-current_cgns_cgroup_from_root(struct cgroup_root *root)
-{
-       struct cgroup *res = NULL;
-       struct css_set *cset;
-
-       lockdep_assert_held(&css_set_lock);
-
-       rcu_read_lock();
-
-       cset = current->nsproxy->cgroup_ns->root_cset;
-       if (cset == &init_css_set) {
-               res = &root->cgrp;
-       } else {
-               struct cgrp_cset_link *link;
-
-               list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
-                       struct cgroup *c = link->cgrp;
-
-                       if (c->root == root) {
-                               res = c;
-                               break;
-                       }
-               }
-       }
-       rcu_read_unlock();
-
-       BUG_ON(!res);
-       return res;
-}
-
-/* look up cgroup associated with given css_set on the specified hierarchy */
-static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
-                                           struct cgroup_root *root)
-{
-       struct cgroup *res = NULL;
-
-       lockdep_assert_held(&cgroup_mutex);
-       lockdep_assert_held(&css_set_lock);
-
-       if (cset == &init_css_set) {
-               res = &root->cgrp;
-       } else {
-               struct cgrp_cset_link *link;
-
-               list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
-                       struct cgroup *c = link->cgrp;
-
-                       if (c->root == root) {
-                               res = c;
-                               break;
-                       }
-               }
-       }
-
-       BUG_ON(!res);
-       return res;
-}
-
-/*
- * Return the cgroup for "task" from the given hierarchy. Must be
- * called with cgroup_mutex and css_set_lock held.
- */
-static struct cgroup *task_cgroup_from_root(struct task_struct *task,
-                                           struct cgroup_root *root)
-{
-       /*
-        * No need to lock the task - since we hold cgroup_mutex the
-        * task can't change groups, so the only thing that can happen
-        * is that it exits and its css is set back to init_css_set.
-        */
-       return cset_cgroup_from_root(task_css_set(task), root);
-}
-
-/*
- * A task must hold cgroup_mutex to modify cgroups.
- *
- * Any task can increment and decrement the count field without lock.
- * So in general, code holding cgroup_mutex can't rely on the count
- * field not changing.  However, if the count goes to zero, then only
- * cgroup_attach_task() can increment it again.  Because a count of zero
- * means that no tasks are currently attached, therefore there is no
- * way a task attached to that cgroup can fork (the other way to
- * increment the count).  So code holding cgroup_mutex can safely
- * assume that if the count is zero, it will stay zero. Similarly, if
- * a task holds cgroup_mutex on a cgroup with zero count, it
- * knows that the cgroup won't be removed, as cgroup_rmdir()
- * needs that mutex.
- *
- * A cgroup can only be deleted if both its 'count' of using tasks
- * is zero, and its list of 'children' cgroups is empty.  Since all
- * tasks in the system use _some_ cgroup, and since there is always at
- * least one task in the system (init, pid == 1), therefore, root cgroup
- * always has either children cgroups and/or using tasks.  So we don't
- * need a special hack to ensure that root cgroup cannot be deleted.
- *
- * P.S.  One more locking exception.  RCU is used to guard the
- * update of a tasks cgroup pointer by cgroup_attach_task()
- */
-
-static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
-static const struct file_operations proc_cgroupstats_operations;
-
-static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
-                             char *buf)
-{
-       struct cgroup_subsys *ss = cft->ss;
-
-       if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
-           !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
-               snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
-                        cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
-                        cft->name);
-       else
-               strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
-       return buf;
-}
-
-/**
- * cgroup_file_mode - deduce file mode of a control file
- * @cft: the control file in question
- *
- * S_IRUGO for read, S_IWUSR for write.
- */
-static umode_t cgroup_file_mode(const struct cftype *cft)
-{
-       umode_t mode = 0;
-
-       if (cft->read_u64 || cft->read_s64 || cft->seq_show)
-               mode |= S_IRUGO;
-
-       if (cft->write_u64 || cft->write_s64 || cft->write) {
-               if (cft->flags & CFTYPE_WORLD_WRITABLE)
-                       mode |= S_IWUGO;
-               else
-                       mode |= S_IWUSR;
-       }
-
-       return mode;
-}
-
-/**
- * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
- * @subtree_control: the new subtree_control mask to consider
- * @this_ss_mask: available subsystems
- *
- * On the default hierarchy, a subsystem may request other subsystems to be
- * enabled together through its ->depends_on mask.  In such cases, more
- * subsystems than specified in "cgroup.subtree_control" may be enabled.
- *
- * This function calculates which subsystems need to be enabled if
- * @subtree_control is to be applied while restricted to @this_ss_mask.
- */
-static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
-{
-       u16 cur_ss_mask = subtree_control;
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
-
-       while (true) {
-               u16 new_ss_mask = cur_ss_mask;
-
-               do_each_subsys_mask(ss, ssid, cur_ss_mask) {
-                       new_ss_mask |= ss->depends_on;
-               } while_each_subsys_mask();
-
-               /*
-                * Mask out subsystems which aren't available.  This can
-                * happen only if some depended-upon subsystems were bound
-                * to non-default hierarchies.
-                */
-               new_ss_mask &= this_ss_mask;
-
-               if (new_ss_mask == cur_ss_mask)
-                       break;
-               cur_ss_mask = new_ss_mask;
-       }
-
-       return cur_ss_mask;
-}
-
-/**
- * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
- * @kn: the kernfs_node being serviced
- *
- * This helper undoes cgroup_kn_lock_live() and should be invoked before
- * the method finishes if locking succeeded.  Note that once this function
- * returns the cgroup returned by cgroup_kn_lock_live() may become
- * inaccessible any time.  If the caller intends to continue to access the
- * cgroup, it should pin it before invoking this function.
- */
-static void cgroup_kn_unlock(struct kernfs_node *kn)
-{
-       struct cgroup *cgrp;
-
-       if (kernfs_type(kn) == KERNFS_DIR)
-               cgrp = kn->priv;
-       else
-               cgrp = kn->parent->priv;
-
-       mutex_unlock(&cgroup_mutex);
-
-       kernfs_unbreak_active_protection(kn);
-       cgroup_put(cgrp);
-}
-
-/**
- * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
- * @kn: the kernfs_node being serviced
- * @drain_offline: perform offline draining on the cgroup
- *
- * This helper is to be used by a cgroup kernfs method currently servicing
- * @kn.  It breaks the active protection, performs cgroup locking and
- * verifies that the associated cgroup is alive.  Returns the cgroup if
- * alive; otherwise, %NULL.  A successful return should be undone by a
- * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
- * cgroup is drained of offlining csses before return.
- *
- * Any cgroup kernfs method implementation which requires locking the
- * associated cgroup should use this helper.  It avoids nesting cgroup
- * locking under kernfs active protection and allows all kernfs operations
- * including self-removal.
- */
-static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
-                                         bool drain_offline)
-{
-       struct cgroup *cgrp;
-
-       if (kernfs_type(kn) == KERNFS_DIR)
-               cgrp = kn->priv;
-       else
-               cgrp = kn->parent->priv;
-
-       /*
-        * We're gonna grab cgroup_mutex which nests outside kernfs
-        * active_ref.  cgroup liveliness check alone provides enough
-        * protection against removal.  Ensure @cgrp stays accessible and
-        * break the active_ref protection.
-        */
-       if (!cgroup_tryget(cgrp))
-               return NULL;
-       kernfs_break_active_protection(kn);
-
-       if (drain_offline)
-               cgroup_lock_and_drain_offline(cgrp);
-       else
-               mutex_lock(&cgroup_mutex);
-
-       if (!cgroup_is_dead(cgrp))
-               return cgrp;
-
-       cgroup_kn_unlock(kn);
-       return NULL;
-}
-
-static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
-{
-       char name[CGROUP_FILE_NAME_MAX];
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       if (cft->file_offset) {
-               struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
-               struct cgroup_file *cfile = (void *)css + cft->file_offset;
-
-               spin_lock_irq(&cgroup_file_kn_lock);
-               cfile->kn = NULL;
-               spin_unlock_irq(&cgroup_file_kn_lock);
-       }
-
-       kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
-}
-
-/**
- * css_clear_dir - remove subsys files in a cgroup directory
- * @css: taget css
- */
-static void css_clear_dir(struct cgroup_subsys_state *css)
-{
-       struct cgroup *cgrp = css->cgroup;
-       struct cftype *cfts;
-
-       if (!(css->flags & CSS_VISIBLE))
-               return;
-
-       css->flags &= ~CSS_VISIBLE;
-
-       list_for_each_entry(cfts, &css->ss->cfts, node)
-               cgroup_addrm_files(css, cgrp, cfts, false);
-}
-
-/**
- * css_populate_dir - create subsys files in a cgroup directory
- * @css: target css
- *
- * On failure, no file is added.
- */
-static int css_populate_dir(struct cgroup_subsys_state *css)
-{
-       struct cgroup *cgrp = css->cgroup;
-       struct cftype *cfts, *failed_cfts;
-       int ret;
-
-       if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
-               return 0;
-
-       if (!css->ss) {
-               if (cgroup_on_dfl(cgrp))
-                       cfts = cgroup_dfl_base_files;
-               else
-                       cfts = cgroup_legacy_base_files;
-
-               return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
-       }
-
-       list_for_each_entry(cfts, &css->ss->cfts, node) {
-               ret = cgroup_addrm_files(css, cgrp, cfts, true);
-               if (ret < 0) {
-                       failed_cfts = cfts;
-                       goto err;
-               }
-       }
-
-       css->flags |= CSS_VISIBLE;
-
-       return 0;
-err:
-       list_for_each_entry(cfts, &css->ss->cfts, node) {
-               if (cfts == failed_cfts)
-                       break;
-               cgroup_addrm_files(css, cgrp, cfts, false);
-       }
-       return ret;
-}
-
-static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
-{
-       struct cgroup *dcgrp = &dst_root->cgrp;
-       struct cgroup_subsys *ss;
-       int ssid, i, ret;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       do_each_subsys_mask(ss, ssid, ss_mask) {
-               /*
-                * If @ss has non-root csses attached to it, can't move.
-                * If @ss is an implicit controller, it is exempt from this
-                * rule and can be stolen.
-                */
-               if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
-                   !ss->implicit_on_dfl)
-                       return -EBUSY;
-
-               /* can't move between two non-dummy roots either */
-               if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
-                       return -EBUSY;
-       } while_each_subsys_mask();
-
-       do_each_subsys_mask(ss, ssid, ss_mask) {
-               struct cgroup_root *src_root = ss->root;
-               struct cgroup *scgrp = &src_root->cgrp;
-               struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
-               struct css_set *cset;
-
-               WARN_ON(!css || cgroup_css(dcgrp, ss));
-
-               /* disable from the source */
-               src_root->subsys_mask &= ~(1 << ssid);
-               WARN_ON(cgroup_apply_control(scgrp));
-               cgroup_finalize_control(scgrp, 0);
-
-               /* rebind */
-               RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
-               rcu_assign_pointer(dcgrp->subsys[ssid], css);
-               ss->root = dst_root;
-               css->cgroup = dcgrp;
-
-               spin_lock_irq(&css_set_lock);
-               hash_for_each(css_set_table, i, cset, hlist)
-                       list_move_tail(&cset->e_cset_node[ss->id],
-                                      &dcgrp->e_csets[ss->id]);
-               spin_unlock_irq(&css_set_lock);
-
-               /* default hierarchy doesn't enable controllers by default */
-               dst_root->subsys_mask |= 1 << ssid;
-               if (dst_root == &cgrp_dfl_root) {
-                       static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
-               } else {
-                       dcgrp->subtree_control |= 1 << ssid;
-                       static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
-               }
-
-               ret = cgroup_apply_control(dcgrp);
-               if (ret)
-                       pr_warn("partial failure to rebind %s controller (err=%d)\n",
-                               ss->name, ret);
-
-               if (ss->bind)
-                       ss->bind(css);
-       } while_each_subsys_mask();
-
-       kernfs_activate(dcgrp->kn);
-       return 0;
-}
-
-static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
-                           struct kernfs_root *kf_root)
-{
-       int len = 0;
-       char *buf = NULL;
-       struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
-       struct cgroup *ns_cgroup;
-
-       buf = kmalloc(PATH_MAX, GFP_KERNEL);
-       if (!buf)
-               return -ENOMEM;
-
-       spin_lock_irq(&css_set_lock);
-       ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
-       len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
-       spin_unlock_irq(&css_set_lock);
-
-       if (len >= PATH_MAX)
-               len = -ERANGE;
-       else if (len > 0) {
-               seq_escape(sf, buf, " \t\n\\");
-               len = 0;
-       }
-       kfree(buf);
-       return len;
-}
-
-static int cgroup_show_options(struct seq_file *seq,
-                              struct kernfs_root *kf_root)
-{
-       struct cgroup_root *root = cgroup_root_from_kf(kf_root);
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       if (root != &cgrp_dfl_root)
-               for_each_subsys(ss, ssid)
-                       if (root->subsys_mask & (1 << ssid))
-                               seq_show_option(seq, ss->legacy_name, NULL);
-       if (root->flags & CGRP_ROOT_NOPREFIX)
-               seq_puts(seq, ",noprefix");
-       if (root->flags & CGRP_ROOT_XATTR)
-               seq_puts(seq, ",xattr");
-
-       spin_lock(&release_agent_path_lock);
-       if (strlen(root->release_agent_path))
-               seq_show_option(seq, "release_agent",
-                               root->release_agent_path);
-       spin_unlock(&release_agent_path_lock);
-
-       if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
-               seq_puts(seq, ",clone_children");
-       if (strlen(root->name))
-               seq_show_option(seq, "name", root->name);
-       return 0;
-}
-
-struct cgroup_sb_opts {
-       u16 subsys_mask;
-       unsigned int flags;
-       char *release_agent;
-       bool cpuset_clone_children;
-       char *name;
-       /* User explicitly requested empty subsystem */
-       bool none;
-};
-
-static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
-{
-       char *token, *o = data;
-       bool all_ss = false, one_ss = false;
-       u16 mask = U16_MAX;
-       struct cgroup_subsys *ss;
-       int nr_opts = 0;
-       int i;
-
-#ifdef CONFIG_CPUSETS
-       mask = ~((u16)1 << cpuset_cgrp_id);
-#endif
-
-       memset(opts, 0, sizeof(*opts));
-
-       while ((token = strsep(&o, ",")) != NULL) {
-               nr_opts++;
-
-               if (!*token)
-                       return -EINVAL;
-               if (!strcmp(token, "none")) {
-                       /* Explicitly have no subsystems */
-                       opts->none = true;
-                       continue;
-               }
-               if (!strcmp(token, "all")) {
-                       /* Mutually exclusive option 'all' + subsystem name */
-                       if (one_ss)
-                               return -EINVAL;
-                       all_ss = true;
-                       continue;
-               }
-               if (!strcmp(token, "noprefix")) {
-                       opts->flags |= CGRP_ROOT_NOPREFIX;
-                       continue;
-               }
-               if (!strcmp(token, "clone_children")) {
-                       opts->cpuset_clone_children = true;
-                       continue;
-               }
-               if (!strcmp(token, "xattr")) {
-                       opts->flags |= CGRP_ROOT_XATTR;
-                       continue;
-               }
-               if (!strncmp(token, "release_agent=", 14)) {
-                       /* Specifying two release agents is forbidden */
-                       if (opts->release_agent)
-                               return -EINVAL;
-                       opts->release_agent =
-                               kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
-                       if (!opts->release_agent)
-                               return -ENOMEM;
-                       continue;
-               }
-               if (!strncmp(token, "name=", 5)) {
-                       const char *name = token + 5;
-                       /* Can't specify an empty name */
-                       if (!strlen(name))
-                               return -EINVAL;
-                       /* Must match [\w.-]+ */
-                       for (i = 0; i < strlen(name); i++) {
-                               char c = name[i];
-                               if (isalnum(c))
-                                       continue;
-                               if ((c == '.') || (c == '-') || (c == '_'))
-                                       continue;
-                               return -EINVAL;
-                       }
-                       /* Specifying two names is forbidden */
-                       if (opts->name)
-                               return -EINVAL;
-                       opts->name = kstrndup(name,
-                                             MAX_CGROUP_ROOT_NAMELEN - 1,
-                                             GFP_KERNEL);
-                       if (!opts->name)
-                               return -ENOMEM;
-
-                       continue;
-               }
-
-               for_each_subsys(ss, i) {
-                       if (strcmp(token, ss->legacy_name))
-                               continue;
-                       if (!cgroup_ssid_enabled(i))
-                               continue;
-                       if (cgroup_ssid_no_v1(i))
-                               continue;
-
-                       /* Mutually exclusive option 'all' + subsystem name */
-                       if (all_ss)
-                               return -EINVAL;
-                       opts->subsys_mask |= (1 << i);
-                       one_ss = true;
-
-                       break;
-               }
-               if (i == CGROUP_SUBSYS_COUNT)
-                       return -ENOENT;
-       }
-
-       /*
-        * If the 'all' option was specified select all the subsystems,
-        * otherwise if 'none', 'name=' and a subsystem name options were
-        * not specified, let's default to 'all'
-        */
-       if (all_ss || (!one_ss && !opts->none && !opts->name))
-               for_each_subsys(ss, i)
-                       if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
-                               opts->subsys_mask |= (1 << i);
-
-       /*
-        * We either have to specify by name or by subsystems. (So all
-        * empty hierarchies must have a name).
-        */
-       if (!opts->subsys_mask && !opts->name)
-               return -EINVAL;
-
-       /*
-        * Option noprefix was introduced just for backward compatibility
-        * with the old cpuset, so we allow noprefix only if mounting just
-        * the cpuset subsystem.
-        */
-       if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
-               return -EINVAL;
-
-       /* Can't specify "none" and some subsystems */
-       if (opts->subsys_mask && opts->none)
-               return -EINVAL;
-
-       return 0;
-}
-
-static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
-{
-       int ret = 0;
-       struct cgroup_root *root = cgroup_root_from_kf(kf_root);
-       struct cgroup_sb_opts opts;
-       u16 added_mask, removed_mask;
-
-       if (root == &cgrp_dfl_root) {
-               pr_err("remount is not allowed\n");
-               return -EINVAL;
-       }
-
-       cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
-
-       /* See what subsystems are wanted */
-       ret = parse_cgroupfs_options(data, &opts);
-       if (ret)
-               goto out_unlock;
-
-       if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
-               pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
-                       task_tgid_nr(current), current->comm);
-
-       added_mask = opts.subsys_mask & ~root->subsys_mask;
-       removed_mask = root->subsys_mask & ~opts.subsys_mask;
-
-       /* Don't allow flags or name to change at remount */
-       if ((opts.flags ^ root->flags) ||
-           (opts.name && strcmp(opts.name, root->name))) {
-               pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
-                      opts.flags, opts.name ?: "", root->flags, root->name);
-               ret = -EINVAL;
-               goto out_unlock;
-       }
-
-       /* remounting is not allowed for populated hierarchies */
-       if (!list_empty(&root->cgrp.self.children)) {
-               ret = -EBUSY;
-               goto out_unlock;
-       }
-
-       ret = rebind_subsystems(root, added_mask);
-       if (ret)
-               goto out_unlock;
-
-       WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
-
-       if (opts.release_agent) {
-               spin_lock(&release_agent_path_lock);
-               strcpy(root->release_agent_path, opts.release_agent);
-               spin_unlock(&release_agent_path_lock);
-       }
-
-       trace_cgroup_remount(root);
-
- out_unlock:
-       kfree(opts.release_agent);
-       kfree(opts.name);
-       mutex_unlock(&cgroup_mutex);
-       return ret;
-}
-
-/*
- * To reduce the fork() overhead for systems that are not actually using
- * their cgroups capability, we don't maintain the lists running through
- * each css_set to its tasks until we see the list actually used - in other
- * words after the first mount.
- */
-static bool use_task_css_set_links __read_mostly;
-
-static void cgroup_enable_task_cg_lists(void)
-{
-       struct task_struct *p, *g;
-
-       spin_lock_irq(&css_set_lock);
-
-       if (use_task_css_set_links)
-               goto out_unlock;
-
-       use_task_css_set_links = true;
-
-       /*
-        * We need tasklist_lock because RCU is not safe against
-        * while_each_thread(). Besides, a forking task that has passed
-        * cgroup_post_fork() without seeing use_task_css_set_links = 1
-        * is not guaranteed to have its child immediately visible in the
-        * tasklist if we walk through it with RCU.
-        */
-       read_lock(&tasklist_lock);
-       do_each_thread(g, p) {
-               WARN_ON_ONCE(!list_empty(&p->cg_list) ||
-                            task_css_set(p) != &init_css_set);
-
-               /*
-                * We should check if the process is exiting, otherwise
-                * it will race with cgroup_exit() in that the list
-                * entry won't be deleted though the process has exited.
-                * Do it while holding siglock so that we don't end up
-                * racing against cgroup_exit().
-                *
-                * Interrupts were already disabled while acquiring
-                * the css_set_lock, so we do not need to disable it
-                * again when acquiring the sighand->siglock here.
-                */
-               spin_lock(&p->sighand->siglock);
-               if (!(p->flags & PF_EXITING)) {
-                       struct css_set *cset = task_css_set(p);
-
-                       if (!css_set_populated(cset))
-                               css_set_update_populated(cset, true);
-                       list_add_tail(&p->cg_list, &cset->tasks);
-                       get_css_set(cset);
-               }
-               spin_unlock(&p->sighand->siglock);
-       } while_each_thread(g, p);
-       read_unlock(&tasklist_lock);
-out_unlock:
-       spin_unlock_irq(&css_set_lock);
-}
-
-static void init_cgroup_housekeeping(struct cgroup *cgrp)
-{
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       INIT_LIST_HEAD(&cgrp->self.sibling);
-       INIT_LIST_HEAD(&cgrp->self.children);
-       INIT_LIST_HEAD(&cgrp->cset_links);
-       INIT_LIST_HEAD(&cgrp->pidlists);
-       mutex_init(&cgrp->pidlist_mutex);
-       cgrp->self.cgroup = cgrp;
-       cgrp->self.flags |= CSS_ONLINE;
-
-       for_each_subsys(ss, ssid)
-               INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
-
-       init_waitqueue_head(&cgrp->offline_waitq);
-       INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
-}
-
-static void init_cgroup_root(struct cgroup_root *root,
-                            struct cgroup_sb_opts *opts)
-{
-       struct cgroup *cgrp = &root->cgrp;
-
-       INIT_LIST_HEAD(&root->root_list);
-       atomic_set(&root->nr_cgrps, 1);
-       cgrp->root = root;
-       init_cgroup_housekeeping(cgrp);
-       idr_init(&root->cgroup_idr);
-
-       root->flags = opts->flags;
-       if (opts->release_agent)
-               strcpy(root->release_agent_path, opts->release_agent);
-       if (opts->name)
-               strcpy(root->name, opts->name);
-       if (opts->cpuset_clone_children)
-               set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
-}
-
-static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
-{
-       LIST_HEAD(tmp_links);
-       struct cgroup *root_cgrp = &root->cgrp;
-       struct css_set *cset;
-       int i, ret;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
-       if (ret < 0)
-               goto out;
-       root_cgrp->id = ret;
-       root_cgrp->ancestor_ids[0] = ret;
-
-       ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
-                             GFP_KERNEL);
-       if (ret)
-               goto out;
-
-       /*
-        * We're accessing css_set_count without locking css_set_lock here,
-        * but that's OK - it can only be increased by someone holding
-        * cgroup_lock, and that's us.  Later rebinding may disable
-        * controllers on the default hierarchy and thus create new csets,
-        * which can't be more than the existing ones.  Allocate 2x.
-        */
-       ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
-       if (ret)
-               goto cancel_ref;
-
-       ret = cgroup_init_root_id(root);
-       if (ret)
-               goto cancel_ref;
-
-       root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
-                                          KERNFS_ROOT_CREATE_DEACTIVATED,
-                                          root_cgrp);
-       if (IS_ERR(root->kf_root)) {
-               ret = PTR_ERR(root->kf_root);
-               goto exit_root_id;
-       }
-       root_cgrp->kn = root->kf_root->kn;
-
-       ret = css_populate_dir(&root_cgrp->self);
-       if (ret)
-               goto destroy_root;
-
-       ret = rebind_subsystems(root, ss_mask);
-       if (ret)
-               goto destroy_root;
-
-       trace_cgroup_setup_root(root);
-
-       /*
-        * There must be no failure case after here, since rebinding takes
-        * care of subsystems' refcounts, which are explicitly dropped in
-        * the failure exit path.
-        */
-       list_add(&root->root_list, &cgroup_roots);
-       cgroup_root_count++;
-
-       /*
-        * Link the root cgroup in this hierarchy into all the css_set
-        * objects.
-        */
-       spin_lock_irq(&css_set_lock);
-       hash_for_each(css_set_table, i, cset, hlist) {
-               link_css_set(&tmp_links, cset, root_cgrp);
-               if (css_set_populated(cset))
-                       cgroup_update_populated(root_cgrp, true);
-       }
-       spin_unlock_irq(&css_set_lock);
-
-       BUG_ON(!list_empty(&root_cgrp->self.children));
-       BUG_ON(atomic_read(&root->nr_cgrps) != 1);
-
-       kernfs_activate(root_cgrp->kn);
-       ret = 0;
-       goto out;
-
-destroy_root:
-       kernfs_destroy_root(root->kf_root);
-       root->kf_root = NULL;
-exit_root_id:
-       cgroup_exit_root_id(root);
-cancel_ref:
-       percpu_ref_exit(&root_cgrp->self.refcnt);
-out:
-       free_cgrp_cset_links(&tmp_links);
-       return ret;
-}
-
-static struct dentry *cgroup_mount(struct file_system_type *fs_type,
-                        int flags, const char *unused_dev_name,
-                        void *data)
-{
-       bool is_v2 = fs_type == &cgroup2_fs_type;
-       struct super_block *pinned_sb = NULL;
-       struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
-       struct cgroup_subsys *ss;
-       struct cgroup_root *root;
-       struct cgroup_sb_opts opts;
-       struct dentry *dentry;
-       int ret;
-       int i;
-       bool new_sb;
-
-       get_cgroup_ns(ns);
-
-       /* Check if the caller has permission to mount. */
-       if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
-               put_cgroup_ns(ns);
-               return ERR_PTR(-EPERM);
-       }
-
-       /*
-        * The first time anyone tries to mount a cgroup, enable the list
-        * linking each css_set to its tasks and fix up all existing tasks.
-        */
-       if (!use_task_css_set_links)
-               cgroup_enable_task_cg_lists();
-
-       if (is_v2) {
-               if (data) {
-                       pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
-                       put_cgroup_ns(ns);
-                       return ERR_PTR(-EINVAL);
-               }
-               cgrp_dfl_visible = true;
-               root = &cgrp_dfl_root;
-               cgroup_get(&root->cgrp);
-               goto out_mount;
-       }
-
-       cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
-
-       /* First find the desired set of subsystems */
-       ret = parse_cgroupfs_options(data, &opts);
-       if (ret)
-               goto out_unlock;
-
-       /*
-        * Destruction of cgroup root is asynchronous, so subsystems may
-        * still be dying after the previous unmount.  Let's drain the
-        * dying subsystems.  We just need to ensure that the ones
-        * unmounted previously finish dying and don't care about new ones
-        * starting.  Testing ref liveliness is good enough.
-        */
-       for_each_subsys(ss, i) {
-               if (!(opts.subsys_mask & (1 << i)) ||
-                   ss->root == &cgrp_dfl_root)
-                       continue;
-
-               if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
-                       mutex_unlock(&cgroup_mutex);
-                       msleep(10);
-                       ret = restart_syscall();
-                       goto out_free;
-               }
-               cgroup_put(&ss->root->cgrp);
-       }
-
-       for_each_root(root) {
-               bool name_match = false;
-
-               if (root == &cgrp_dfl_root)
-                       continue;
-
-               /*
-                * If we asked for a name then it must match.  Also, if
-                * name matches but sybsys_mask doesn't, we should fail.
-                * Remember whether name matched.
-                */
-               if (opts.name) {
-                       if (strcmp(opts.name, root->name))
-                               continue;
-                       name_match = true;
-               }
-
-               /*
-                * If we asked for subsystems (or explicitly for no
-                * subsystems) then they must match.
-                */
-               if ((opts.subsys_mask || opts.none) &&
-                   (opts.subsys_mask != root->subsys_mask)) {
-                       if (!name_match)
-                               continue;
-                       ret = -EBUSY;
-                       goto out_unlock;
-               }
-
-               if (root->flags ^ opts.flags)
-                       pr_warn("new mount options do not match the existing superblock, will be ignored\n");
-
-               /*
-                * We want to reuse @root whose lifetime is governed by its
-                * ->cgrp.  Let's check whether @root is alive and keep it
-                * that way.  As cgroup_kill_sb() can happen anytime, we
-                * want to block it by pinning the sb so that @root doesn't
-                * get killed before mount is complete.
-                *
-                * With the sb pinned, tryget_live can reliably indicate
-                * whether @root can be reused.  If it's being killed,
-                * drain it.  We can use wait_queue for the wait but this
-                * path is super cold.  Let's just sleep a bit and retry.
-                */
-               pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
-               if (IS_ERR(pinned_sb) ||
-                   !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
-                       mutex_unlock(&cgroup_mutex);
-                       if (!IS_ERR_OR_NULL(pinned_sb))
-                               deactivate_super(pinned_sb);
-                       msleep(10);
-                       ret = restart_syscall();
-                       goto out_free;
-               }
-
-               ret = 0;
-               goto out_unlock;
-       }
-
-       /*
-        * No such thing, create a new one.  name= matching without subsys
-        * specification is allowed for already existing hierarchies but we
-        * can't create new one without subsys specification.
-        */
-       if (!opts.subsys_mask && !opts.none) {
-               ret = -EINVAL;
-               goto out_unlock;
-       }
-
-       /* Hierarchies may only be created in the initial cgroup namespace. */
-       if (ns != &init_cgroup_ns) {
-               ret = -EPERM;
-               goto out_unlock;
-       }
-
-       root = kzalloc(sizeof(*root), GFP_KERNEL);
-       if (!root) {
-               ret = -ENOMEM;
-               goto out_unlock;
-       }
-
-       init_cgroup_root(root, &opts);
-
-       ret = cgroup_setup_root(root, opts.subsys_mask);
-       if (ret)
-               cgroup_free_root(root);
-
-out_unlock:
-       mutex_unlock(&cgroup_mutex);
-out_free:
-       kfree(opts.release_agent);
-       kfree(opts.name);
-
-       if (ret) {
-               put_cgroup_ns(ns);
-               return ERR_PTR(ret);
-       }
-out_mount:
-       dentry = kernfs_mount(fs_type, flags, root->kf_root,
-                             is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
-                             &new_sb);
-
-       /*
-        * In non-init cgroup namespace, instead of root cgroup's
-        * dentry, we return the dentry corresponding to the
-        * cgroupns->root_cgrp.
-        */
-       if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
-               struct dentry *nsdentry;
-               struct cgroup *cgrp;
-
-               mutex_lock(&cgroup_mutex);
-               spin_lock_irq(&css_set_lock);
-
-               cgrp = cset_cgroup_from_root(ns->root_cset, root);
-
-               spin_unlock_irq(&css_set_lock);
-               mutex_unlock(&cgroup_mutex);
-
-               nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
-               dput(dentry);
-               dentry = nsdentry;
-       }
-
-       if (IS_ERR(dentry) || !new_sb)
-               cgroup_put(&root->cgrp);
-
-       /*
-        * If @pinned_sb, we're reusing an existing root and holding an
-        * extra ref on its sb.  Mount is complete.  Put the extra ref.
-        */
-       if (pinned_sb) {
-               WARN_ON(new_sb);
-               deactivate_super(pinned_sb);
-       }
-
-       put_cgroup_ns(ns);
-       return dentry;
-}
-
-static void cgroup_kill_sb(struct super_block *sb)
-{
-       struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
-       struct cgroup_root *root = cgroup_root_from_kf(kf_root);
-
-       /*
-        * If @root doesn't have any mounts or children, start killing it.
-        * This prevents new mounts by disabling percpu_ref_tryget_live().
-        * cgroup_mount() may wait for @root's release.
-        *
-        * And don't kill the default root.
-        */
-       if (!list_empty(&root->cgrp.self.children) ||
-           root == &cgrp_dfl_root)
-               cgroup_put(&root->cgrp);
-       else
-               percpu_ref_kill(&root->cgrp.self.refcnt);
-
-       kernfs_kill_sb(sb);
-}
-
-static struct file_system_type cgroup_fs_type = {
-       .name = "cgroup",
-       .mount = cgroup_mount,
-       .kill_sb = cgroup_kill_sb,
-       .fs_flags = FS_USERNS_MOUNT,
-};
-
-static struct file_system_type cgroup2_fs_type = {
-       .name = "cgroup2",
-       .mount = cgroup_mount,
-       .kill_sb = cgroup_kill_sb,
-       .fs_flags = FS_USERNS_MOUNT,
-};
-
-static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
-                                struct cgroup_namespace *ns)
-{
-       struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
-
-       return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
-}
-
-int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
-                  struct cgroup_namespace *ns)
-{
-       int ret;
-
-       mutex_lock(&cgroup_mutex);
-       spin_lock_irq(&css_set_lock);
-
-       ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
-
-       spin_unlock_irq(&css_set_lock);
-       mutex_unlock(&cgroup_mutex);
-
-       return ret;
-}
-EXPORT_SYMBOL_GPL(cgroup_path_ns);
-
-/**
- * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
- * @task: target task
- * @buf: the buffer to write the path into
- * @buflen: the length of the buffer
- *
- * Determine @task's cgroup on the first (the one with the lowest non-zero
- * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
- * function grabs cgroup_mutex and shouldn't be used inside locks used by
- * cgroup controller callbacks.
- *
- * Return value is the same as kernfs_path().
- */
-int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
-{
-       struct cgroup_root *root;
-       struct cgroup *cgrp;
-       int hierarchy_id = 1;
-       int ret;
-
-       mutex_lock(&cgroup_mutex);
-       spin_lock_irq(&css_set_lock);
-
-       root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
-
-       if (root) {
-               cgrp = task_cgroup_from_root(task, root);
-               ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
-       } else {
-               /* if no hierarchy exists, everyone is in "/" */
-               ret = strlcpy(buf, "/", buflen);
-       }
-
-       spin_unlock_irq(&css_set_lock);
-       mutex_unlock(&cgroup_mutex);
-       return ret;
-}
-EXPORT_SYMBOL_GPL(task_cgroup_path);
-
-/* used to track tasks and other necessary states during migration */
-struct cgroup_taskset {
-       /* the src and dst cset list running through cset->mg_node */
-       struct list_head        src_csets;
-       struct list_head        dst_csets;
-
-       /* the subsys currently being processed */
-       int                     ssid;
-
-       /*
-        * Fields for cgroup_taskset_*() iteration.
-        *
-        * Before migration is committed, the target migration tasks are on
-        * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
-        * the csets on ->dst_csets.  ->csets point to either ->src_csets
-        * or ->dst_csets depending on whether migration is committed.
-        *
-        * ->cur_csets and ->cur_task point to the current task position
-        * during iteration.
-        */
-       struct list_head        *csets;
-       struct css_set          *cur_cset;
-       struct task_struct      *cur_task;
-};
-
-#define CGROUP_TASKSET_INIT(tset)      (struct cgroup_taskset){        \
-       .src_csets              = LIST_HEAD_INIT(tset.src_csets),       \
-       .dst_csets              = LIST_HEAD_INIT(tset.dst_csets),       \
-       .csets                  = &tset.src_csets,                      \
-}
-
-/**
- * cgroup_taskset_add - try to add a migration target task to a taskset
- * @task: target task
- * @tset: target taskset
- *
- * Add @task, which is a migration target, to @tset.  This function becomes
- * noop if @task doesn't need to be migrated.  @task's css_set should have
- * been added as a migration source and @task->cg_list will be moved from
- * the css_set's tasks list to mg_tasks one.
- */
-static void cgroup_taskset_add(struct task_struct *task,
-                              struct cgroup_taskset *tset)
-{
-       struct css_set *cset;
-
-       lockdep_assert_held(&css_set_lock);
-
-       /* @task either already exited or can't exit until the end */
-       if (task->flags & PF_EXITING)
-               return;
-
-       /* leave @task alone if post_fork() hasn't linked it yet */
-       if (list_empty(&task->cg_list))
-               return;
-
-       cset = task_css_set(task);
-       if (!cset->mg_src_cgrp)
-               return;
-
-       list_move_tail(&task->cg_list, &cset->mg_tasks);
-       if (list_empty(&cset->mg_node))
-               list_add_tail(&cset->mg_node, &tset->src_csets);
-       if (list_empty(&cset->mg_dst_cset->mg_node))
-               list_move_tail(&cset->mg_dst_cset->mg_node,
-                              &tset->dst_csets);
-}
-
-/**
- * cgroup_taskset_first - reset taskset and return the first task
- * @tset: taskset of interest
- * @dst_cssp: output variable for the destination css
- *
- * @tset iteration is initialized and the first task is returned.
- */
-struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
-                                        struct cgroup_subsys_state **dst_cssp)
-{
-       tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
-       tset->cur_task = NULL;
-
-       return cgroup_taskset_next(tset, dst_cssp);
-}
-
-/**
- * cgroup_taskset_next - iterate to the next task in taskset
- * @tset: taskset of interest
- * @dst_cssp: output variable for the destination css
- *
- * Return the next task in @tset.  Iteration must have been initialized
- * with cgroup_taskset_first().
- */
-struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
-                                       struct cgroup_subsys_state **dst_cssp)
-{
-       struct css_set *cset = tset->cur_cset;
-       struct task_struct *task = tset->cur_task;
-
-       while (&cset->mg_node != tset->csets) {
-               if (!task)
-                       task = list_first_entry(&cset->mg_tasks,
-                                               struct task_struct, cg_list);
-               else
-                       task = list_next_entry(task, cg_list);
-
-               if (&task->cg_list != &cset->mg_tasks) {
-                       tset->cur_cset = cset;
-                       tset->cur_task = task;
-
-                       /*
-                        * This function may be called both before and
-                        * after cgroup_taskset_migrate().  The two cases
-                        * can be distinguished by looking at whether @cset
-                        * has its ->mg_dst_cset set.
-                        */
-                       if (cset->mg_dst_cset)
-                               *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
-                       else
-                               *dst_cssp = cset->subsys[tset->ssid];
-
-                       return task;
-               }
-
-               cset = list_next_entry(cset, mg_node);
-               task = NULL;
-       }
-
-       return NULL;
-}
-
-/**
- * cgroup_taskset_migrate - migrate a taskset
- * @tset: taget taskset
- * @root: cgroup root the migration is taking place on
- *
- * Migrate tasks in @tset as setup by migration preparation functions.
- * This function fails iff one of the ->can_attach callbacks fails and
- * guarantees that either all or none of the tasks in @tset are migrated.
- * @tset is consumed regardless of success.
- */
-static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
-                                 struct cgroup_root *root)
-{
-       struct cgroup_subsys *ss;
-       struct task_struct *task, *tmp_task;
-       struct css_set *cset, *tmp_cset;
-       int ssid, failed_ssid, ret;
-
-       /* methods shouldn't be called if no task is actually migrating */
-       if (list_empty(&tset->src_csets))
-               return 0;
-
-       /* check that we can legitimately attach to the cgroup */
-       do_each_subsys_mask(ss, ssid, root->subsys_mask) {
-               if (ss->can_attach) {
-                       tset->ssid = ssid;
-                       ret = ss->can_attach(tset);
-                       if (ret) {
-                               failed_ssid = ssid;
-                               goto out_cancel_attach;
-                       }
-               }
-       } while_each_subsys_mask();
-
-       /*
-        * Now that we're guaranteed success, proceed to move all tasks to
-        * the new cgroup.  There are no failure cases after here, so this
-        * is the commit point.
-        */
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry(cset, &tset->src_csets, mg_node) {
-               list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
-                       struct css_set *from_cset = task_css_set(task);
-                       struct css_set *to_cset = cset->mg_dst_cset;
-
-                       get_css_set(to_cset);
-                       css_set_move_task(task, from_cset, to_cset, true);
-                       put_css_set_locked(from_cset);
-               }
-       }
-       spin_unlock_irq(&css_set_lock);
-
-       /*
-        * Migration is committed, all target tasks are now on dst_csets.
-        * Nothing is sensitive to fork() after this point.  Notify
-        * controllers that migration is complete.
-        */
-       tset->csets = &tset->dst_csets;
-
-       do_each_subsys_mask(ss, ssid, root->subsys_mask) {
-               if (ss->attach) {
-                       tset->ssid = ssid;
-                       ss->attach(tset);
-               }
-       } while_each_subsys_mask();
-
-       ret = 0;
-       goto out_release_tset;
-
-out_cancel_attach:
-       do_each_subsys_mask(ss, ssid, root->subsys_mask) {
-               if (ssid == failed_ssid)
-                       break;
-               if (ss->cancel_attach) {
-                       tset->ssid = ssid;
-                       ss->cancel_attach(tset);
-               }
-       } while_each_subsys_mask();
-out_release_tset:
-       spin_lock_irq(&css_set_lock);
-       list_splice_init(&tset->dst_csets, &tset->src_csets);
-       list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
-               list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
-               list_del_init(&cset->mg_node);
-       }
-       spin_unlock_irq(&css_set_lock);
-       return ret;
-}
-
-/**
- * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
- * @dst_cgrp: destination cgroup to test
- *
- * On the default hierarchy, except for the root, subtree_control must be
- * zero for migration destination cgroups with tasks so that child cgroups
- * don't compete against tasks.
- */
-static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
-{
-       return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
-               !dst_cgrp->subtree_control;
-}
-
-/**
- * cgroup_migrate_finish - cleanup after attach
- * @preloaded_csets: list of preloaded css_sets
- *
- * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
- * those functions for details.
- */
-static void cgroup_migrate_finish(struct list_head *preloaded_csets)
-{
-       struct css_set *cset, *tmp_cset;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
-               cset->mg_src_cgrp = NULL;
-               cset->mg_dst_cgrp = NULL;
-               cset->mg_dst_cset = NULL;
-               list_del_init(&cset->mg_preload_node);
-               put_css_set_locked(cset);
-       }
-       spin_unlock_irq(&css_set_lock);
-}
-
-/**
- * cgroup_migrate_add_src - add a migration source css_set
- * @src_cset: the source css_set to add
- * @dst_cgrp: the destination cgroup
- * @preloaded_csets: list of preloaded css_sets
- *
- * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
- * @src_cset and add it to @preloaded_csets, which should later be cleaned
- * up by cgroup_migrate_finish().
- *
- * This function may be called without holding cgroup_threadgroup_rwsem
- * even if the target is a process.  Threads may be created and destroyed
- * but as long as cgroup_mutex is not dropped, no new css_set can be put
- * into play and the preloaded css_sets are guaranteed to cover all
- * migrations.
- */
-static void cgroup_migrate_add_src(struct css_set *src_cset,
-                                  struct cgroup *dst_cgrp,
-                                  struct list_head *preloaded_csets)
-{
-       struct cgroup *src_cgrp;
-
-       lockdep_assert_held(&cgroup_mutex);
-       lockdep_assert_held(&css_set_lock);
-
-       /*
-        * If ->dead, @src_set is associated with one or more dead cgroups
-        * and doesn't contain any migratable tasks.  Ignore it early so
-        * that the rest of migration path doesn't get confused by it.
-        */
-       if (src_cset->dead)
-               return;
-
-       src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
-
-       if (!list_empty(&src_cset->mg_preload_node))
-               return;
-
-       WARN_ON(src_cset->mg_src_cgrp);
-       WARN_ON(src_cset->mg_dst_cgrp);
-       WARN_ON(!list_empty(&src_cset->mg_tasks));
-       WARN_ON(!list_empty(&src_cset->mg_node));
-
-       src_cset->mg_src_cgrp = src_cgrp;
-       src_cset->mg_dst_cgrp = dst_cgrp;
-       get_css_set(src_cset);
-       list_add(&src_cset->mg_preload_node, preloaded_csets);
-}
-
-/**
- * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
- * @preloaded_csets: list of preloaded source css_sets
- *
- * Tasks are about to be moved and all the source css_sets have been
- * preloaded to @preloaded_csets.  This function looks up and pins all
- * destination css_sets, links each to its source, and append them to
- * @preloaded_csets.
- *
- * This function must be called after cgroup_migrate_add_src() has been
- * called on each migration source css_set.  After migration is performed
- * using cgroup_migrate(), cgroup_migrate_finish() must be called on
- * @preloaded_csets.
- */
-static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
-{
-       LIST_HEAD(csets);
-       struct css_set *src_cset, *tmp_cset;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       /* look up the dst cset for each src cset and link it to src */
-       list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
-               struct css_set *dst_cset;
-
-               dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
-               if (!dst_cset)
-                       goto err;
-
-               WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
-
-               /*
-                * If src cset equals dst, it's noop.  Drop the src.
-                * cgroup_migrate() will skip the cset too.  Note that we
-                * can't handle src == dst as some nodes are used by both.
-                */
-               if (src_cset == dst_cset) {
-                       src_cset->mg_src_cgrp = NULL;
-                       src_cset->mg_dst_cgrp = NULL;
-                       list_del_init(&src_cset->mg_preload_node);
-                       put_css_set(src_cset);
-                       put_css_set(dst_cset);
-                       continue;
-               }
-
-               src_cset->mg_dst_cset = dst_cset;
-
-               if (list_empty(&dst_cset->mg_preload_node))
-                       list_add(&dst_cset->mg_preload_node, &csets);
-               else
-                       put_css_set(dst_cset);
-       }
-
-       list_splice_tail(&csets, preloaded_csets);
-       return 0;
-err:
-       cgroup_migrate_finish(&csets);
-       return -ENOMEM;
-}
-
-/**
- * cgroup_migrate - migrate a process or task to a cgroup
- * @leader: the leader of the process or the task to migrate
- * @threadgroup: whether @leader points to the whole process or a single task
- * @root: cgroup root migration is taking place on
- *
- * Migrate a process or task denoted by @leader.  If migrating a process,
- * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
- * responsible for invoking cgroup_migrate_add_src() and
- * cgroup_migrate_prepare_dst() on the targets before invoking this
- * function and following up with cgroup_migrate_finish().
- *
- * As long as a controller's ->can_attach() doesn't fail, this function is
- * guaranteed to succeed.  This means that, excluding ->can_attach()
- * failure, when migrating multiple targets, the success or failure can be
- * decided for all targets by invoking group_migrate_prepare_dst() before
- * actually starting migrating.
- */
-static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
-                         struct cgroup_root *root)
-{
-       struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
-       struct task_struct *task;
-
-       /*
-        * Prevent freeing of tasks while we take a snapshot. Tasks that are
-        * already PF_EXITING could be freed from underneath us unless we
-        * take an rcu_read_lock.
-        */
-       spin_lock_irq(&css_set_lock);
-       rcu_read_lock();
-       task = leader;
-       do {
-               cgroup_taskset_add(task, &tset);
-               if (!threadgroup)
-                       break;
-       } while_each_thread(leader, task);
-       rcu_read_unlock();
-       spin_unlock_irq(&css_set_lock);
-
-       return cgroup_taskset_migrate(&tset, root);
-}
-
-/**
- * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
- * @dst_cgrp: the cgroup to attach to
- * @leader: the task or the leader of the threadgroup to be attached
- * @threadgroup: attach the whole threadgroup?
- *
- * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
- */
-static int cgroup_attach_task(struct cgroup *dst_cgrp,
-                             struct task_struct *leader, bool threadgroup)
-{
-       LIST_HEAD(preloaded_csets);
-       struct task_struct *task;
-       int ret;
-
-       if (!cgroup_may_migrate_to(dst_cgrp))
-               return -EBUSY;
-
-       /* look up all src csets */
-       spin_lock_irq(&css_set_lock);
-       rcu_read_lock();
-       task = leader;
-       do {
-               cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
-                                      &preloaded_csets);
-               if (!threadgroup)
-                       break;
-       } while_each_thread(leader, task);
-       rcu_read_unlock();
-       spin_unlock_irq(&css_set_lock);
-
-       /* prepare dst csets and commit */
-       ret = cgroup_migrate_prepare_dst(&preloaded_csets);
-       if (!ret)
-               ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
-
-       cgroup_migrate_finish(&preloaded_csets);
-
-       if (!ret)
-               trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
-
-       return ret;
-}
-
-static int cgroup_procs_write_permission(struct task_struct *task,
-                                        struct cgroup *dst_cgrp,
-                                        struct kernfs_open_file *of)
-{
-       const struct cred *cred = current_cred();
-       const struct cred *tcred = get_task_cred(task);
-       int ret = 0;
-
-       /*
-        * even if we're attaching all tasks in the thread group, we only
-        * need to check permissions on one of them.
-        */
-       if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
-           !uid_eq(cred->euid, tcred->uid) &&
-           !uid_eq(cred->euid, tcred->suid))
-               ret = -EACCES;
-
-       if (!ret && cgroup_on_dfl(dst_cgrp)) {
-               struct super_block *sb = of->file->f_path.dentry->d_sb;
-               struct cgroup *cgrp;
-               struct inode *inode;
-
-               spin_lock_irq(&css_set_lock);
-               cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
-               spin_unlock_irq(&css_set_lock);
-
-               while (!cgroup_is_descendant(dst_cgrp, cgrp))
-                       cgrp = cgroup_parent(cgrp);
-
-               ret = -ENOMEM;
-               inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
-               if (inode) {
-                       ret = inode_permission(inode, MAY_WRITE);
-                       iput(inode);
-               }
-       }
-
-       put_cred(tcred);
-       return ret;
-}
-
-/*
- * Find the task_struct of the task to attach by vpid and pass it along to the
- * function to attach either it or all tasks in its threadgroup. Will lock
- * cgroup_mutex and threadgroup.
- */
-static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
-                                   size_t nbytes, loff_t off, bool threadgroup)
-{
-       struct task_struct *tsk;
-       struct cgroup_subsys *ss;
-       struct cgroup *cgrp;
-       pid_t pid;
-       int ssid, ret;
-
-       if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
-               return -EINVAL;
-
-       cgrp = cgroup_kn_lock_live(of->kn, false);
-       if (!cgrp)
-               return -ENODEV;
-
-       percpu_down_write(&cgroup_threadgroup_rwsem);
-       rcu_read_lock();
-       if (pid) {
-               tsk = find_task_by_vpid(pid);
-               if (!tsk) {
-                       ret = -ESRCH;
-                       goto out_unlock_rcu;
-               }
-       } else {
-               tsk = current;
-       }
-
-       if (threadgroup)
-               tsk = tsk->group_leader;
-
-       /*
-        * Workqueue threads may acquire PF_NO_SETAFFINITY and become
-        * trapped in a cpuset, or RT worker may be born in a cgroup
-        * with no rt_runtime allocated.  Just say no.
-        */
-       if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
-               ret = -EINVAL;
-               goto out_unlock_rcu;
-       }
-
-       get_task_struct(tsk);
-       rcu_read_unlock();
-
-       ret = cgroup_procs_write_permission(tsk, cgrp, of);
-       if (!ret)
-               ret = cgroup_attach_task(cgrp, tsk, threadgroup);
-
-       put_task_struct(tsk);
-       goto out_unlock_threadgroup;
-
-out_unlock_rcu:
-       rcu_read_unlock();
-out_unlock_threadgroup:
-       percpu_up_write(&cgroup_threadgroup_rwsem);
-       for_each_subsys(ss, ssid)
-               if (ss->post_attach)
-                       ss->post_attach();
-       cgroup_kn_unlock(of->kn);
-       return ret ?: nbytes;
-}
-
-/**
- * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
- * @from: attach to all cgroups of a given task
- * @tsk: the task to be attached
- */
-int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
-{
-       struct cgroup_root *root;
-       int retval = 0;
-
-       mutex_lock(&cgroup_mutex);
-       percpu_down_write(&cgroup_threadgroup_rwsem);
-       for_each_root(root) {
-               struct cgroup *from_cgrp;
-
-               if (root == &cgrp_dfl_root)
-                       continue;
-
-               spin_lock_irq(&css_set_lock);
-               from_cgrp = task_cgroup_from_root(from, root);
-               spin_unlock_irq(&css_set_lock);
-
-               retval = cgroup_attach_task(from_cgrp, tsk, false);
-               if (retval)
-                       break;
-       }
-       percpu_up_write(&cgroup_threadgroup_rwsem);
-       mutex_unlock(&cgroup_mutex);
-
-       return retval;
-}
-EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
-
-static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
-                                 char *buf, size_t nbytes, loff_t off)
-{
-       return __cgroup_procs_write(of, buf, nbytes, off, false);
-}
-
-static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
-                                 char *buf, size_t nbytes, loff_t off)
-{
-       return __cgroup_procs_write(of, buf, nbytes, off, true);
-}
-
-static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
-                                         char *buf, size_t nbytes, loff_t off)
-{
-       struct cgroup *cgrp;
-
-       BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
-
-       cgrp = cgroup_kn_lock_live(of->kn, false);
-       if (!cgrp)
-               return -ENODEV;
-       spin_lock(&release_agent_path_lock);
-       strlcpy(cgrp->root->release_agent_path, strstrip(buf),
-               sizeof(cgrp->root->release_agent_path));
-       spin_unlock(&release_agent_path_lock);
-       cgroup_kn_unlock(of->kn);
-       return nbytes;
-}
-
-static int cgroup_release_agent_show(struct seq_file *seq, void *v)
-{
-       struct cgroup *cgrp = seq_css(seq)->cgroup;
-
-       spin_lock(&release_agent_path_lock);
-       seq_puts(seq, cgrp->root->release_agent_path);
-       spin_unlock(&release_agent_path_lock);
-       seq_putc(seq, '\n');
-       return 0;
-}
-
-static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
-{
-       seq_puts(seq, "0\n");
-       return 0;
-}
-
-static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
-{
-       struct cgroup_subsys *ss;
-       bool printed = false;
-       int ssid;
-
-       do_each_subsys_mask(ss, ssid, ss_mask) {
-               if (printed)
-                       seq_putc(seq, ' ');
-               seq_printf(seq, "%s", ss->name);
-               printed = true;
-       } while_each_subsys_mask();
-       if (printed)
-               seq_putc(seq, '\n');
-}
-
-/* show controllers which are enabled from the parent */
-static int cgroup_controllers_show(struct seq_file *seq, void *v)
-{
-       struct cgroup *cgrp = seq_css(seq)->cgroup;
-
-       cgroup_print_ss_mask(seq, cgroup_control(cgrp));
-       return 0;
-}
-
-/* show controllers which are enabled for a given cgroup's children */
-static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
-{
-       struct cgroup *cgrp = seq_css(seq)->cgroup;
-
-       cgroup_print_ss_mask(seq, cgrp->subtree_control);
-       return 0;
-}
-
-/**
- * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
- * @cgrp: root of the subtree to update csses for
- *
- * @cgrp's control masks have changed and its subtree's css associations
- * need to be updated accordingly.  This function looks up all css_sets
- * which are attached to the subtree, creates the matching updated css_sets
- * and migrates the tasks to the new ones.
- */
-static int cgroup_update_dfl_csses(struct cgroup *cgrp)
-{
-       LIST_HEAD(preloaded_csets);
-       struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
-       struct cgroup_subsys_state *d_css;
-       struct cgroup *dsct;
-       struct css_set *src_cset;
-       int ret;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       percpu_down_write(&cgroup_threadgroup_rwsem);
-
-       /* look up all csses currently attached to @cgrp's subtree */
-       spin_lock_irq(&css_set_lock);
-       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
-               struct cgrp_cset_link *link;
-
-               list_for_each_entry(link, &dsct->cset_links, cset_link)
-                       cgroup_migrate_add_src(link->cset, dsct,
-                                              &preloaded_csets);
-       }
-       spin_unlock_irq(&css_set_lock);
-
-       /* NULL dst indicates self on default hierarchy */
-       ret = cgroup_migrate_prepare_dst(&preloaded_csets);
-       if (ret)
-               goto out_finish;
-
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
-               struct task_struct *task, *ntask;
-
-               /* src_csets precede dst_csets, break on the first dst_cset */
-               if (!src_cset->mg_src_cgrp)
-                       break;
-
-               /* all tasks in src_csets need to be migrated */
-               list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
-                       cgroup_taskset_add(task, &tset);
-       }
-       spin_unlock_irq(&css_set_lock);
-
-       ret = cgroup_taskset_migrate(&tset, cgrp->root);
-out_finish:
-       cgroup_migrate_finish(&preloaded_csets);
-       percpu_up_write(&cgroup_threadgroup_rwsem);
-       return ret;
-}
-
-/**
- * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
- * @cgrp: root of the target subtree
- *
- * Because css offlining is asynchronous, userland may try to re-enable a
- * controller while the previous css is still around.  This function grabs
- * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
- */
-static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
-       __acquires(&cgroup_mutex)
-{
-       struct cgroup *dsct;
-       struct cgroup_subsys_state *d_css;
-       struct cgroup_subsys *ss;
-       int ssid;
-
-restart:
-       mutex_lock(&cgroup_mutex);
-
-       cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
-               for_each_subsys(ss, ssid) {
-                       struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
-                       DEFINE_WAIT(wait);
-
-                       if (!css || !percpu_ref_is_dying(&css->refcnt))
-                               continue;
-
-                       cgroup_get(dsct);
-                       prepare_to_wait(&dsct->offline_waitq, &wait,
-                                       TASK_UNINTERRUPTIBLE);
-
-                       mutex_unlock(&cgroup_mutex);
-                       schedule();
-                       finish_wait(&dsct->offline_waitq, &wait);
-
-                       cgroup_put(dsct);
-                       goto restart;
-               }
-       }
-}
-
-/**
- * cgroup_save_control - save control masks of a subtree
- * @cgrp: root of the target subtree
- *
- * Save ->subtree_control and ->subtree_ss_mask to the respective old_
- * prefixed fields for @cgrp's subtree including @cgrp itself.
- */
-static void cgroup_save_control(struct cgroup *cgrp)
-{
-       struct cgroup *dsct;
-       struct cgroup_subsys_state *d_css;
-
-       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
-               dsct->old_subtree_control = dsct->subtree_control;
-               dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
-       }
-}
-
-/**
- * cgroup_propagate_control - refresh control masks of a subtree
- * @cgrp: root of the target subtree
- *
- * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
- * ->subtree_control and propagate controller availability through the
- * subtree so that descendants don't have unavailable controllers enabled.
- */
-static void cgroup_propagate_control(struct cgroup *cgrp)
-{
-       struct cgroup *dsct;
-       struct cgroup_subsys_state *d_css;
-
-       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
-               dsct->subtree_control &= cgroup_control(dsct);
-               dsct->subtree_ss_mask =
-                       cgroup_calc_subtree_ss_mask(dsct->subtree_control,
-                                                   cgroup_ss_mask(dsct));
-       }
-}
-
-/**
- * cgroup_restore_control - restore control masks of a subtree
- * @cgrp: root of the target subtree
- *
- * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
- * prefixed fields for @cgrp's subtree including @cgrp itself.
- */
-static void cgroup_restore_control(struct cgroup *cgrp)
-{
-       struct cgroup *dsct;
-       struct cgroup_subsys_state *d_css;
-
-       cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
-               dsct->subtree_control = dsct->old_subtree_control;
-               dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
-       }
-}
-
-static bool css_visible(struct cgroup_subsys_state *css)
-{
-       struct cgroup_subsys *ss = css->ss;
-       struct cgroup *cgrp = css->cgroup;
-
-       if (cgroup_control(cgrp) & (1 << ss->id))
-               return true;
-       if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
-               return false;
-       return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
-}
-
-/**
- * cgroup_apply_control_enable - enable or show csses according to control
- * @cgrp: root of the target subtree
- *
- * Walk @cgrp's subtree and create new csses or make the existing ones
- * visible.  A css is created invisible if it's being implicitly enabled
- * through dependency.  An invisible css is made visible when the userland
- * explicitly enables it.
- *
- * Returns 0 on success, -errno on failure.  On failure, csses which have
- * been processed already aren't cleaned up.  The caller is responsible for
- * cleaning up with cgroup_apply_control_disble().
- */
-static int cgroup_apply_control_enable(struct cgroup *cgrp)
-{
-       struct cgroup *dsct;
-       struct cgroup_subsys_state *d_css;
-       struct cgroup_subsys *ss;
-       int ssid, ret;
-
-       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
-               for_each_subsys(ss, ssid) {
-                       struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
-
-                       WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
-
-                       if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
-                               continue;
-
-                       if (!css) {
-                               css = css_create(dsct, ss);
-                               if (IS_ERR(css))
-                                       return PTR_ERR(css);
-                       }
-
-                       if (css_visible(css)) {
-                               ret = css_populate_dir(css);
-                               if (ret)
-                                       return ret;
-                       }
-               }
-       }
-
-       return 0;
-}
-
-/**
- * cgroup_apply_control_disable - kill or hide csses according to control
- * @cgrp: root of the target subtree
- *
- * Walk @cgrp's subtree and kill and hide csses so that they match
- * cgroup_ss_mask() and cgroup_visible_mask().
- *
- * A css is hidden when the userland requests it to be disabled while other
- * subsystems are still depending on it.  The css must not actively control
- * resources and be in the vanilla state if it's made visible again later.
- * Controllers which may be depended upon should provide ->css_reset() for
- * this purpose.
- */
-static void cgroup_apply_control_disable(struct cgroup *cgrp)
-{
-       struct cgroup *dsct;
-       struct cgroup_subsys_state *d_css;
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
-               for_each_subsys(ss, ssid) {
-                       struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
-
-                       WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
-
-                       if (!css)
-                               continue;
-
-                       if (css->parent &&
-                           !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
-                               kill_css(css);
-                       } else if (!css_visible(css)) {
-                               css_clear_dir(css);
-                               if (ss->css_reset)
-                                       ss->css_reset(css);
-                       }
-               }
-       }
-}
-
-/**
- * cgroup_apply_control - apply control mask updates to the subtree
- * @cgrp: root of the target subtree
- *
- * subsystems can be enabled and disabled in a subtree using the following
- * steps.
- *
- * 1. Call cgroup_save_control() to stash the current state.
- * 2. Update ->subtree_control masks in the subtree as desired.
- * 3. Call cgroup_apply_control() to apply the changes.
- * 4. Optionally perform other related operations.
- * 5. Call cgroup_finalize_control() to finish up.
- *
- * This function implements step 3 and propagates the mask changes
- * throughout @cgrp's subtree, updates csses accordingly and perform
- * process migrations.
- */
-static int cgroup_apply_control(struct cgroup *cgrp)
-{
-       int ret;
-
-       cgroup_propagate_control(cgrp);
-
-       ret = cgroup_apply_control_enable(cgrp);
-       if (ret)
-               return ret;
-
-       /*
-        * At this point, cgroup_e_css() results reflect the new csses
-        * making the following cgroup_update_dfl_csses() properly update
-        * css associations of all tasks in the subtree.
-        */
-       ret = cgroup_update_dfl_csses(cgrp);
-       if (ret)
-               return ret;
-
-       return 0;
-}
-
-/**
- * cgroup_finalize_control - finalize control mask update
- * @cgrp: root of the target subtree
- * @ret: the result of the update
- *
- * Finalize control mask update.  See cgroup_apply_control() for more info.
- */
-static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
-{
-       if (ret) {
-               cgroup_restore_control(cgrp);
-               cgroup_propagate_control(cgrp);
-       }
-
-       cgroup_apply_control_disable(cgrp);
-}
-
-/* change the enabled child controllers for a cgroup in the default hierarchy */
-static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
-                                           char *buf, size_t nbytes,
-                                           loff_t off)
-{
-       u16 enable = 0, disable = 0;
-       struct cgroup *cgrp, *child;
-       struct cgroup_subsys *ss;
-       char *tok;
-       int ssid, ret;
-
-       /*
-        * Parse input - space separated list of subsystem names prefixed
-        * with either + or -.
-        */
-       buf = strstrip(buf);
-       while ((tok = strsep(&buf, " "))) {
-               if (tok[0] == '\0')
-                       continue;
-               do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
-                       if (!cgroup_ssid_enabled(ssid) ||
-                           strcmp(tok + 1, ss->name))
-                               continue;
-
-                       if (*tok == '+') {
-                               enable |= 1 << ssid;
-                               disable &= ~(1 << ssid);
-                       } else if (*tok == '-') {
-                               disable |= 1 << ssid;
-                               enable &= ~(1 << ssid);
-                       } else {
-                               return -EINVAL;
-                       }
-                       break;
-               } while_each_subsys_mask();
-               if (ssid == CGROUP_SUBSYS_COUNT)
-                       return -EINVAL;
-       }
-
-       cgrp = cgroup_kn_lock_live(of->kn, true);
-       if (!cgrp)
-               return -ENODEV;
-
-       for_each_subsys(ss, ssid) {
-               if (enable & (1 << ssid)) {
-                       if (cgrp->subtree_control & (1 << ssid)) {
-                               enable &= ~(1 << ssid);
-                               continue;
-                       }
-
-                       if (!(cgroup_control(cgrp) & (1 << ssid))) {
-                               ret = -ENOENT;
-                               goto out_unlock;
-                       }
-               } else if (disable & (1 << ssid)) {
-                       if (!(cgrp->subtree_control & (1 << ssid))) {
-                               disable &= ~(1 << ssid);
-                               continue;
-                       }
-
-                       /* a child has it enabled? */
-                       cgroup_for_each_live_child(child, cgrp) {
-                               if (child->subtree_control & (1 << ssid)) {
-                                       ret = -EBUSY;
-                                       goto out_unlock;
-                               }
-                       }
-               }
-       }
-
-       if (!enable && !disable) {
-               ret = 0;
-               goto out_unlock;
-       }
-
-       /*
-        * Except for the root, subtree_control must be zero for a cgroup
-        * with tasks so that child cgroups don't compete against tasks.
-        */
-       if (enable && cgroup_parent(cgrp)) {
-               struct cgrp_cset_link *link;
-
-               /*
-                * Because namespaces pin csets too, @cgrp->cset_links
-                * might not be empty even when @cgrp is empty.  Walk and
-                * verify each cset.
-                */
-               spin_lock_irq(&css_set_lock);
-
-               ret = 0;
-               list_for_each_entry(link, &cgrp->cset_links, cset_link) {
-                       if (css_set_populated(link->cset)) {
-                               ret = -EBUSY;
-                               break;
-                       }
-               }
-
-               spin_unlock_irq(&css_set_lock);
-
-               if (ret)
-                       goto out_unlock;
-       }
-
-       /* save and update control masks and prepare csses */
-       cgroup_save_control(cgrp);
-
-       cgrp->subtree_control |= enable;
-       cgrp->subtree_control &= ~disable;
-
-       ret = cgroup_apply_control(cgrp);
-
-       cgroup_finalize_control(cgrp, ret);
-
-       kernfs_activate(cgrp->kn);
-       ret = 0;
-out_unlock:
-       cgroup_kn_unlock(of->kn);
-       return ret ?: nbytes;
-}
-
-static int cgroup_events_show(struct seq_file *seq, void *v)
-{
-       seq_printf(seq, "populated %d\n",
-                  cgroup_is_populated(seq_css(seq)->cgroup));
-       return 0;
-}
-
-static int cgroup_file_open(struct kernfs_open_file *of)
-{
-       struct cftype *cft = of->kn->priv;
-
-       if (cft->open)
-               return cft->open(of);
-       return 0;
-}
-
-static void cgroup_file_release(struct kernfs_open_file *of)
-{
-       struct cftype *cft = of->kn->priv;
-
-       if (cft->release)
-               cft->release(of);
-}
-
-static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
-                                size_t nbytes, loff_t off)
-{
-       struct cgroup *cgrp = of->kn->parent->priv;
-       struct cftype *cft = of->kn->priv;
-       struct cgroup_subsys_state *css;
-       int ret;
-
-       if (cft->write)
-               return cft->write(of, buf, nbytes, off);
-
-       /*
-        * kernfs guarantees that a file isn't deleted with operations in
-        * flight, which means that the matching css is and stays alive and
-        * doesn't need to be pinned.  The RCU locking is not necessary
-        * either.  It's just for the convenience of using cgroup_css().
-        */
-       rcu_read_lock();
-       css = cgroup_css(cgrp, cft->ss);
-       rcu_read_unlock();
-
-       if (cft->write_u64) {
-               unsigned long long v;
-               ret = kstrtoull(buf, 0, &v);
-               if (!ret)
-                       ret = cft->write_u64(css, cft, v);
-       } else if (cft->write_s64) {
-               long long v;
-               ret = kstrtoll(buf, 0, &v);
-               if (!ret)
-                       ret = cft->write_s64(css, cft, v);
-       } else {
-               ret = -EINVAL;
-       }
-
-       return ret ?: nbytes;
-}
-
-static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
-{
-       return seq_cft(seq)->seq_start(seq, ppos);
-}
-
-static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
-{
-       return seq_cft(seq)->seq_next(seq, v, ppos);
-}
-
-static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
-{
-       if (seq_cft(seq)->seq_stop)
-               seq_cft(seq)->seq_stop(seq, v);
-}
-
-static int cgroup_seqfile_show(struct seq_file *m, void *arg)
-{
-       struct cftype *cft = seq_cft(m);
-       struct cgroup_subsys_state *css = seq_css(m);
-
-       if (cft->seq_show)
-               return cft->seq_show(m, arg);
-
-       if (cft->read_u64)
-               seq_printf(m, "%llu\n", cft->read_u64(css, cft));
-       else if (cft->read_s64)
-               seq_printf(m, "%lld\n", cft->read_s64(css, cft));
-       else
-               return -EINVAL;
-       return 0;
-}
-
-static struct kernfs_ops cgroup_kf_single_ops = {
-       .atomic_write_len       = PAGE_SIZE,
-       .open                   = cgroup_file_open,
-       .release                = cgroup_file_release,
-       .write                  = cgroup_file_write,
-       .seq_show               = cgroup_seqfile_show,
-};
-
-static struct kernfs_ops cgroup_kf_ops = {
-       .atomic_write_len       = PAGE_SIZE,
-       .open                   = cgroup_file_open,
-       .release                = cgroup_file_release,
-       .write                  = cgroup_file_write,
-       .seq_start              = cgroup_seqfile_start,
-       .seq_next               = cgroup_seqfile_next,
-       .seq_stop               = cgroup_seqfile_stop,
-       .seq_show               = cgroup_seqfile_show,
-};
-
-/*
- * cgroup_rename - Only allow simple rename of directories in place.
- */
-static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
-                        const char *new_name_str)
-{
-       struct cgroup *cgrp = kn->priv;
-       int ret;
-
-       if (kernfs_type(kn) != KERNFS_DIR)
-               return -ENOTDIR;
-       if (kn->parent != new_parent)
-               return -EIO;
-
-       /*
-        * This isn't a proper migration and its usefulness is very
-        * limited.  Disallow on the default hierarchy.
-        */
-       if (cgroup_on_dfl(cgrp))
-               return -EPERM;
-
-       /*
-        * We're gonna grab cgroup_mutex which nests outside kernfs
-        * active_ref.  kernfs_rename() doesn't require active_ref
-        * protection.  Break them before grabbing cgroup_mutex.
-        */
-       kernfs_break_active_protection(new_parent);
-       kernfs_break_active_protection(kn);
-
-       mutex_lock(&cgroup_mutex);
-
-       ret = kernfs_rename(kn, new_parent, new_name_str);
-       if (!ret)
-               trace_cgroup_rename(cgrp);
-
-       mutex_unlock(&cgroup_mutex);
-
-       kernfs_unbreak_active_protection(kn);
-       kernfs_unbreak_active_protection(new_parent);
-       return ret;
-}
-
-/* set uid and gid of cgroup dirs and files to that of the creator */
-static int cgroup_kn_set_ugid(struct kernfs_node *kn)
-{
-       struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
-                              .ia_uid = current_fsuid(),
-                              .ia_gid = current_fsgid(), };
-
-       if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
-           gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
-               return 0;
-
-       return kernfs_setattr(kn, &iattr);
-}
-
-static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
-                          struct cftype *cft)
-{
-       char name[CGROUP_FILE_NAME_MAX];
-       struct kernfs_node *kn;
-       struct lock_class_key *key = NULL;
-       int ret;
-
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
-       key = &cft->lockdep_key;
-#endif
-       kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
-                                 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
-                                 NULL, key);
-       if (IS_ERR(kn))
-               return PTR_ERR(kn);
-
-       ret = cgroup_kn_set_ugid(kn);
-       if (ret) {
-               kernfs_remove(kn);
-               return ret;
-       }
-
-       if (cft->file_offset) {
-               struct cgroup_file *cfile = (void *)css + cft->file_offset;
-
-               spin_lock_irq(&cgroup_file_kn_lock);
-               cfile->kn = kn;
-               spin_unlock_irq(&cgroup_file_kn_lock);
-       }
-
-       return 0;
-}
-
-/**
- * cgroup_addrm_files - add or remove files to a cgroup directory
- * @css: the target css
- * @cgrp: the target cgroup (usually css->cgroup)
- * @cfts: array of cftypes to be added
- * @is_add: whether to add or remove
- *
- * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
- * For removals, this function never fails.
- */
-static int cgroup_addrm_files(struct cgroup_subsys_state *css,
-                             struct cgroup *cgrp, struct cftype cfts[],
-                             bool is_add)
-{
-       struct cftype *cft, *cft_end = NULL;
-       int ret = 0;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-restart:
-       for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
-               /* does cft->flags tell us to skip this file on @cgrp? */
-               if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
-                       continue;
-               if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
-                       continue;
-               if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
-                       continue;
-               if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
-                       continue;
-
-               if (is_add) {
-                       ret = cgroup_add_file(css, cgrp, cft);
-                       if (ret) {
-                               pr_warn("%s: failed to add %s, err=%d\n",
-                                       __func__, cft->name, ret);
-                               cft_end = cft;
-                               is_add = false;
-                               goto restart;
-                       }
-               } else {
-                       cgroup_rm_file(cgrp, cft);
-               }
-       }
-       return ret;
-}
-
-static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
-{
-       LIST_HEAD(pending);
-       struct cgroup_subsys *ss = cfts[0].ss;
-       struct cgroup *root = &ss->root->cgrp;
-       struct cgroup_subsys_state *css;
-       int ret = 0;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       /* add/rm files for all cgroups created before */
-       css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
-               struct cgroup *cgrp = css->cgroup;
-
-               if (!(css->flags & CSS_VISIBLE))
-                       continue;
-
-               ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
-               if (ret)
-                       break;
-       }
-
-       if (is_add && !ret)
-               kernfs_activate(root->kn);
-       return ret;
-}
-
-static void cgroup_exit_cftypes(struct cftype *cfts)
-{
-       struct cftype *cft;
-
-       for (cft = cfts; cft->name[0] != '\0'; cft++) {
-               /* free copy for custom atomic_write_len, see init_cftypes() */
-               if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
-                       kfree(cft->kf_ops);
-               cft->kf_ops = NULL;
-               cft->ss = NULL;
-
-               /* revert flags set by cgroup core while adding @cfts */
-               cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
-       }
-}
-
-static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
-{
-       struct cftype *cft;
-
-       for (cft = cfts; cft->name[0] != '\0'; cft++) {
-               struct kernfs_ops *kf_ops;
-
-               WARN_ON(cft->ss || cft->kf_ops);
-
-               if (cft->seq_start)
-                       kf_ops = &cgroup_kf_ops;
-               else
-                       kf_ops = &cgroup_kf_single_ops;
-
-               /*
-                * Ugh... if @cft wants a custom max_write_len, we need to
-                * make a copy of kf_ops to set its atomic_write_len.
-                */
-               if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
-                       kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
-                       if (!kf_ops) {
-                               cgroup_exit_cftypes(cfts);
-                               return -ENOMEM;
-                       }
-                       kf_ops->atomic_write_len = cft->max_write_len;
-               }
-
-               cft->kf_ops = kf_ops;
-               cft->ss = ss;
-       }
-
-       return 0;
-}
-
-static int cgroup_rm_cftypes_locked(struct cftype *cfts)
-{
-       lockdep_assert_held(&cgroup_mutex);
-
-       if (!cfts || !cfts[0].ss)
-               return -ENOENT;
-
-       list_del(&cfts->node);
-       cgroup_apply_cftypes(cfts, false);
-       cgroup_exit_cftypes(cfts);
-       return 0;
-}
-
-/**
- * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
- * @cfts: zero-length name terminated array of cftypes
- *
- * Unregister @cfts.  Files described by @cfts are removed from all
- * existing cgroups and all future cgroups won't have them either.  This
- * function can be called anytime whether @cfts' subsys is attached or not.
- *
- * Returns 0 on successful unregistration, -ENOENT if @cfts is not
- * registered.
- */
-int cgroup_rm_cftypes(struct cftype *cfts)
-{
-       int ret;
-
-       mutex_lock(&cgroup_mutex);
-       ret = cgroup_rm_cftypes_locked(cfts);
-       mutex_unlock(&cgroup_mutex);
-       return ret;
-}
-
-/**
- * cgroup_add_cftypes - add an array of cftypes to a subsystem
- * @ss: target cgroup subsystem
- * @cfts: zero-length name terminated array of cftypes
- *
- * Register @cfts to @ss.  Files described by @cfts are created for all
- * existing cgroups to which @ss is attached and all future cgroups will
- * have them too.  This function can be called anytime whether @ss is
- * attached or not.
- *
- * Returns 0 on successful registration, -errno on failure.  Note that this
- * function currently returns 0 as long as @cfts registration is successful
- * even if some file creation attempts on existing cgroups fail.
- */
-static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
-{
-       int ret;
-
-       if (!cgroup_ssid_enabled(ss->id))
-               return 0;
-
-       if (!cfts || cfts[0].name[0] == '\0')
-               return 0;
-
-       ret = cgroup_init_cftypes(ss, cfts);
-       if (ret)
-               return ret;
-
-       mutex_lock(&cgroup_mutex);
-
-       list_add_tail(&cfts->node, &ss->cfts);
-       ret = cgroup_apply_cftypes(cfts, true);
-       if (ret)
-               cgroup_rm_cftypes_locked(cfts);
-
-       mutex_unlock(&cgroup_mutex);
-       return ret;
-}
-
-/**
- * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
- * @ss: target cgroup subsystem
- * @cfts: zero-length name terminated array of cftypes
- *
- * Similar to cgroup_add_cftypes() but the added files are only used for
- * the default hierarchy.
- */
-int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
-{
-       struct cftype *cft;
-
-       for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
-               cft->flags |= __CFTYPE_ONLY_ON_DFL;
-       return cgroup_add_cftypes(ss, cfts);
-}
-
-/**
- * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
- * @ss: target cgroup subsystem
- * @cfts: zero-length name terminated array of cftypes
- *
- * Similar to cgroup_add_cftypes() but the added files are only used for
- * the legacy hierarchies.
- */
-int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
-{
-       struct cftype *cft;
-
-       for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
-               cft->flags |= __CFTYPE_NOT_ON_DFL;
-       return cgroup_add_cftypes(ss, cfts);
-}
-
-/**
- * cgroup_file_notify - generate a file modified event for a cgroup_file
- * @cfile: target cgroup_file
- *
- * @cfile must have been obtained by setting cftype->file_offset.
- */
-void cgroup_file_notify(struct cgroup_file *cfile)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&cgroup_file_kn_lock, flags);
-       if (cfile->kn)
-               kernfs_notify(cfile->kn);
-       spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
-}
-
-/**
- * cgroup_task_count - count the number of tasks in a cgroup.
- * @cgrp: the cgroup in question
- *
- * Return the number of tasks in the cgroup.  The returned number can be
- * higher than the actual number of tasks due to css_set references from
- * namespace roots and temporary usages.
- */
-static int cgroup_task_count(const struct cgroup *cgrp)
-{
-       int count = 0;
-       struct cgrp_cset_link *link;
-
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry(link, &cgrp->cset_links, cset_link)
-               count += atomic_read(&link->cset->refcount);
-       spin_unlock_irq(&css_set_lock);
-       return count;
-}
-
-/**
- * css_next_child - find the next child of a given css
- * @pos: the current position (%NULL to initiate traversal)
- * @parent: css whose children to walk
- *
- * This function returns the next child of @parent and should be called
- * under either cgroup_mutex or RCU read lock.  The only requirement is
- * that @parent and @pos are accessible.  The next sibling is guaranteed to
- * be returned regardless of their states.
- *
- * If a subsystem synchronizes ->css_online() and the start of iteration, a
- * css which finished ->css_online() is guaranteed to be visible in the
- * future iterations and will stay visible until the last reference is put.
- * A css which hasn't finished ->css_online() or already finished
- * ->css_offline() may show up during traversal.  It's each subsystem's
- * responsibility to synchronize against on/offlining.
- */
-struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
-                                          struct cgroup_subsys_state *parent)
-{
-       struct cgroup_subsys_state *next;
-
-       cgroup_assert_mutex_or_rcu_locked();
-
-       /*
-        * @pos could already have been unlinked from the sibling list.
-        * Once a cgroup is removed, its ->sibling.next is no longer
-        * updated when its next sibling changes.  CSS_RELEASED is set when
-        * @pos is taken off list, at which time its next pointer is valid,
-        * and, as releases are serialized, the one pointed to by the next
-        * pointer is guaranteed to not have started release yet.  This
-        * implies that if we observe !CSS_RELEASED on @pos in this RCU
-        * critical section, the one pointed to by its next pointer is
-        * guaranteed to not have finished its RCU grace period even if we
-        * have dropped rcu_read_lock() inbetween iterations.
-        *
-        * If @pos has CSS_RELEASED set, its next pointer can't be
-        * dereferenced; however, as each css is given a monotonically
-        * increasing unique serial number and always appended to the
-        * sibling list, the next one can be found by walking the parent's
-        * children until the first css with higher serial number than
-        * @pos's.  While this path can be slower, it happens iff iteration
-        * races against release and the race window is very small.
-        */
-       if (!pos) {
-               next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
-       } else if (likely(!(pos->flags & CSS_RELEASED))) {
-               next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
-       } else {
-               list_for_each_entry_rcu(next, &parent->children, sibling)
-                       if (next->serial_nr > pos->serial_nr)
-                               break;
-       }
-
-       /*
-        * @next, if not pointing to the head, can be dereferenced and is
-        * the next sibling.
-        */
-       if (&next->sibling != &parent->children)
-               return next;
-       return NULL;
-}
-
-/**
- * css_next_descendant_pre - find the next descendant for pre-order walk
- * @pos: the current position (%NULL to initiate traversal)
- * @root: css whose descendants to walk
- *
- * To be used by css_for_each_descendant_pre().  Find the next descendant
- * to visit for pre-order traversal of @root's descendants.  @root is
- * included in the iteration and the first node to be visited.
- *
- * While this function requires cgroup_mutex or RCU read locking, it
- * doesn't require the whole traversal to be contained in a single critical
- * section.  This function will return the correct next descendant as long
- * as both @pos and @root are accessible and @pos is a descendant of @root.
- *
- * If a subsystem synchronizes ->css_online() and the start of iteration, a
- * css which finished ->css_online() is guaranteed to be visible in the
- * future iterations and will stay visible until the last reference is put.
- * A css which hasn't finished ->css_online() or already finished
- * ->css_offline() may show up during traversal.  It's each subsystem's
- * responsibility to synchronize against on/offlining.
- */
-struct cgroup_subsys_state *
-css_next_descendant_pre(struct cgroup_subsys_state *pos,
-                       struct cgroup_subsys_state *root)
-{
-       struct cgroup_subsys_state *next;
-
-       cgroup_assert_mutex_or_rcu_locked();
-
-       /* if first iteration, visit @root */
-       if (!pos)
-               return root;
-
-       /* visit the first child if exists */
-       next = css_next_child(NULL, pos);
-       if (next)
-               return next;
-
-       /* no child, visit my or the closest ancestor's next sibling */
-       while (pos != root) {
-               next = css_next_child(pos, pos->parent);
-               if (next)
-                       return next;
-               pos = pos->parent;
-       }
-
-       return NULL;
-}
-
-/**
- * css_rightmost_descendant - return the rightmost descendant of a css
- * @pos: css of interest
- *
- * Return the rightmost descendant of @pos.  If there's no descendant, @pos
- * is returned.  This can be used during pre-order traversal to skip
- * subtree of @pos.
- *
- * While this function requires cgroup_mutex or RCU read locking, it
- * doesn't require the whole traversal to be contained in a single critical
- * section.  This function will return the correct rightmost descendant as
- * long as @pos is accessible.
- */
-struct cgroup_subsys_state *
-css_rightmost_descendant(struct cgroup_subsys_state *pos)
-{
-       struct cgroup_subsys_state *last, *tmp;
-
-       cgroup_assert_mutex_or_rcu_locked();
-
-       do {
-               last = pos;
-               /* ->prev isn't RCU safe, walk ->next till the end */
-               pos = NULL;
-               css_for_each_child(tmp, last)
-                       pos = tmp;
-       } while (pos);
-
-       return last;
-}
-
-static struct cgroup_subsys_state *
-css_leftmost_descendant(struct cgroup_subsys_state *pos)
-{
-       struct cgroup_subsys_state *last;
-
-       do {
-               last = pos;
-               pos = css_next_child(NULL, pos);
-       } while (pos);
-
-       return last;
-}
-
-/**
- * css_next_descendant_post - find the next descendant for post-order walk
- * @pos: the current position (%NULL to initiate traversal)
- * @root: css whose descendants to walk
- *
- * To be used by css_for_each_descendant_post().  Find the next descendant
- * to visit for post-order traversal of @root's descendants.  @root is
- * included in the iteration and the last node to be visited.
- *
- * While this function requires cgroup_mutex or RCU read locking, it
- * doesn't require the whole traversal to be contained in a single critical
- * section.  This function will return the correct next descendant as long
- * as both @pos and @cgroup are accessible and @pos is a descendant of
- * @cgroup.
- *
- * If a subsystem synchronizes ->css_online() and the start of iteration, a
- * css which finished ->css_online() is guaranteed to be visible in the
- * future iterations and will stay visible until the last reference is put.
- * A css which hasn't finished ->css_online() or already finished
- * ->css_offline() may show up during traversal.  It's each subsystem's
- * responsibility to synchronize against on/offlining.
- */
-struct cgroup_subsys_state *
-css_next_descendant_post(struct cgroup_subsys_state *pos,
-                        struct cgroup_subsys_state *root)
-{
-       struct cgroup_subsys_state *next;
-
-       cgroup_assert_mutex_or_rcu_locked();
-
-       /* if first iteration, visit leftmost descendant which may be @root */
-       if (!pos)
-               return css_leftmost_descendant(root);
-
-       /* if we visited @root, we're done */
-       if (pos == root)
-               return NULL;
-
-       /* if there's an unvisited sibling, visit its leftmost descendant */
-       next = css_next_child(pos, pos->parent);
-       if (next)
-               return css_leftmost_descendant(next);
-
-       /* no sibling left, visit parent */
-       return pos->parent;
-}
-
-/**
- * css_has_online_children - does a css have online children
- * @css: the target css
- *
- * Returns %true if @css has any online children; otherwise, %false.  This
- * function can be called from any context but the caller is responsible
- * for synchronizing against on/offlining as necessary.
- */
-bool css_has_online_children(struct cgroup_subsys_state *css)
-{
-       struct cgroup_subsys_state *child;
-       bool ret = false;
-
-       rcu_read_lock();
-       css_for_each_child(child, css) {
-               if (child->flags & CSS_ONLINE) {
-                       ret = true;
-                       break;
-               }
-       }
-       rcu_read_unlock();
-       return ret;
-}
-
-/**
- * css_task_iter_advance_css_set - advance a task itererator to the next css_set
- * @it: the iterator to advance
- *
- * Advance @it to the next css_set to walk.
- */
-static void css_task_iter_advance_css_set(struct css_task_iter *it)
-{
-       struct list_head *l = it->cset_pos;
-       struct cgrp_cset_link *link;
-       struct css_set *cset;
-
-       lockdep_assert_held(&css_set_lock);
-
-       /* Advance to the next non-empty css_set */
-       do {
-               l = l->next;
-               if (l == it->cset_head) {
-                       it->cset_pos = NULL;
-                       it->task_pos = NULL;
-                       return;
-               }
-
-               if (it->ss) {
-                       cset = container_of(l, struct css_set,
-                                           e_cset_node[it->ss->id]);
-               } else {
-                       link = list_entry(l, struct cgrp_cset_link, cset_link);
-                       cset = link->cset;
-               }
-       } while (!css_set_populated(cset));
-
-       it->cset_pos = l;
-
-       if (!list_empty(&cset->tasks))
-               it->task_pos = cset->tasks.next;
-       else
-               it->task_pos = cset->mg_tasks.next;
-
-       it->tasks_head = &cset->tasks;
-       it->mg_tasks_head = &cset->mg_tasks;
-
-       /*
-        * We don't keep css_sets locked across iteration steps and thus
-        * need to take steps to ensure that iteration can be resumed after
-        * the lock is re-acquired.  Iteration is performed at two levels -
-        * css_sets and tasks in them.
-        *
-        * Once created, a css_set never leaves its cgroup lists, so a
-        * pinned css_set is guaranteed to stay put and we can resume
-        * iteration afterwards.
-        *
-        * Tasks may leave @cset across iteration steps.  This is resolved
-        * by registering each iterator with the css_set currently being
-        * walked and making css_set_move_task() advance iterators whose
-        * next task is leaving.
-        */
-       if (it->cur_cset) {
-               list_del(&it->iters_node);
-               put_css_set_locked(it->cur_cset);
-       }
-       get_css_set(cset);
-       it->cur_cset = cset;
-       list_add(&it->iters_node, &cset->task_iters);
-}
-
-static void css_task_iter_advance(struct css_task_iter *it)
-{
-       struct list_head *l = it->task_pos;
-
-       lockdep_assert_held(&css_set_lock);
-       WARN_ON_ONCE(!l);
-
-       /*
-        * Advance iterator to find next entry.  cset->tasks is consumed
-        * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
-        * next cset.
-        */
-       l = l->next;
-
-       if (l == it->tasks_head)
-               l = it->mg_tasks_head->next;
-
-       if (l == it->mg_tasks_head)
-               css_task_iter_advance_css_set(it);
-       else
-               it->task_pos = l;
-}
-
-/**
- * css_task_iter_start - initiate task iteration
- * @css: the css to walk tasks of
- * @it: the task iterator to use
- *
- * Initiate iteration through the tasks of @css.  The caller can call
- * css_task_iter_next() to walk through the tasks until the function
- * returns NULL.  On completion of iteration, css_task_iter_end() must be
- * called.
- */
-void css_task_iter_start(struct cgroup_subsys_state *css,
-                        struct css_task_iter *it)
-{
-       /* no one should try to iterate before mounting cgroups */
-       WARN_ON_ONCE(!use_task_css_set_links);
-
-       memset(it, 0, sizeof(*it));
-
-       spin_lock_irq(&css_set_lock);
-
-       it->ss = css->ss;
-
-       if (it->ss)
-               it->cset_pos = &css->cgroup->e_csets[css->ss->id];
-       else
-               it->cset_pos = &css->cgroup->cset_links;
-
-       it->cset_head = it->cset_pos;
-
-       css_task_iter_advance_css_set(it);
-
-       spin_unlock_irq(&css_set_lock);
-}
-
-/**
- * css_task_iter_next - return the next task for the iterator
- * @it: the task iterator being iterated
- *
- * The "next" function for task iteration.  @it should have been
- * initialized via css_task_iter_start().  Returns NULL when the iteration
- * reaches the end.
- */
-struct task_struct *css_task_iter_next(struct css_task_iter *it)
-{
-       if (it->cur_task) {
-               put_task_struct(it->cur_task);
-               it->cur_task = NULL;
-       }
-
-       spin_lock_irq(&css_set_lock);
-
-       if (it->task_pos) {
-               it->cur_task = list_entry(it->task_pos, struct task_struct,
-                                         cg_list);
-               get_task_struct(it->cur_task);
-               css_task_iter_advance(it);
-       }
-
-       spin_unlock_irq(&css_set_lock);
-
-       return it->cur_task;
-}
-
-/**
- * css_task_iter_end - finish task iteration
- * @it: the task iterator to finish
- *
- * Finish task iteration started by css_task_iter_start().
- */
-void css_task_iter_end(struct css_task_iter *it)
-{
-       if (it->cur_cset) {
-               spin_lock_irq(&css_set_lock);
-               list_del(&it->iters_node);
-               put_css_set_locked(it->cur_cset);
-               spin_unlock_irq(&css_set_lock);
-       }
-
-       if (it->cur_task)
-               put_task_struct(it->cur_task);
-}
-
-/**
- * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
- * @to: cgroup to which the tasks will be moved
- * @from: cgroup in which the tasks currently reside
- *
- * Locking rules between cgroup_post_fork() and the migration path
- * guarantee that, if a task is forking while being migrated, the new child
- * is guaranteed to be either visible in the source cgroup after the
- * parent's migration is complete or put into the target cgroup.  No task
- * can slip out of migration through forking.
- */
-int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
-{
-       LIST_HEAD(preloaded_csets);
-       struct cgrp_cset_link *link;
-       struct css_task_iter it;
-       struct task_struct *task;
-       int ret;
-
-       if (cgroup_on_dfl(to))
-               return -EINVAL;
-
-       if (!cgroup_may_migrate_to(to))
-               return -EBUSY;
-
-       mutex_lock(&cgroup_mutex);
-
-       percpu_down_write(&cgroup_threadgroup_rwsem);
-
-       /* all tasks in @from are being moved, all csets are source */
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry(link, &from->cset_links, cset_link)
-               cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
-       spin_unlock_irq(&css_set_lock);
-
-       ret = cgroup_migrate_prepare_dst(&preloaded_csets);
-       if (ret)
-               goto out_err;
-
-       /*
-        * Migrate tasks one-by-one until @from is empty.  This fails iff
-        * ->can_attach() fails.
-        */
-       do {
-               css_task_iter_start(&from->self, &it);
-               task = css_task_iter_next(&it);
-               if (task)
-                       get_task_struct(task);
-               css_task_iter_end(&it);
-
-               if (task) {
-                       ret = cgroup_migrate(task, false, to->root);
-                       if (!ret)
-                               trace_cgroup_transfer_tasks(to, task, false);
-                       put_task_struct(task);
-               }
-       } while (task && !ret);
-out_err:
-       cgroup_migrate_finish(&preloaded_csets);
-       percpu_up_write(&cgroup_threadgroup_rwsem);
-       mutex_unlock(&cgroup_mutex);
-       return ret;
-}
-
-static void cgroup_procs_release(struct kernfs_open_file *of)
-{
-       if (of->priv) {
-               css_task_iter_end(of->priv);
-               kfree(of->priv);
-       }
-}
-
-static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
-{
-       struct kernfs_open_file *of = s->private;
-       struct css_task_iter *it = of->priv;
-       struct task_struct *task;
-
-       do {
-               task = css_task_iter_next(it);
-       } while (task && !thread_group_leader(task));
-
-       return task;
-}
-
-static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
-{
-       struct kernfs_open_file *of = s->private;
-       struct cgroup *cgrp = seq_css(s)->cgroup;
-       struct css_task_iter *it = of->priv;
-
-       /*
-        * When a seq_file is seeked, it's always traversed sequentially
-        * from position 0, so we can simply keep iterating on !0 *pos.
-        */
-       if (!it) {
-               if (WARN_ON_ONCE((*pos)++))
-                       return ERR_PTR(-EINVAL);
-
-               it = kzalloc(sizeof(*it), GFP_KERNEL);
-               if (!it)
-                       return ERR_PTR(-ENOMEM);
-               of->priv = it;
-               css_task_iter_start(&cgrp->self, it);
-       } else if (!(*pos)++) {
-               css_task_iter_end(it);
-               css_task_iter_start(&cgrp->self, it);
-       }
-
-       return cgroup_procs_next(s, NULL, NULL);
-}
-
-static int cgroup_procs_show(struct seq_file *s, void *v)
-{
-       seq_printf(s, "%d\n", task_tgid_vnr(v));
-       return 0;
-}
-
-/*
- * Stuff for reading the 'tasks'/'procs' files.
- *
- * Reading this file can return large amounts of data if a cgroup has
- * *lots* of attached tasks. So it may need several calls to read(),
- * but we cannot guarantee that the information we produce is correct
- * unless we produce it entirely atomically.
- *
- */
-
-/* which pidlist file are we talking about? */
-enum cgroup_filetype {
-       CGROUP_FILE_PROCS,
-       CGROUP_FILE_TASKS,
-};
-
-/*
- * A pidlist is a list of pids that virtually represents the contents of one
- * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
- * a pair (one each for procs, tasks) for each pid namespace that's relevant
- * to the cgroup.
- */
-struct cgroup_pidlist {
-       /*
-        * used to find which pidlist is wanted. doesn't change as long as
-        * this particular list stays in the list.
-       */
-       struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
-       /* array of xids */
-       pid_t *list;
-       /* how many elements the above list has */
-       int length;
-       /* each of these stored in a list by its cgroup */
-       struct list_head links;
-       /* pointer to the cgroup we belong to, for list removal purposes */
-       struct cgroup *owner;
-       /* for delayed destruction */
-       struct delayed_work destroy_dwork;
-};
-
-/*
- * The following two functions "fix" the issue where there are more pids
- * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
- * TODO: replace with a kernel-wide solution to this problem
- */
-#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
-static void *pidlist_allocate(int count)
-{
-       if (PIDLIST_TOO_LARGE(count))
-               return vmalloc(count * sizeof(pid_t));
-       else
-               return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
-}
-
-static void pidlist_free(void *p)
-{
-       kvfree(p);
-}
-
-/*
- * Used to destroy all pidlists lingering waiting for destroy timer.  None
- * should be left afterwards.
- */
-static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
-{
-       struct cgroup_pidlist *l, *tmp_l;
-
-       mutex_lock(&cgrp->pidlist_mutex);
-       list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
-               mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
-       mutex_unlock(&cgrp->pidlist_mutex);
-
-       flush_workqueue(cgroup_pidlist_destroy_wq);
-       BUG_ON(!list_empty(&cgrp->pidlists));
-}
-
-static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
-{
-       struct delayed_work *dwork = to_delayed_work(work);
-       struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
-                                               destroy_dwork);
-       struct cgroup_pidlist *tofree = NULL;
-
-       mutex_lock(&l->owner->pidlist_mutex);
-
-       /*
-        * Destroy iff we didn't get queued again.  The state won't change
-        * as destroy_dwork can only be queued while locked.
-        */
-       if (!delayed_work_pending(dwork)) {
-               list_del(&l->links);
-               pidlist_free(l->list);
-               put_pid_ns(l->key.ns);
-               tofree = l;
-       }
-
-       mutex_unlock(&l->owner->pidlist_mutex);
-       kfree(tofree);
-}
-
-/*
- * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
- * Returns the number of unique elements.
- */
-static int pidlist_uniq(pid_t *list, int length)
-{
-       int src, dest = 1;
-
-       /*
-        * we presume the 0th element is unique, so i starts at 1. trivial
-        * edge cases first; no work needs to be done for either
-        */
-       if (length == 0 || length == 1)
-               return length;
-       /* src and dest walk down the list; dest counts unique elements */
-       for (src = 1; src < length; src++) {
-               /* find next unique element */
-               while (list[src] == list[src-1]) {
-                       src++;
-                       if (src == length)
-                               goto after;
-               }
-               /* dest always points to where the next unique element goes */
-               list[dest] = list[src];
-               dest++;
-       }
-after:
-       return dest;
-}
-
-/*
- * The two pid files - task and cgroup.procs - guaranteed that the result
- * is sorted, which forced this whole pidlist fiasco.  As pid order is
- * different per namespace, each namespace needs differently sorted list,
- * making it impossible to use, for example, single rbtree of member tasks
- * sorted by task pointer.  As pidlists can be fairly large, allocating one
- * per open file is dangerous, so cgroup had to implement shared pool of
- * pidlists keyed by cgroup and namespace.
- */
-static int cmppid(const void *a, const void *b)
-{
-       return *(pid_t *)a - *(pid_t *)b;
-}
-
-static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
-                                                 enum cgroup_filetype type)
-{
-       struct cgroup_pidlist *l;
-       /* don't need task_nsproxy() if we're looking at ourself */
-       struct pid_namespace *ns = task_active_pid_ns(current);
-
-       lockdep_assert_held(&cgrp->pidlist_mutex);
-
-       list_for_each_entry(l, &cgrp->pidlists, links)
-               if (l->key.type == type && l->key.ns == ns)
-                       return l;
-       return NULL;
-}
-
-/*
- * find the appropriate pidlist for our purpose (given procs vs tasks)
- * returns with the lock on that pidlist already held, and takes care
- * of the use count, or returns NULL with no locks held if we're out of
- * memory.
- */
-static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
-                                               enum cgroup_filetype type)
-{
-       struct cgroup_pidlist *l;
-
-       lockdep_assert_held(&cgrp->pidlist_mutex);
-
-       l = cgroup_pidlist_find(cgrp, type);
-       if (l)
-               return l;
-
-       /* entry not found; create a new one */
-       l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
-       if (!l)
-               return l;
-
-       INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
-       l->key.type = type;
-       /* don't need task_nsproxy() if we're looking at ourself */
-       l->key.ns = get_pid_ns(task_active_pid_ns(current));
-       l->owner = cgrp;
-       list_add(&l->links, &cgrp->pidlists);
-       return l;
-}
-
-/*
- * Load a cgroup's pidarray with either procs' tgids or tasks' pids
- */
-static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
-                             struct cgroup_pidlist **lp)
-{
-       pid_t *array;
-       int length;
-       int pid, n = 0; /* used for populating the array */
-       struct css_task_iter it;
-       struct task_struct *tsk;
-       struct cgroup_pidlist *l;
-
-       lockdep_assert_held(&cgrp->pidlist_mutex);
-
-       /*
-        * If cgroup gets more users after we read count, we won't have
-        * enough space - tough.  This race is indistinguishable to the
-        * caller from the case that the additional cgroup users didn't
-        * show up until sometime later on.
-        */
-       length = cgroup_task_count(cgrp);
-       array = pidlist_allocate(length);
-       if (!array)
-               return -ENOMEM;
-       /* now, populate the array */
-       css_task_iter_start(&cgrp->self, &it);
-       while ((tsk = css_task_iter_next(&it))) {
-               if (unlikely(n == length))
-                       break;
-               /* get tgid or pid for procs or tasks file respectively */
-               if (type == CGROUP_FILE_PROCS)
-                       pid = task_tgid_vnr(tsk);
-               else
-                       pid = task_pid_vnr(tsk);
-               if (pid > 0) /* make sure to only use valid results */
-                       array[n++] = pid;
-       }
-       css_task_iter_end(&it);
-       length = n;
-       /* now sort & (if procs) strip out duplicates */
-       sort(array, length, sizeof(pid_t), cmppid, NULL);
-       if (type == CGROUP_FILE_PROCS)
-               length = pidlist_uniq(array, length);
-
-       l = cgroup_pidlist_find_create(cgrp, type);
-       if (!l) {
-               pidlist_free(array);
-               return -ENOMEM;
-       }
-
-       /* store array, freeing old if necessary */
-       pidlist_free(l->list);
-       l->list = array;
-       l->length = length;
-       *lp = l;
-       return 0;
-}
-
-/**
- * cgroupstats_build - build and fill cgroupstats
- * @stats: cgroupstats to fill information into
- * @dentry: A dentry entry belonging to the cgroup for which stats have
- * been requested.
- *
- * Build and fill cgroupstats so that taskstats can export it to user
- * space.
- */
-int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
-{
-       struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
-       struct cgroup *cgrp;
-       struct css_task_iter it;
-       struct task_struct *tsk;
-
-       /* it should be kernfs_node belonging to cgroupfs and is a directory */
-       if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
-           kernfs_type(kn) != KERNFS_DIR)
-               return -EINVAL;
-
-       mutex_lock(&cgroup_mutex);
-
-       /*
-        * We aren't being called from kernfs and there's no guarantee on
-        * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
-        * @kn->priv is RCU safe.  Let's do the RCU dancing.
-        */
-       rcu_read_lock();
-       cgrp = rcu_dereference(kn->priv);
-       if (!cgrp || cgroup_is_dead(cgrp)) {
-               rcu_read_unlock();
-               mutex_unlock(&cgroup_mutex);
-               return -ENOENT;
-       }
-       rcu_read_unlock();
-
-       css_task_iter_start(&cgrp->self, &it);
-       while ((tsk = css_task_iter_next(&it))) {
-               switch (tsk->state) {
-               case TASK_RUNNING:
-                       stats->nr_running++;
-                       break;
-               case TASK_INTERRUPTIBLE:
-                       stats->nr_sleeping++;
-                       break;
-               case TASK_UNINTERRUPTIBLE:
-                       stats->nr_uninterruptible++;
-                       break;
-               case TASK_STOPPED:
-                       stats->nr_stopped++;
-                       break;
-               default:
-                       if (delayacct_is_task_waiting_on_io(tsk))
-                               stats->nr_io_wait++;
-                       break;
-               }
-       }
-       css_task_iter_end(&it);
-
-       mutex_unlock(&cgroup_mutex);
-       return 0;
-}
-
-
-/*
- * seq_file methods for the tasks/procs files. The seq_file position is the
- * next pid to display; the seq_file iterator is a pointer to the pid
- * in the cgroup->l->list array.
- */
-
-static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
-{
-       /*
-        * Initially we receive a position value that corresponds to
-        * one more than the last pid shown (or 0 on the first call or
-        * after a seek to the start). Use a binary-search to find the
-        * next pid to display, if any
-        */
-       struct kernfs_open_file *of = s->private;
-       struct cgroup *cgrp = seq_css(s)->cgroup;
-       struct cgroup_pidlist *l;
-       enum cgroup_filetype type = seq_cft(s)->private;
-       int index = 0, pid = *pos;
-       int *iter, ret;
-
-       mutex_lock(&cgrp->pidlist_mutex);
-
-       /*
-        * !NULL @of->priv indicates that this isn't the first start()
-        * after open.  If the matching pidlist is around, we can use that.
-        * Look for it.  Note that @of->priv can't be used directly.  It
-        * could already have been destroyed.
-        */
-       if (of->priv)
-               of->priv = cgroup_pidlist_find(cgrp, type);
-
-       /*
-        * Either this is the first start() after open or the matching
-        * pidlist has been destroyed inbetween.  Create a new one.
-        */
-       if (!of->priv) {
-               ret = pidlist_array_load(cgrp, type,
-                                        (struct cgroup_pidlist **)&of->priv);
-               if (ret)
-                       return ERR_PTR(ret);
-       }
-       l = of->priv;
-
-       if (pid) {
-               int end = l->length;
-
-               while (index < end) {
-                       int mid = (index + end) / 2;
-                       if (l->list[mid] == pid) {
-                               index = mid;
-                               break;
-                       } else if (l->list[mid] <= pid)
-                               index = mid + 1;
-                       else
-                               end = mid;
-               }
-       }
-       /* If we're off the end of the array, we're done */
-       if (index >= l->length)
-               return NULL;
-       /* Update the abstract position to be the actual pid that we found */
-       iter = l->list + index;
-       *pos = *iter;
-       return iter;
-}
-
-static void cgroup_pidlist_stop(struct seq_file *s, void *v)
-{
-       struct kernfs_open_file *of = s->private;
-       struct cgroup_pidlist *l = of->priv;
-
-       if (l)
-               mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
-                                CGROUP_PIDLIST_DESTROY_DELAY);
-       mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
-}
-
-static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
-{
-       struct kernfs_open_file *of = s->private;
-       struct cgroup_pidlist *l = of->priv;
-       pid_t *p = v;
-       pid_t *end = l->list + l->length;
-       /*
-        * Advance to the next pid in the array. If this goes off the
-        * end, we're done
-        */
-       p++;
-       if (p >= end) {
-               return NULL;
-       } else {
-               *pos = *p;
-               return p;
-       }
-}
-
-static int cgroup_pidlist_show(struct seq_file *s, void *v)
-{
-       seq_printf(s, "%d\n", *(int *)v);
-
-       return 0;
-}
-
-static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
-                                        struct cftype *cft)
-{
-       return notify_on_release(css->cgroup);
-}
-
-static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
-                                         struct cftype *cft, u64 val)
-{
-       if (val)
-               set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
-       else
-               clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
-       return 0;
-}
-
-static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
-                                     struct cftype *cft)
-{
-       return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
-}
-
-static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
-                                      struct cftype *cft, u64 val)
-{
-       if (val)
-               set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
-       else
-               clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
-       return 0;
-}
-
-/* cgroup core interface files for the default hierarchy */
-static struct cftype cgroup_dfl_base_files[] = {
-       {
-               .name = "cgroup.procs",
-               .file_offset = offsetof(struct cgroup, procs_file),
-               .release = cgroup_procs_release,
-               .seq_start = cgroup_procs_start,
-               .seq_next = cgroup_procs_next,
-               .seq_show = cgroup_procs_show,
-               .write = cgroup_procs_write,
-       },
-       {
-               .name = "cgroup.controllers",
-               .seq_show = cgroup_controllers_show,
-       },
-       {
-               .name = "cgroup.subtree_control",
-               .seq_show = cgroup_subtree_control_show,
-               .write = cgroup_subtree_control_write,
-       },
-       {
-               .name = "cgroup.events",
-               .flags = CFTYPE_NOT_ON_ROOT,
-               .file_offset = offsetof(struct cgroup, events_file),
-               .seq_show = cgroup_events_show,
-       },
-       { }     /* terminate */
-};
-
-/* cgroup core interface files for the legacy hierarchies */
-static struct cftype cgroup_legacy_base_files[] = {
-       {
-               .name = "cgroup.procs",
-               .seq_start = cgroup_pidlist_start,
-               .seq_next = cgroup_pidlist_next,
-               .seq_stop = cgroup_pidlist_stop,
-               .seq_show = cgroup_pidlist_show,
-               .private = CGROUP_FILE_PROCS,
-               .write = cgroup_procs_write,
-       },
-       {
-               .name = "cgroup.clone_children",
-               .read_u64 = cgroup_clone_children_read,
-               .write_u64 = cgroup_clone_children_write,
-       },
-       {
-               .name = "cgroup.sane_behavior",
-               .flags = CFTYPE_ONLY_ON_ROOT,
-               .seq_show = cgroup_sane_behavior_show,
-       },
-       {
-               .name = "tasks",
-               .seq_start = cgroup_pidlist_start,
-               .seq_next = cgroup_pidlist_next,
-               .seq_stop = cgroup_pidlist_stop,
-               .seq_show = cgroup_pidlist_show,
-               .private = CGROUP_FILE_TASKS,
-               .write = cgroup_tasks_write,
-       },
-       {
-               .name = "notify_on_release",
-               .read_u64 = cgroup_read_notify_on_release,
-               .write_u64 = cgroup_write_notify_on_release,
-       },
-       {
-               .name = "release_agent",
-               .flags = CFTYPE_ONLY_ON_ROOT,
-               .seq_show = cgroup_release_agent_show,
-               .write = cgroup_release_agent_write,
-               .max_write_len = PATH_MAX - 1,
-       },
-       { }     /* terminate */
-};
-
-/*
- * css destruction is four-stage process.
- *
- * 1. Destruction starts.  Killing of the percpu_ref is initiated.
- *    Implemented in kill_css().
- *
- * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
- *    and thus css_tryget_online() is guaranteed to fail, the css can be
- *    offlined by invoking offline_css().  After offlining, the base ref is
- *    put.  Implemented in css_killed_work_fn().
- *
- * 3. When the percpu_ref reaches zero, the only possible remaining
- *    accessors are inside RCU read sections.  css_release() schedules the
- *    RCU callback.
- *
- * 4. After the grace period, the css can be freed.  Implemented in
- *    css_free_work_fn().
- *
- * It is actually hairier because both step 2 and 4 require process context
- * and thus involve punting to css->destroy_work adding two additional
- * steps to the already complex sequence.
- */
-static void css_free_work_fn(struct work_struct *work)
-{
-       struct cgroup_subsys_state *css =
-               container_of(work, struct cgroup_subsys_state, destroy_work);
-       struct cgroup_subsys *ss = css->ss;
-       struct cgroup *cgrp = css->cgroup;
-
-       percpu_ref_exit(&css->refcnt);
-
-       if (ss) {
-               /* css free path */
-               struct cgroup_subsys_state *parent = css->parent;
-               int id = css->id;
-
-               ss->css_free(css);
-               cgroup_idr_remove(&ss->css_idr, id);
-               cgroup_put(cgrp);
-
-               if (parent)
-                       css_put(parent);
-       } else {
-               /* cgroup free path */
-               atomic_dec(&cgrp->root->nr_cgrps);
-               cgroup_pidlist_destroy_all(cgrp);
-               cancel_work_sync(&cgrp->release_agent_work);
-
-               if (cgroup_parent(cgrp)) {
-                       /*
-                        * We get a ref to the parent, and put the ref when
-                        * this cgroup is being freed, so it's guaranteed
-                        * that the parent won't be destroyed before its
-                        * children.
-                        */
-                       cgroup_put(cgroup_parent(cgrp));
-                       kernfs_put(cgrp->kn);
-                       kfree(cgrp);
-               } else {
-                       /*
-                        * This is root cgroup's refcnt reaching zero,
-                        * which indicates that the root should be
-                        * released.
-                        */
-                       cgroup_destroy_root(cgrp->root);
-               }
-       }
-}
-
-static void css_free_rcu_fn(struct rcu_head *rcu_head)
-{
-       struct cgroup_subsys_state *css =
-               container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
-
-       INIT_WORK(&css->destroy_work, css_free_work_fn);
-       queue_work(cgroup_destroy_wq, &css->destroy_work);
-}
-
-static void css_release_work_fn(struct work_struct *work)
-{
-       struct cgroup_subsys_state *css =
-               container_of(work, struct cgroup_subsys_state, destroy_work);
-       struct cgroup_subsys *ss = css->ss;
-       struct cgroup *cgrp = css->cgroup;
-
-       mutex_lock(&cgroup_mutex);
-
-       css->flags |= CSS_RELEASED;
-       list_del_rcu(&css->sibling);
-
-       if (ss) {
-               /* css release path */
-               cgroup_idr_replace(&ss->css_idr, NULL, css->id);
-               if (ss->css_released)
-                       ss->css_released(css);
-       } else {
-               /* cgroup release path */
-               trace_cgroup_release(cgrp);
-
-               cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
-               cgrp->id = -1;
-
-               /*
-                * There are two control paths which try to determine
-                * cgroup from dentry without going through kernfs -
-                * cgroupstats_build() and css_tryget_online_from_dir().
-                * Those are supported by RCU protecting clearing of
-                * cgrp->kn->priv backpointer.
-                */
-               if (cgrp->kn)
-                       RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
-                                        NULL);
-
-               cgroup_bpf_put(cgrp);
-       }
-
-       mutex_unlock(&cgroup_mutex);
-
-       call_rcu(&css->rcu_head, css_free_rcu_fn);
-}
-
-static void css_release(struct percpu_ref *ref)
-{
-       struct cgroup_subsys_state *css =
-               container_of(ref, struct cgroup_subsys_state, refcnt);
-
-       INIT_WORK(&css->destroy_work, css_release_work_fn);
-       queue_work(cgroup_destroy_wq, &css->destroy_work);
-}
-
-static void init_and_link_css(struct cgroup_subsys_state *css,
-                             struct cgroup_subsys *ss, struct cgroup *cgrp)
-{
-       lockdep_assert_held(&cgroup_mutex);
-
-       cgroup_get(cgrp);
-
-       memset(css, 0, sizeof(*css));
-       css->cgroup = cgrp;
-       css->ss = ss;
-       css->id = -1;
-       INIT_LIST_HEAD(&css->sibling);
-       INIT_LIST_HEAD(&css->children);
-       css->serial_nr = css_serial_nr_next++;
-       atomic_set(&css->online_cnt, 0);
-
-       if (cgroup_parent(cgrp)) {
-               css->parent = cgroup_css(cgroup_parent(cgrp), ss);
-               css_get(css->parent);
-       }
-
-       BUG_ON(cgroup_css(cgrp, ss));
-}
-
-/* invoke ->css_online() on a new CSS and mark it online if successful */
-static int online_css(struct cgroup_subsys_state *css)
-{
-       struct cgroup_subsys *ss = css->ss;
-       int ret = 0;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       if (ss->css_online)
-               ret = ss->css_online(css);
-       if (!ret) {
-               css->flags |= CSS_ONLINE;
-               rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
-
-               atomic_inc(&css->online_cnt);
-               if (css->parent)
-                       atomic_inc(&css->parent->online_cnt);
-       }
-       return ret;
-}
-
-/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
-static void offline_css(struct cgroup_subsys_state *css)
-{
-       struct cgroup_subsys *ss = css->ss;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       if (!(css->flags & CSS_ONLINE))
-               return;
-
-       if (ss->css_reset)
-               ss->css_reset(css);
-
-       if (ss->css_offline)
-               ss->css_offline(css);
-
-       css->flags &= ~CSS_ONLINE;
-       RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
-
-       wake_up_all(&css->cgroup->offline_waitq);
-}
-
-/**
- * css_create - create a cgroup_subsys_state
- * @cgrp: the cgroup new css will be associated with
- * @ss: the subsys of new css
- *
- * Create a new css associated with @cgrp - @ss pair.  On success, the new
- * css is online and installed in @cgrp.  This function doesn't create the
- * interface files.  Returns 0 on success, -errno on failure.
- */
-static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
-                                             struct cgroup_subsys *ss)
-{
-       struct cgroup *parent = cgroup_parent(cgrp);
-       struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
-       struct cgroup_subsys_state *css;
-       int err;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       css = ss->css_alloc(parent_css);
-       if (!css)
-               css = ERR_PTR(-ENOMEM);
-       if (IS_ERR(css))
-               return css;
-
-       init_and_link_css(css, ss, cgrp);
-
-       err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
-       if (err)
-               goto err_free_css;
-
-       err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
-       if (err < 0)
-               goto err_free_css;
-       css->id = err;
-
-       /* @css is ready to be brought online now, make it visible */
-       list_add_tail_rcu(&css->sibling, &parent_css->children);
-       cgroup_idr_replace(&ss->css_idr, css, css->id);
-
-       err = online_css(css);
-       if (err)
-               goto err_list_del;
-
-       if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
-           cgroup_parent(parent)) {
-               pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
-                       current->comm, current->pid, ss->name);
-               if (!strcmp(ss->name, "memory"))
-                       pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
-               ss->warned_broken_hierarchy = true;
-       }
-
-       return css;
-
-err_list_del:
-       list_del_rcu(&css->sibling);
-err_free_css:
-       call_rcu(&css->rcu_head, css_free_rcu_fn);
-       return ERR_PTR(err);
-}
-
-static struct cgroup *cgroup_create(struct cgroup *parent)
-{
-       struct cgroup_root *root = parent->root;
-       struct cgroup *cgrp, *tcgrp;
-       int level = parent->level + 1;
-       int ret;
-
-       /* allocate the cgroup and its ID, 0 is reserved for the root */
-       cgrp = kzalloc(sizeof(*cgrp) +
-                      sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
-       if (!cgrp)
-               return ERR_PTR(-ENOMEM);
-
-       ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
-       if (ret)
-               goto out_free_cgrp;
-
-       /*
-        * Temporarily set the pointer to NULL, so idr_find() won't return
-        * a half-baked cgroup.
-        */
-       cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
-       if (cgrp->id < 0) {
-               ret = -ENOMEM;
-               goto out_cancel_ref;
-       }
-
-       init_cgroup_housekeeping(cgrp);
-
-       cgrp->self.parent = &parent->self;
-       cgrp->root = root;
-       cgrp->level = level;
-
-       for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
-               cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
-
-       if (notify_on_release(parent))
-               set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
-
-       if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
-               set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
-
-       cgrp->self.serial_nr = css_serial_nr_next++;
-
-       /* allocation complete, commit to creation */
-       list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
-       atomic_inc(&root->nr_cgrps);
-       cgroup_get(parent);
-
-       /*
-        * @cgrp is now fully operational.  If something fails after this
-        * point, it'll be released via the normal destruction path.
-        */
-       cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
-
-       /*
-        * On the default hierarchy, a child doesn't automatically inherit
-        * subtree_control from the parent.  Each is configured manually.
-        */
-       if (!cgroup_on_dfl(cgrp))
-               cgrp->subtree_control = cgroup_control(cgrp);
-
-       if (parent)
-               cgroup_bpf_inherit(cgrp, parent);
-
-       cgroup_propagate_control(cgrp);
-
-       /* @cgrp doesn't have dir yet so the following will only create csses */
-       ret = cgroup_apply_control_enable(cgrp);
-       if (ret)
-               goto out_destroy;
-
-       return cgrp;
-
-out_cancel_ref:
-       percpu_ref_exit(&cgrp->self.refcnt);
-out_free_cgrp:
-       kfree(cgrp);
-       return ERR_PTR(ret);
-out_destroy:
-       cgroup_destroy_locked(cgrp);
-       return ERR_PTR(ret);
-}
-
-static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
-                       umode_t mode)
-{
-       struct cgroup *parent, *cgrp;
-       struct kernfs_node *kn;
-       int ret;
-
-       /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
-       if (strchr(name, '\n'))
-               return -EINVAL;
-
-       parent = cgroup_kn_lock_live(parent_kn, false);
-       if (!parent)
-               return -ENODEV;
-
-       cgrp = cgroup_create(parent);
-       if (IS_ERR(cgrp)) {
-               ret = PTR_ERR(cgrp);
-               goto out_unlock;
-       }
-
-       /* create the directory */
-       kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
-       if (IS_ERR(kn)) {
-               ret = PTR_ERR(kn);
-               goto out_destroy;
-       }
-       cgrp->kn = kn;
-
-       /*
-        * This extra ref will be put in cgroup_free_fn() and guarantees
-        * that @cgrp->kn is always accessible.
-        */
-       kernfs_get(kn);
-
-       ret = cgroup_kn_set_ugid(kn);
-       if (ret)
-               goto out_destroy;
-
-       ret = css_populate_dir(&cgrp->self);
-       if (ret)
-               goto out_destroy;
-
-       ret = cgroup_apply_control_enable(cgrp);
-       if (ret)
-               goto out_destroy;
-
-       trace_cgroup_mkdir(cgrp);
-
-       /* let's create and online css's */
-       kernfs_activate(kn);
-
-       ret = 0;
-       goto out_unlock;
-
-out_destroy:
-       cgroup_destroy_locked(cgrp);
-out_unlock:
-       cgroup_kn_unlock(parent_kn);
-       return ret;
-}
-
-/*
- * This is called when the refcnt of a css is confirmed to be killed.
- * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
- * initate destruction and put the css ref from kill_css().
- */
-static void css_killed_work_fn(struct work_struct *work)
-{
-       struct cgroup_subsys_state *css =
-               container_of(work, struct cgroup_subsys_state, destroy_work);
-
-       mutex_lock(&cgroup_mutex);
-
-       do {
-               offline_css(css);
-               css_put(css);
-               /* @css can't go away while we're holding cgroup_mutex */
-               css = css->parent;
-       } while (css && atomic_dec_and_test(&css->online_cnt));
-
-       mutex_unlock(&cgroup_mutex);
-}
-
-/* css kill confirmation processing requires process context, bounce */
-static void css_killed_ref_fn(struct percpu_ref *ref)
-{
-       struct cgroup_subsys_state *css =
-               container_of(ref, struct cgroup_subsys_state, refcnt);
-
-       if (atomic_dec_and_test(&css->online_cnt)) {
-               INIT_WORK(&css->destroy_work, css_killed_work_fn);
-               queue_work(cgroup_destroy_wq, &css->destroy_work);
-       }
-}
-
-/**
- * kill_css - destroy a css
- * @css: css to destroy
- *
- * This function initiates destruction of @css by removing cgroup interface
- * files and putting its base reference.  ->css_offline() will be invoked
- * asynchronously once css_tryget_online() is guaranteed to fail and when
- * the reference count reaches zero, @css will be released.
- */
-static void kill_css(struct cgroup_subsys_state *css)
-{
-       lockdep_assert_held(&cgroup_mutex);
-
-       /*
-        * This must happen before css is disassociated with its cgroup.
-        * See seq_css() for details.
-        */
-       css_clear_dir(css);
-
-       /*
-        * Killing would put the base ref, but we need to keep it alive
-        * until after ->css_offline().
-        */
-       css_get(css);
-
-       /*
-        * cgroup core guarantees that, by the time ->css_offline() is
-        * invoked, no new css reference will be given out via
-        * css_tryget_online().  We can't simply call percpu_ref_kill() and
-        * proceed to offlining css's because percpu_ref_kill() doesn't
-        * guarantee that the ref is seen as killed on all CPUs on return.
-        *
-        * Use percpu_ref_kill_and_confirm() to get notifications as each
-        * css is confirmed to be seen as killed on all CPUs.
-        */
-       percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
-}
-
-/**
- * cgroup_destroy_locked - the first stage of cgroup destruction
- * @cgrp: cgroup to be destroyed
- *
- * css's make use of percpu refcnts whose killing latency shouldn't be
- * exposed to userland and are RCU protected.  Also, cgroup core needs to
- * guarantee that css_tryget_online() won't succeed by the time
- * ->css_offline() is invoked.  To satisfy all the requirements,
- * destruction is implemented in the following two steps.
- *
- * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
- *     userland visible parts and start killing the percpu refcnts of
- *     css's.  Set up so that the next stage will be kicked off once all
- *     the percpu refcnts are confirmed to be killed.
- *
- * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
- *     rest of destruction.  Once all cgroup references are gone, the
- *     cgroup is RCU-freed.
- *
- * This function implements s1.  After this step, @cgrp is gone as far as
- * the userland is concerned and a new cgroup with the same name may be
- * created.  As cgroup doesn't care about the names internally, this
- * doesn't cause any problem.
- */
-static int cgroup_destroy_locked(struct cgroup *cgrp)
-       __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
-{
-       struct cgroup_subsys_state *css;
-       struct cgrp_cset_link *link;
-       int ssid;
-
-       lockdep_assert_held(&cgroup_mutex);
-
-       /*
-        * Only migration can raise populated from zero and we're already
-        * holding cgroup_mutex.
-        */
-       if (cgroup_is_populated(cgrp))
-               return -EBUSY;
-
-       /*
-        * Make sure there's no live children.  We can't test emptiness of
-        * ->self.children as dead children linger on it while being
-        * drained; otherwise, "rmdir parent/child parent" may fail.
-        */
-       if (css_has_online_children(&cgrp->self))
-               return -EBUSY;
-
-       /*
-        * Mark @cgrp and the associated csets dead.  The former prevents
-        * further task migration and child creation by disabling
-        * cgroup_lock_live_group().  The latter makes the csets ignored by
-        * the migration path.
-        */
-       cgrp->self.flags &= ~CSS_ONLINE;
-
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry(link, &cgrp->cset_links, cset_link)
-               link->cset->dead = true;
-       spin_unlock_irq(&css_set_lock);
-
-       /* initiate massacre of all css's */
-       for_each_css(css, ssid, cgrp)
-               kill_css(css);
-
-       /*
-        * Remove @cgrp directory along with the base files.  @cgrp has an
-        * extra ref on its kn.
-        */
-       kernfs_remove(cgrp->kn);
-
-       check_for_release(cgroup_parent(cgrp));
-
-       /* put the base reference */
-       percpu_ref_kill(&cgrp->self.refcnt);
-
-       return 0;
-};
-
-static int cgroup_rmdir(struct kernfs_node *kn)
-{
-       struct cgroup *cgrp;
-       int ret = 0;
-
-       cgrp = cgroup_kn_lock_live(kn, false);
-       if (!cgrp)
-               return 0;
-
-       ret = cgroup_destroy_locked(cgrp);
-
-       if (!ret)
-               trace_cgroup_rmdir(cgrp);
-
-       cgroup_kn_unlock(kn);
-       return ret;
-}
-
-static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
-       .remount_fs             = cgroup_remount,
-       .show_options           = cgroup_show_options,
-       .mkdir                  = cgroup_mkdir,
-       .rmdir                  = cgroup_rmdir,
-       .rename                 = cgroup_rename,
-       .show_path              = cgroup_show_path,
-};
-
-static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
-{
-       struct cgroup_subsys_state *css;
-
-       pr_debug("Initializing cgroup subsys %s\n", ss->name);
-
-       mutex_lock(&cgroup_mutex);
-
-       idr_init(&ss->css_idr);
-       INIT_LIST_HEAD(&ss->cfts);
-
-       /* Create the root cgroup state for this subsystem */
-       ss->root = &cgrp_dfl_root;
-       css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
-       /* We don't handle early failures gracefully */
-       BUG_ON(IS_ERR(css));
-       init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
-
-       /*
-        * Root csses are never destroyed and we can't initialize
-        * percpu_ref during early init.  Disable refcnting.
-        */
-       css->flags |= CSS_NO_REF;
-
-       if (early) {
-               /* allocation can't be done safely during early init */
-               css->id = 1;
-       } else {
-               css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
-               BUG_ON(css->id < 0);
-       }
-
-       /* Update the init_css_set to contain a subsys
-        * pointer to this state - since the subsystem is
-        * newly registered, all tasks and hence the
-        * init_css_set is in the subsystem's root cgroup. */
-       init_css_set.subsys[ss->id] = css;
-
-       have_fork_callback |= (bool)ss->fork << ss->id;
-       have_exit_callback |= (bool)ss->exit << ss->id;
-       have_free_callback |= (bool)ss->free << ss->id;
-       have_canfork_callback |= (bool)ss->can_fork << ss->id;
-
-       /* At system boot, before all subsystems have been
-        * registered, no tasks have been forked, so we don't
-        * need to invoke fork callbacks here. */
-       BUG_ON(!list_empty(&init_task.tasks));
-
-       BUG_ON(online_css(css));
-
-       mutex_unlock(&cgroup_mutex);
-}
-
-/**
- * cgroup_init_early - cgroup initialization at system boot
- *
- * Initialize cgroups at system boot, and initialize any
- * subsystems that request early init.
- */
-int __init cgroup_init_early(void)
-{
-       static struct cgroup_sb_opts __initdata opts;
-       struct cgroup_subsys *ss;
-       int i;
-
-       init_cgroup_root(&cgrp_dfl_root, &opts);
-       cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
-
-       RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
-
-       for_each_subsys(ss, i) {
-               WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
-                    "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
-                    i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
-                    ss->id, ss->name);
-               WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
-                    "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
-
-               ss->id = i;
-               ss->name = cgroup_subsys_name[i];
-               if (!ss->legacy_name)
-                       ss->legacy_name = cgroup_subsys_name[i];
-
-               if (ss->early_init)
-                       cgroup_init_subsys(ss, true);
-       }
-       return 0;
-}
-
-static u16 cgroup_disable_mask __initdata;
-
-/**
- * cgroup_init - cgroup initialization
- *
- * Register cgroup filesystem and /proc file, and initialize
- * any subsystems that didn't request early init.
- */
-int __init cgroup_init(void)
-{
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
-       BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
-       BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
-       BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
-
-       /*
-        * The latency of the synchronize_sched() is too high for cgroups,
-        * avoid it at the cost of forcing all readers into the slow path.
-        */
-       rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
-
-       get_user_ns(init_cgroup_ns.user_ns);
-
-       mutex_lock(&cgroup_mutex);
-
-       /*
-        * Add init_css_set to the hash table so that dfl_root can link to
-        * it during init.
-        */
-       hash_add(css_set_table, &init_css_set.hlist,
-                css_set_hash(init_css_set.subsys));
-
-       BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
-
-       mutex_unlock(&cgroup_mutex);
-
-       for_each_subsys(ss, ssid) {
-               if (ss->early_init) {
-                       struct cgroup_subsys_state *css =
-                               init_css_set.subsys[ss->id];
-
-                       css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
-                                                  GFP_KERNEL);
-                       BUG_ON(css->id < 0);
-               } else {
-                       cgroup_init_subsys(ss, false);
-               }
-
-               list_add_tail(&init_css_set.e_cset_node[ssid],
-                             &cgrp_dfl_root.cgrp.e_csets[ssid]);
-
-               /*
-                * Setting dfl_root subsys_mask needs to consider the
-                * disabled flag and cftype registration needs kmalloc,
-                * both of which aren't available during early_init.
-                */
-               if (cgroup_disable_mask & (1 << ssid)) {
-                       static_branch_disable(cgroup_subsys_enabled_key[ssid]);
-                       printk(KERN_INFO "Disabling %s control group subsystem\n",
-                              ss->name);
-                       continue;
-               }
-
-               if (cgroup_ssid_no_v1(ssid))
-                       printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
-                              ss->name);
-
-               cgrp_dfl_root.subsys_mask |= 1 << ss->id;
-
-               if (ss->implicit_on_dfl)
-                       cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
-               else if (!ss->dfl_cftypes)
-                       cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
-
-               if (ss->dfl_cftypes == ss->legacy_cftypes) {
-                       WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
-               } else {
-                       WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
-                       WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
-               }
-
-               if (ss->bind)
-                       ss->bind(init_css_set.subsys[ssid]);
-       }
-
-       /* init_css_set.subsys[] has been updated, re-hash */
-       hash_del(&init_css_set.hlist);
-       hash_add(css_set_table, &init_css_set.hlist,
-                css_set_hash(init_css_set.subsys));
-
-       WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
-       WARN_ON(register_filesystem(&cgroup_fs_type));
-       WARN_ON(register_filesystem(&cgroup2_fs_type));
-       WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
-
-       return 0;
-}
-
-static int __init cgroup_wq_init(void)
-{
-       /*
-        * There isn't much point in executing destruction path in
-        * parallel.  Good chunk is serialized with cgroup_mutex anyway.
-        * Use 1 for @max_active.
-        *
-        * We would prefer to do this in cgroup_init() above, but that
-        * is called before init_workqueues(): so leave this until after.
-        */
-       cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
-       BUG_ON(!cgroup_destroy_wq);
-
-       /*
-        * Used to destroy pidlists and separate to serve as flush domain.
-        * Cap @max_active to 1 too.
-        */
-       cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
-                                                   0, 1);
-       BUG_ON(!cgroup_pidlist_destroy_wq);
-
-       return 0;
-}
-core_initcall(cgroup_wq_init);
-
-/*
- * proc_cgroup_show()
- *  - Print task's cgroup paths into seq_file, one line for each hierarchy
- *  - Used for /proc/<pid>/cgroup.
- */
-int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
-                    struct pid *pid, struct task_struct *tsk)
-{
-       char *buf;
-       int retval;
-       struct cgroup_root *root;
-
-       retval = -ENOMEM;
-       buf = kmalloc(PATH_MAX, GFP_KERNEL);
-       if (!buf)
-               goto out;
-
-       mutex_lock(&cgroup_mutex);
-       spin_lock_irq(&css_set_lock);
-
-       for_each_root(root) {
-               struct cgroup_subsys *ss;
-               struct cgroup *cgrp;
-               int ssid, count = 0;
-
-               if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
-                       continue;
-
-               seq_printf(m, "%d:", root->hierarchy_id);
-               if (root != &cgrp_dfl_root)
-                       for_each_subsys(ss, ssid)
-                               if (root->subsys_mask & (1 << ssid))
-                                       seq_printf(m, "%s%s", count++ ? "," : "",
-                                                  ss->legacy_name);
-               if (strlen(root->name))
-                       seq_printf(m, "%sname=%s", count ? "," : "",
-                                  root->name);
-               seq_putc(m, ':');
-
-               cgrp = task_cgroup_from_root(tsk, root);
-
-               /*
-                * On traditional hierarchies, all zombie tasks show up as
-                * belonging to the root cgroup.  On the default hierarchy,
-                * while a zombie doesn't show up in "cgroup.procs" and
-                * thus can't be migrated, its /proc/PID/cgroup keeps
-                * reporting the cgroup it belonged to before exiting.  If
-                * the cgroup is removed before the zombie is reaped,
-                * " (deleted)" is appended to the cgroup path.
-                */
-               if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
-                       retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
-                                               current->nsproxy->cgroup_ns);
-                       if (retval >= PATH_MAX)
-                               retval = -ENAMETOOLONG;
-                       if (retval < 0)
-                               goto out_unlock;
-
-                       seq_puts(m, buf);
-               } else {
-                       seq_puts(m, "/");
-               }
-
-               if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
-                       seq_puts(m, " (deleted)\n");
-               else
-                       seq_putc(m, '\n');
-       }
-
-       retval = 0;
-out_unlock:
-       spin_unlock_irq(&css_set_lock);
-       mutex_unlock(&cgroup_mutex);
-       kfree(buf);
-out:
-       return retval;
-}
-
-/* Display information about each subsystem and each hierarchy */
-static int proc_cgroupstats_show(struct seq_file *m, void *v)
-{
-       struct cgroup_subsys *ss;
-       int i;
-
-       seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
-       /*
-        * ideally we don't want subsystems moving around while we do this.
-        * cgroup_mutex is also necessary to guarantee an atomic snapshot of
-        * subsys/hierarchy state.
-        */
-       mutex_lock(&cgroup_mutex);
-
-       for_each_subsys(ss, i)
-               seq_printf(m, "%s\t%d\t%d\t%d\n",
-                          ss->legacy_name, ss->root->hierarchy_id,
-                          atomic_read(&ss->root->nr_cgrps),
-                          cgroup_ssid_enabled(i));
-
-       mutex_unlock(&cgroup_mutex);
-       return 0;
-}
-
-static int cgroupstats_open(struct inode *inode, struct file *file)
-{
-       return single_open(file, proc_cgroupstats_show, NULL);
-}
-
-static const struct file_operations proc_cgroupstats_operations = {
-       .open = cgroupstats_open,
-       .read = seq_read,
-       .llseek = seq_lseek,
-       .release = single_release,
-};
-
-/**
- * cgroup_fork - initialize cgroup related fields during copy_process()
- * @child: pointer to task_struct of forking parent process.
- *
- * A task is associated with the init_css_set until cgroup_post_fork()
- * attaches it to the parent's css_set.  Empty cg_list indicates that
- * @child isn't holding reference to its css_set.
- */
-void cgroup_fork(struct task_struct *child)
-{
-       RCU_INIT_POINTER(child->cgroups, &init_css_set);
-       INIT_LIST_HEAD(&child->cg_list);
-}
-
-/**
- * cgroup_can_fork - called on a new task before the process is exposed
- * @child: the task in question.
- *
- * This calls the subsystem can_fork() callbacks. If the can_fork() callback
- * returns an error, the fork aborts with that error code. This allows for
- * a cgroup subsystem to conditionally allow or deny new forks.
- */
-int cgroup_can_fork(struct task_struct *child)
-{
-       struct cgroup_subsys *ss;
-       int i, j, ret;
-
-       do_each_subsys_mask(ss, i, have_canfork_callback) {
-               ret = ss->can_fork(child);
-               if (ret)
-                       goto out_revert;
-       } while_each_subsys_mask();
-
-       return 0;
-
-out_revert:
-       for_each_subsys(ss, j) {
-               if (j >= i)
-                       break;
-               if (ss->cancel_fork)
-                       ss->cancel_fork(child);
-       }
-
-       return ret;
-}
-
-/**
- * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
- * @child: the task in question
- *
- * This calls the cancel_fork() callbacks if a fork failed *after*
- * cgroup_can_fork() succeded.
- */
-void cgroup_cancel_fork(struct task_struct *child)
-{
-       struct cgroup_subsys *ss;
-       int i;
-
-       for_each_subsys(ss, i)
-               if (ss->cancel_fork)
-                       ss->cancel_fork(child);
-}
-
-/**
- * cgroup_post_fork - called on a new task after adding it to the task list
- * @child: the task in question
- *
- * Adds the task to the list running through its css_set if necessary and
- * call the subsystem fork() callbacks.  Has to be after the task is
- * visible on the task list in case we race with the first call to
- * cgroup_task_iter_start() - to guarantee that the new task ends up on its
- * list.
- */
-void cgroup_post_fork(struct task_struct *child)
-{
-       struct cgroup_subsys *ss;
-       int i;
-
-       /*
-        * This may race against cgroup_enable_task_cg_lists().  As that
-        * function sets use_task_css_set_links before grabbing
-        * tasklist_lock and we just went through tasklist_lock to add
-        * @child, it's guaranteed that either we see the set
-        * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
-        * @child during its iteration.
-        *
-        * If we won the race, @child is associated with %current's
-        * css_set.  Grabbing css_set_lock guarantees both that the
-        * association is stable, and, on completion of the parent's
-        * migration, @child is visible in the source of migration or
-        * already in the destination cgroup.  This guarantee is necessary
-        * when implementing operations which need to migrate all tasks of
-        * a cgroup to another.
-        *
-        * Note that if we lose to cgroup_enable_task_cg_lists(), @child
-        * will remain in init_css_set.  This is safe because all tasks are
-        * in the init_css_set before cg_links is enabled and there's no
-        * operation which transfers all tasks out of init_css_set.
-        */
-       if (use_task_css_set_links) {
-               struct css_set *cset;
-
-               spin_lock_irq(&css_set_lock);
-               cset = task_css_set(current);
-               if (list_empty(&child->cg_list)) {
-                       get_css_set(cset);
-                       css_set_move_task(child, NULL, cset, false);
-               }
-               spin_unlock_irq(&css_set_lock);
-       }
-
-       /*
-        * Call ss->fork().  This must happen after @child is linked on
-        * css_set; otherwise, @child might change state between ->fork()
-        * and addition to css_set.
-        */
-       do_each_subsys_mask(ss, i, have_fork_callback) {
-               ss->fork(child);
-       } while_each_subsys_mask();
-}
-
-/**
- * cgroup_exit - detach cgroup from exiting task
- * @tsk: pointer to task_struct of exiting process
- *
- * Description: Detach cgroup from @tsk and release it.
- *
- * Note that cgroups marked notify_on_release force every task in
- * them to take the global cgroup_mutex mutex when exiting.
- * This could impact scaling on very large systems.  Be reluctant to
- * use notify_on_release cgroups where very high task exit scaling
- * is required on large systems.
- *
- * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
- * call cgroup_exit() while the task is still competent to handle
- * notify_on_release(), then leave the task attached to the root cgroup in
- * each hierarchy for the remainder of its exit.  No need to bother with
- * init_css_set refcnting.  init_css_set never goes away and we can't race
- * with migration path - PF_EXITING is visible to migration path.
- */
-void cgroup_exit(struct task_struct *tsk)
-{
-       struct cgroup_subsys *ss;
-       struct css_set *cset;
-       int i;
-
-       /*
-        * Unlink from @tsk from its css_set.  As migration path can't race
-        * with us, we can check css_set and cg_list without synchronization.
-        */
-       cset = task_css_set(tsk);
-
-       if (!list_empty(&tsk->cg_list)) {
-               spin_lock_irq(&css_set_lock);
-               css_set_move_task(tsk, cset, NULL, false);
-               spin_unlock_irq(&css_set_lock);
-       } else {
-               get_css_set(cset);
-       }
-
-       /* see cgroup_post_fork() for details */
-       do_each_subsys_mask(ss, i, have_exit_callback) {
-               ss->exit(tsk);
-       } while_each_subsys_mask();
-}
-
-void cgroup_free(struct task_struct *task)
-{
-       struct css_set *cset = task_css_set(task);
-       struct cgroup_subsys *ss;
-       int ssid;
-
-       do_each_subsys_mask(ss, ssid, have_free_callback) {
-               ss->free(task);
-       } while_each_subsys_mask();
-
-       put_css_set(cset);
-}
-
-static void check_for_release(struct cgroup *cgrp)
-{
-       if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
-           !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
-               schedule_work(&cgrp->release_agent_work);
-}
-
-/*
- * Notify userspace when a cgroup is released, by running the
- * configured release agent with the name of the cgroup (path
- * relative to the root of cgroup file system) as the argument.
- *
- * Most likely, this user command will try to rmdir this cgroup.
- *
- * This races with the possibility that some other task will be
- * attached to this cgroup before it is removed, or that some other
- * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
- * The presumed 'rmdir' will fail quietly if this cgroup is no longer
- * unused, and this cgroup will be reprieved from its death sentence,
- * to continue to serve a useful existence.  Next time it's released,
- * we will get notified again, if it still has 'notify_on_release' set.
- *
- * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
- * means only wait until the task is successfully execve()'d.  The
- * separate release agent task is forked by call_usermodehelper(),
- * then control in this thread returns here, without waiting for the
- * release agent task.  We don't bother to wait because the caller of
- * this routine has no use for the exit status of the release agent
- * task, so no sense holding our caller up for that.
- */
-static void cgroup_release_agent(struct work_struct *work)
-{
-       struct cgroup *cgrp =
-               container_of(work, struct cgroup, release_agent_work);
-       char *pathbuf = NULL, *agentbuf = NULL;
-       char *argv[3], *envp[3];
-       int ret;
-
-       mutex_lock(&cgroup_mutex);
-
-       pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
-       agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
-       if (!pathbuf || !agentbuf)
-               goto out;
-
-       spin_lock_irq(&css_set_lock);
-       ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
-       spin_unlock_irq(&css_set_lock);
-       if (ret < 0 || ret >= PATH_MAX)
-               goto out;
-
-       argv[0] = agentbuf;
-       argv[1] = pathbuf;
-       argv[2] = NULL;
-
-       /* minimal command environment */
-       envp[0] = "HOME=/";
-       envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
-       envp[2] = NULL;
-
-       mutex_unlock(&cgroup_mutex);
-       call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
-       goto out_free;
-out:
-       mutex_unlock(&cgroup_mutex);
-out_free:
-       kfree(agentbuf);
-       kfree(pathbuf);
-}
-
-static int __init cgroup_disable(char *str)
-{
-       struct cgroup_subsys *ss;
-       char *token;
-       int i;
-
-       while ((token = strsep(&str, ",")) != NULL) {
-               if (!*token)
-                       continue;
-
-               for_each_subsys(ss, i) {
-                       if (strcmp(token, ss->name) &&
-                           strcmp(token, ss->legacy_name))
-                               continue;
-                       cgroup_disable_mask |= 1 << i;
-               }
-       }
-       return 1;
-}
-__setup("cgroup_disable=", cgroup_disable);
-
-static int __init cgroup_no_v1(char *str)
-{
-       struct cgroup_subsys *ss;
-       char *token;
-       int i;
-
-       while ((token = strsep(&str, ",")) != NULL) {
-               if (!*token)
-                       continue;
-
-               if (!strcmp(token, "all")) {
-                       cgroup_no_v1_mask = U16_MAX;
-                       break;
-               }
-
-               for_each_subsys(ss, i) {
-                       if (strcmp(token, ss->name) &&
-                           strcmp(token, ss->legacy_name))
-                               continue;
-
-                       cgroup_no_v1_mask |= 1 << i;
-               }
-       }
-       return 1;
-}
-__setup("cgroup_no_v1=", cgroup_no_v1);
-
-/**
- * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
- * @dentry: directory dentry of interest
- * @ss: subsystem of interest
- *
- * If @dentry is a directory for a cgroup which has @ss enabled on it, try
- * to get the corresponding css and return it.  If such css doesn't exist
- * or can't be pinned, an ERR_PTR value is returned.
- */
-struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
-                                                      struct cgroup_subsys *ss)
-{
-       struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
-       struct file_system_type *s_type = dentry->d_sb->s_type;
-       struct cgroup_subsys_state *css = NULL;
-       struct cgroup *cgrp;
-
-       /* is @dentry a cgroup dir? */
-       if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
-           !kn || kernfs_type(kn) != KERNFS_DIR)
-               return ERR_PTR(-EBADF);
-
-       rcu_read_lock();
-
-       /*
-        * This path doesn't originate from kernfs and @kn could already
-        * have been or be removed at any point.  @kn->priv is RCU
-        * protected for this access.  See css_release_work_fn() for details.
-        */
-       cgrp = rcu_dereference(kn->priv);
-       if (cgrp)
-               css = cgroup_css(cgrp, ss);
-
-       if (!css || !css_tryget_online(css))
-               css = ERR_PTR(-ENOENT);
-
-       rcu_read_unlock();
-       return css;
-}
-
-/**
- * css_from_id - lookup css by id
- * @id: the cgroup id
- * @ss: cgroup subsys to be looked into
- *
- * Returns the css if there's valid one with @id, otherwise returns NULL.
- * Should be called under rcu_read_lock().
- */
-struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
-{
-       WARN_ON_ONCE(!rcu_read_lock_held());
-       return idr_find(&ss->css_idr, id);
-}
-
-/**
- * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
- * @path: path on the default hierarchy
- *
- * Find the cgroup at @path on the default hierarchy, increment its
- * reference count and return it.  Returns pointer to the found cgroup on
- * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
- * if @path points to a non-directory.
- */
-struct cgroup *cgroup_get_from_path(const char *path)
-{
-       struct kernfs_node *kn;
-       struct cgroup *cgrp;
-
-       mutex_lock(&cgroup_mutex);
-
-       kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
-       if (kn) {
-               if (kernfs_type(kn) == KERNFS_DIR) {
-                       cgrp = kn->priv;
-                       cgroup_get(cgrp);
-               } else {
-                       cgrp = ERR_PTR(-ENOTDIR);
-               }
-               kernfs_put(kn);
-       } else {
-               cgrp = ERR_PTR(-ENOENT);
-       }
-
-       mutex_unlock(&cgroup_mutex);
-       return cgrp;
-}
-EXPORT_SYMBOL_GPL(cgroup_get_from_path);
-
-/**
- * cgroup_get_from_fd - get a cgroup pointer from a fd
- * @fd: fd obtained by open(cgroup2_dir)
- *
- * Find the cgroup from a fd which should be obtained
- * by opening a cgroup directory.  Returns a pointer to the
- * cgroup on success. ERR_PTR is returned if the cgroup
- * cannot be found.
- */
-struct cgroup *cgroup_get_from_fd(int fd)
-{
-       struct cgroup_subsys_state *css;
-       struct cgroup *cgrp;
-       struct file *f;
-
-       f = fget_raw(fd);
-       if (!f)
-               return ERR_PTR(-EBADF);
-
-       css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
-       fput(f);
-       if (IS_ERR(css))
-               return ERR_CAST(css);
-
-       cgrp = css->cgroup;
-       if (!cgroup_on_dfl(cgrp)) {
-               cgroup_put(cgrp);
-               return ERR_PTR(-EBADF);
-       }
-
-       return cgrp;
-}
-EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
-
-/*
- * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
- * definition in cgroup-defs.h.
- */
-#ifdef CONFIG_SOCK_CGROUP_DATA
-
-#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
-
-DEFINE_SPINLOCK(cgroup_sk_update_lock);
-static bool cgroup_sk_alloc_disabled __read_mostly;
-
-void cgroup_sk_alloc_disable(void)
-{
-       if (cgroup_sk_alloc_disabled)
-               return;
-       pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
-       cgroup_sk_alloc_disabled = true;
-}
-
-#else
-
-#define cgroup_sk_alloc_disabled       false
-
-#endif
-
-void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
-{
-       if (cgroup_sk_alloc_disabled)
-               return;
-
-       /* Socket clone path */
-       if (skcd->val) {
-               cgroup_get(sock_cgroup_ptr(skcd));
-               return;
-       }
-
-       rcu_read_lock();
-
-       while (true) {
-               struct css_set *cset;
-
-               cset = task_css_set(current);
-               if (likely(cgroup_tryget(cset->dfl_cgrp))) {
-                       skcd->val = (unsigned long)cset->dfl_cgrp;
-                       break;
-               }
-               cpu_relax();
-       }
-
-       rcu_read_unlock();
-}
-
-void cgroup_sk_free(struct sock_cgroup_data *skcd)
-{
-       cgroup_put(sock_cgroup_ptr(skcd));
-}
-
-#endif /* CONFIG_SOCK_CGROUP_DATA */
-
-/* cgroup namespaces */
-
-static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns)
-{
-       return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES);
-}
-
-static void dec_cgroup_namespaces(struct ucounts *ucounts)
-{
-       dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES);
-}
-
-static struct cgroup_namespace *alloc_cgroup_ns(void)
-{
-       struct cgroup_namespace *new_ns;
-       int ret;
-
-       new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
-       if (!new_ns)
-               return ERR_PTR(-ENOMEM);
-       ret = ns_alloc_inum(&new_ns->ns);
-       if (ret) {
-               kfree(new_ns);
-               return ERR_PTR(ret);
-       }
-       atomic_set(&new_ns->count, 1);
-       new_ns->ns.ops = &cgroupns_operations;
-       return new_ns;
-}
-
-void free_cgroup_ns(struct cgroup_namespace *ns)
-{
-       put_css_set(ns->root_cset);
-       dec_cgroup_namespaces(ns->ucounts);
-       put_user_ns(ns->user_ns);
-       ns_free_inum(&ns->ns);
-       kfree(ns);
-}
-EXPORT_SYMBOL(free_cgroup_ns);
-
-struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
-                                       struct user_namespace *user_ns,
-                                       struct cgroup_namespace *old_ns)
-{
-       struct cgroup_namespace *new_ns;
-       struct ucounts *ucounts;
-       struct css_set *cset;
-
-       BUG_ON(!old_ns);
-
-       if (!(flags & CLONE_NEWCGROUP)) {
-               get_cgroup_ns(old_ns);
-               return old_ns;
-       }
-
-       /* Allow only sysadmin to create cgroup namespace. */
-       if (!ns_capable(user_ns, CAP_SYS_ADMIN))
-               return ERR_PTR(-EPERM);
-
-       ucounts = inc_cgroup_namespaces(user_ns);
-       if (!ucounts)
-               return ERR_PTR(-ENOSPC);
-
-       /* It is not safe to take cgroup_mutex here */
-       spin_lock_irq(&css_set_lock);
-       cset = task_css_set(current);
-       get_css_set(cset);
-       spin_unlock_irq(&css_set_lock);
-
-       new_ns = alloc_cgroup_ns();
-       if (IS_ERR(new_ns)) {
-               put_css_set(cset);
-               dec_cgroup_namespaces(ucounts);
-               return new_ns;
-       }
-
-       new_ns->user_ns = get_user_ns(user_ns);
-       new_ns->ucounts = ucounts;
-       new_ns->root_cset = cset;
-
-       return new_ns;
-}
-
-static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
-{
-       return container_of(ns, struct cgroup_namespace, ns);
-}
-
-static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
-{
-       struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
-
-       if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
-           !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
-               return -EPERM;
-
-       /* Don't need to do anything if we are attaching to our own cgroupns. */
-       if (cgroup_ns == nsproxy->cgroup_ns)
-               return 0;
-
-       get_cgroup_ns(cgroup_ns);
-       put_cgroup_ns(nsproxy->cgroup_ns);
-       nsproxy->cgroup_ns = cgroup_ns;
-
-       return 0;
-}
-
-static struct ns_common *cgroupns_get(struct task_struct *task)
-{
-       struct cgroup_namespace *ns = NULL;
-       struct nsproxy *nsproxy;
-
-       task_lock(task);
-       nsproxy = task->nsproxy;
-       if (nsproxy) {
-               ns = nsproxy->cgroup_ns;
-               get_cgroup_ns(ns);
-       }
-       task_unlock(task);
-
-       return ns ? &ns->ns : NULL;
-}
-
-static void cgroupns_put(struct ns_common *ns)
-{
-       put_cgroup_ns(to_cg_ns(ns));
-}
-
-static struct user_namespace *cgroupns_owner(struct ns_common *ns)
-{
-       return to_cg_ns(ns)->user_ns;
-}
-
-const struct proc_ns_operations cgroupns_operations = {
-       .name           = "cgroup",
-       .type           = CLONE_NEWCGROUP,
-       .get            = cgroupns_get,
-       .put            = cgroupns_put,
-       .install        = cgroupns_install,
-       .owner          = cgroupns_owner,
-};
-
-static __init int cgroup_namespaces_init(void)
-{
-       return 0;
-}
-subsys_initcall(cgroup_namespaces_init);
-
-#ifdef CONFIG_CGROUP_BPF
-void cgroup_bpf_update(struct cgroup *cgrp,
-                      struct bpf_prog *prog,
-                      enum bpf_attach_type type)
-{
-       struct cgroup *parent = cgroup_parent(cgrp);
-
-       mutex_lock(&cgroup_mutex);
-       __cgroup_bpf_update(cgrp, parent, prog, type);
-       mutex_unlock(&cgroup_mutex);
-}
-#endif /* CONFIG_CGROUP_BPF */
-
-#ifdef CONFIG_CGROUP_DEBUG
-static struct cgroup_subsys_state *
-debug_css_alloc(struct cgroup_subsys_state *parent_css)
-{
-       struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
-
-       if (!css)
-               return ERR_PTR(-ENOMEM);
-
-       return css;
-}
-
-static void debug_css_free(struct cgroup_subsys_state *css)
-{
-       kfree(css);
-}
-
-static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
-                               struct cftype *cft)
-{
-       return cgroup_task_count(css->cgroup);
-}
-
-static u64 current_css_set_read(struct cgroup_subsys_state *css,
-                               struct cftype *cft)
-{
-       return (u64)(unsigned long)current->cgroups;
-}
-
-static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
-                                        struct cftype *cft)
-{
-       u64 count;
-
-       rcu_read_lock();
-       count = atomic_read(&task_css_set(current)->refcount);
-       rcu_read_unlock();
-       return count;
-}
-
-static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
-{
-       struct cgrp_cset_link *link;
-       struct css_set *cset;
-       char *name_buf;
-
-       name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
-       if (!name_buf)
-               return -ENOMEM;
-
-       spin_lock_irq(&css_set_lock);
-       rcu_read_lock();
-       cset = rcu_dereference(current->cgroups);
-       list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
-               struct cgroup *c = link->cgrp;
-
-               cgroup_name(c, name_buf, NAME_MAX + 1);
-               seq_printf(seq, "Root %d group %s\n",
-                          c->root->hierarchy_id, name_buf);
-       }
-       rcu_read_unlock();
-       spin_unlock_irq(&css_set_lock);
-       kfree(name_buf);
-       return 0;
-}
-
-#define MAX_TASKS_SHOWN_PER_CSS 25
-static int cgroup_css_links_read(struct seq_file *seq, void *v)
-{
-       struct cgroup_subsys_state *css = seq_css(seq);
-       struct cgrp_cset_link *link;
-
-       spin_lock_irq(&css_set_lock);
-       list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
-               struct css_set *cset = link->cset;
-               struct task_struct *task;
-               int count = 0;
-
-               seq_printf(seq, "css_set %p\n", cset);
-
-               list_for_each_entry(task, &cset->tasks, cg_list) {
-                       if (count++ > MAX_TASKS_SHOWN_PER_CSS)
-                               goto overflow;
-                       seq_printf(seq, "  task %d\n", task_pid_vnr(task));
-               }
-
-               list_for_each_entry(task, &cset->mg_tasks, cg_list) {
-                       if (count++ > MAX_TASKS_SHOWN_PER_CSS)
-                               goto overflow;
-                       seq_printf(seq, "  task %d\n", task_pid_vnr(task));
-               }
-               continue;
-       overflow:
-               seq_puts(seq, "  ...\n");
-       }
-       spin_unlock_irq(&css_set_lock);
-       return 0;
-}
-
-static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
-{
-       return (!cgroup_is_populated(css->cgroup) &&
-               !css_has_online_children(&css->cgroup->self));
-}
-
-static struct cftype debug_files[] =  {
-       {
-               .name = "taskcount",
-               .read_u64 = debug_taskcount_read,
-       },
-
-       {
-               .name = "current_css_set",
-               .read_u64 = current_css_set_read,
-       },
-
-       {
-               .name = "current_css_set_refcount",
-               .read_u64 = current_css_set_refcount_read,
-       },
-
-       {
-               .name = "current_css_set_cg_links",
-               .seq_show = current_css_set_cg_links_read,
-       },
-
-       {
-               .name = "cgroup_css_links",
-               .seq_show = cgroup_css_links_read,
-       },
-
-       {
-               .name = "releasable",
-               .read_u64 = releasable_read,
-       },
-
-       { }     /* terminate */
-};
-
-struct cgroup_subsys debug_cgrp_subsys = {
-       .css_alloc = debug_css_alloc,
-       .css_free = debug_css_free,
-       .legacy_cftypes = debug_files,
-};
-#endif /* CONFIG_CGROUP_DEBUG */
diff --git a/kernel/cgroup/Makefile b/kernel/cgroup/Makefile
new file mode 100644 (file)
index 0000000..4d561a5
--- /dev/null
@@ -0,0 +1,5 @@
+obj-y := cgroup.o
+
+obj-$(CONFIG_CGROUP_FREEZER) += freezer.o
+obj-$(CONFIG_CGROUP_PIDS) += pids.o
+obj-$(CONFIG_CPUSETS) += cpuset.o
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c
new file mode 100644 (file)
index 0000000..1a815f2
--- /dev/null
@@ -0,0 +1,6705 @@
+/*
+ *  Generic process-grouping system.
+ *
+ *  Based originally on the cpuset system, extracted by Paul Menage
+ *  Copyright (C) 2006 Google, Inc
+ *
+ *  Notifications support
+ *  Copyright (C) 2009 Nokia Corporation
+ *  Author: Kirill A. Shutemov
+ *
+ *  Copyright notices from the original cpuset code:
+ *  --------------------------------------------------
+ *  Copyright (C) 2003 BULL SA.
+ *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
+ *
+ *  Portions derived from Patrick Mochel's sysfs code.
+ *  sysfs is Copyright (c) 2001-3 Patrick Mochel
+ *
+ *  2003-10-10 Written by Simon Derr.
+ *  2003-10-22 Updates by Stephen Hemminger.
+ *  2004 May-July Rework by Paul Jackson.
+ *  ---------------------------------------------------
+ *
+ *  This file is subject to the terms and conditions of the GNU General Public
+ *  License.  See the file COPYING in the main directory of the Linux
+ *  distribution for more details.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/cgroup.h>
+#include <linux/cred.h>
+#include <linux/ctype.h>
+#include <linux/errno.h>
+#include <linux/init_task.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/magic.h>
+#include <linux/mm.h>
+#include <linux/mutex.h>
+#include <linux/mount.h>
+#include <linux/pagemap.h>
+#include <linux/proc_fs.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/percpu-rwsem.h>
+#include <linux/string.h>
+#include <linux/sort.h>
+#include <linux/kmod.h>
+#include <linux/delayacct.h>
+#include <linux/cgroupstats.h>
+#include <linux/hashtable.h>
+#include <linux/pid_namespace.h>
+#include <linux/idr.h>
+#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
+#include <linux/kthread.h>
+#include <linux/delay.h>
+#include <linux/atomic.h>
+#include <linux/cpuset.h>
+#include <linux/proc_ns.h>
+#include <linux/nsproxy.h>
+#include <linux/file.h>
+#include <net/sock.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/cgroup.h>
+
+/*
+ * pidlists linger the following amount before being destroyed.  The goal
+ * is avoiding frequent destruction in the middle of consecutive read calls
+ * Expiring in the middle is a performance problem not a correctness one.
+ * 1 sec should be enough.
+ */
+#define CGROUP_PIDLIST_DESTROY_DELAY   HZ
+
+#define CGROUP_FILE_NAME_MAX           (MAX_CGROUP_TYPE_NAMELEN +      \
+                                        MAX_CFTYPE_NAME + 2)
+
+/*
+ * cgroup_mutex is the master lock.  Any modification to cgroup or its
+ * hierarchy must be performed while holding it.
+ *
+ * css_set_lock protects task->cgroups pointer, the list of css_set
+ * objects, and the chain of tasks off each css_set.
+ *
+ * These locks are exported if CONFIG_PROVE_RCU so that accessors in
+ * cgroup.h can use them for lockdep annotations.
+ */
+#ifdef CONFIG_PROVE_RCU
+DEFINE_MUTEX(cgroup_mutex);
+DEFINE_SPINLOCK(css_set_lock);
+EXPORT_SYMBOL_GPL(cgroup_mutex);
+EXPORT_SYMBOL_GPL(css_set_lock);
+#else
+static DEFINE_MUTEX(cgroup_mutex);
+static DEFINE_SPINLOCK(css_set_lock);
+#endif
+
+/*
+ * Protects cgroup_idr and css_idr so that IDs can be released without
+ * grabbing cgroup_mutex.
+ */
+static DEFINE_SPINLOCK(cgroup_idr_lock);
+
+/*
+ * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
+ * against file removal/re-creation across css hiding.
+ */
+static DEFINE_SPINLOCK(cgroup_file_kn_lock);
+
+/*
+ * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
+ * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
+ */
+static DEFINE_SPINLOCK(release_agent_path_lock);
+
+struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
+
+#define cgroup_assert_mutex_or_rcu_locked()                            \
+       RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
+                          !lockdep_is_held(&cgroup_mutex),             \
+                          "cgroup_mutex or RCU read lock required");
+
+/*
+ * cgroup destruction makes heavy use of work items and there can be a lot
+ * of concurrent destructions.  Use a separate workqueue so that cgroup
+ * destruction work items don't end up filling up max_active of system_wq
+ * which may lead to deadlock.
+ */
+static struct workqueue_struct *cgroup_destroy_wq;
+
+/*
+ * pidlist destructions need to be flushed on cgroup destruction.  Use a
+ * separate workqueue as flush domain.
+ */
+static struct workqueue_struct *cgroup_pidlist_destroy_wq;
+
+/* generate an array of cgroup subsystem pointers */
+#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
+static struct cgroup_subsys *cgroup_subsys[] = {
+#include <linux/cgroup_subsys.h>
+};
+#undef SUBSYS
+
+/* array of cgroup subsystem names */
+#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
+static const char *cgroup_subsys_name[] = {
+#include <linux/cgroup_subsys.h>
+};
+#undef SUBSYS
+
+/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
+#define SUBSYS(_x)                                                             \
+       DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
+       DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
+       EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
+       EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
+#include <linux/cgroup_subsys.h>
+#undef SUBSYS
+
+#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
+static struct static_key_true *cgroup_subsys_enabled_key[] = {
+#include <linux/cgroup_subsys.h>
+};
+#undef SUBSYS
+
+#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
+static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
+#include <linux/cgroup_subsys.h>
+};
+#undef SUBSYS
+
+/*
+ * The default hierarchy, reserved for the subsystems that are otherwise
+ * unattached - it never has more than a single cgroup, and all tasks are
+ * part of that cgroup.
+ */
+struct cgroup_root cgrp_dfl_root;
+EXPORT_SYMBOL_GPL(cgrp_dfl_root);
+
+/*
+ * The default hierarchy always exists but is hidden until mounted for the
+ * first time.  This is for backward compatibility.
+ */
+static bool cgrp_dfl_visible;
+
+/* Controllers blocked by the commandline in v1 */
+static u16 cgroup_no_v1_mask;
+
+/* some controllers are not supported in the default hierarchy */
+static u16 cgrp_dfl_inhibit_ss_mask;
+
+/* some controllers are implicitly enabled on the default hierarchy */
+static unsigned long cgrp_dfl_implicit_ss_mask;
+
+/* The list of hierarchy roots */
+
+static LIST_HEAD(cgroup_roots);
+static int cgroup_root_count;
+
+/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
+static DEFINE_IDR(cgroup_hierarchy_idr);
+
+/*
+ * Assign a monotonically increasing serial number to csses.  It guarantees
+ * cgroups with bigger numbers are newer than those with smaller numbers.
+ * Also, as csses are always appended to the parent's ->children list, it
+ * guarantees that sibling csses are always sorted in the ascending serial
+ * number order on the list.  Protected by cgroup_mutex.
+ */
+static u64 css_serial_nr_next = 1;
+
+/*
+ * These bitmask flags indicate whether tasks in the fork and exit paths have
+ * fork/exit handlers to call. This avoids us having to do extra work in the
+ * fork/exit path to check which subsystems have fork/exit callbacks.
+ */
+static u16 have_fork_callback __read_mostly;
+static u16 have_exit_callback __read_mostly;
+static u16 have_free_callback __read_mostly;
+
+/* cgroup namespace for init task */
+struct cgroup_namespace init_cgroup_ns = {
+       .count          = { .counter = 2, },
+       .user_ns        = &init_user_ns,
+       .ns.ops         = &cgroupns_operations,
+       .ns.inum        = PROC_CGROUP_INIT_INO,
+       .root_cset      = &init_css_set,
+};
+
+/* Ditto for the can_fork callback. */
+static u16 have_canfork_callback __read_mostly;
+
+static struct file_system_type cgroup2_fs_type;
+static struct cftype cgroup_dfl_base_files[];
+static struct cftype cgroup_legacy_base_files[];
+
+static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
+static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
+static int cgroup_apply_control(struct cgroup *cgrp);
+static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
+static void css_task_iter_advance(struct css_task_iter *it);
+static int cgroup_destroy_locked(struct cgroup *cgrp);
+static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
+                                             struct cgroup_subsys *ss);
+static void css_release(struct percpu_ref *ref);
+static void kill_css(struct cgroup_subsys_state *css);
+static int cgroup_addrm_files(struct cgroup_subsys_state *css,
+                             struct cgroup *cgrp, struct cftype cfts[],
+                             bool is_add);
+
+/**
+ * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
+ * @ssid: subsys ID of interest
+ *
+ * cgroup_subsys_enabled() can only be used with literal subsys names which
+ * is fine for individual subsystems but unsuitable for cgroup core.  This
+ * is slower static_key_enabled() based test indexed by @ssid.
+ */
+static bool cgroup_ssid_enabled(int ssid)
+{
+       if (CGROUP_SUBSYS_COUNT == 0)
+               return false;
+
+       return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
+}
+
+static bool cgroup_ssid_no_v1(int ssid)
+{
+       return cgroup_no_v1_mask & (1 << ssid);
+}
+
+/**
+ * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
+ * @cgrp: the cgroup of interest
+ *
+ * The default hierarchy is the v2 interface of cgroup and this function
+ * can be used to test whether a cgroup is on the default hierarchy for
+ * cases where a subsystem should behave differnetly depending on the
+ * interface version.
+ *
+ * The set of behaviors which change on the default hierarchy are still
+ * being determined and the mount option is prefixed with __DEVEL__.
+ *
+ * List of changed behaviors:
+ *
+ * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
+ *   and "name" are disallowed.
+ *
+ * - When mounting an existing superblock, mount options should match.
+ *
+ * - Remount is disallowed.
+ *
+ * - rename(2) is disallowed.
+ *
+ * - "tasks" is removed.  Everything should be at process granularity.  Use
+ *   "cgroup.procs" instead.
+ *
+ * - "cgroup.procs" is not sorted.  pids will be unique unless they got
+ *   recycled inbetween reads.
+ *
+ * - "release_agent" and "notify_on_release" are removed.  Replacement
+ *   notification mechanism will be implemented.
+ *
+ * - "cgroup.clone_children" is removed.
+ *
+ * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
+ *   and its descendants contain no task; otherwise, 1.  The file also
+ *   generates kernfs notification which can be monitored through poll and
+ *   [di]notify when the value of the file changes.
+ *
+ * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
+ *   take masks of ancestors with non-empty cpus/mems, instead of being
+ *   moved to an ancestor.
+ *
+ * - cpuset: a task can be moved into an empty cpuset, and again it takes
+ *   masks of ancestors.
+ *
+ * - memcg: use_hierarchy is on by default and the cgroup file for the flag
+ *   is not created.
+ *
+ * - blkcg: blk-throttle becomes properly hierarchical.
+ *
+ * - debug: disallowed on the default hierarchy.
+ */
+static bool cgroup_on_dfl(const struct cgroup *cgrp)
+{
+       return cgrp->root == &cgrp_dfl_root;
+}
+
+/* IDR wrappers which synchronize using cgroup_idr_lock */
+static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
+                           gfp_t gfp_mask)
+{
+       int ret;
+
+       idr_preload(gfp_mask);
+       spin_lock_bh(&cgroup_idr_lock);
+       ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
+       spin_unlock_bh(&cgroup_idr_lock);
+       idr_preload_end();
+       return ret;
+}
+
+static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
+{
+       void *ret;
+
+       spin_lock_bh(&cgroup_idr_lock);
+       ret = idr_replace(idr, ptr, id);
+       spin_unlock_bh(&cgroup_idr_lock);
+       return ret;
+}
+
+static void cgroup_idr_remove(struct idr *idr, int id)
+{
+       spin_lock_bh(&cgroup_idr_lock);
+       idr_remove(idr, id);
+       spin_unlock_bh(&cgroup_idr_lock);
+}
+
+static struct cgroup *cgroup_parent(struct cgroup *cgrp)
+{
+       struct cgroup_subsys_state *parent_css = cgrp->self.parent;
+
+       if (parent_css)
+               return container_of(parent_css, struct cgroup, self);
+       return NULL;
+}
+
+/* subsystems visibly enabled on a cgroup */
+static u16 cgroup_control(struct cgroup *cgrp)
+{
+       struct cgroup *parent = cgroup_parent(cgrp);
+       u16 root_ss_mask = cgrp->root->subsys_mask;
+
+       if (parent)
+               return parent->subtree_control;
+
+       if (cgroup_on_dfl(cgrp))
+               root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
+                                 cgrp_dfl_implicit_ss_mask);
+       return root_ss_mask;
+}
+
+/* subsystems enabled on a cgroup */
+static u16 cgroup_ss_mask(struct cgroup *cgrp)
+{
+       struct cgroup *parent = cgroup_parent(cgrp);
+
+       if (parent)
+               return parent->subtree_ss_mask;
+
+       return cgrp->root->subsys_mask;
+}
+
+/**
+ * cgroup_css - obtain a cgroup's css for the specified subsystem
+ * @cgrp: the cgroup of interest
+ * @ss: the subsystem of interest (%NULL returns @cgrp->self)
+ *
+ * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
+ * function must be called either under cgroup_mutex or rcu_read_lock() and
+ * the caller is responsible for pinning the returned css if it wants to
+ * keep accessing it outside the said locks.  This function may return
+ * %NULL if @cgrp doesn't have @subsys_id enabled.
+ */
+static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
+                                             struct cgroup_subsys *ss)
+{
+       if (ss)
+               return rcu_dereference_check(cgrp->subsys[ss->id],
+                                       lockdep_is_held(&cgroup_mutex));
+       else
+               return &cgrp->self;
+}
+
+/**
+ * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
+ * @cgrp: the cgroup of interest
+ * @ss: the subsystem of interest (%NULL returns @cgrp->self)
+ *
+ * Similar to cgroup_css() but returns the effective css, which is defined
+ * as the matching css of the nearest ancestor including self which has @ss
+ * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
+ * function is guaranteed to return non-NULL css.
+ */
+static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
+                                               struct cgroup_subsys *ss)
+{
+       lockdep_assert_held(&cgroup_mutex);
+
+       if (!ss)
+               return &cgrp->self;
+
+       /*
+        * This function is used while updating css associations and thus
+        * can't test the csses directly.  Test ss_mask.
+        */
+       while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
+               cgrp = cgroup_parent(cgrp);
+               if (!cgrp)
+                       return NULL;
+       }
+
+       return cgroup_css(cgrp, ss);
+}
+
+/**
+ * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
+ * @cgrp: the cgroup of interest
+ * @ss: the subsystem of interest
+ *
+ * Find and get the effective css of @cgrp for @ss.  The effective css is
+ * defined as the matching css of the nearest ancestor including self which
+ * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
+ * the root css is returned, so this function always returns a valid css.
+ * The returned css must be put using css_put().
+ */
+struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
+                                            struct cgroup_subsys *ss)
+{
+       struct cgroup_subsys_state *css;
+
+       rcu_read_lock();
+
+       do {
+               css = cgroup_css(cgrp, ss);
+
+               if (css && css_tryget_online(css))
+                       goto out_unlock;
+               cgrp = cgroup_parent(cgrp);
+       } while (cgrp);
+
+       css = init_css_set.subsys[ss->id];
+       css_get(css);
+out_unlock:
+       rcu_read_unlock();
+       return css;
+}
+
+/* convenient tests for these bits */
+static inline bool cgroup_is_dead(const struct cgroup *cgrp)
+{
+       return !(cgrp->self.flags & CSS_ONLINE);
+}
+
+static void cgroup_get(struct cgroup *cgrp)
+{
+       WARN_ON_ONCE(cgroup_is_dead(cgrp));
+       css_get(&cgrp->self);
+}
+
+static bool cgroup_tryget(struct cgroup *cgrp)
+{
+       return css_tryget(&cgrp->self);
+}
+
+struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
+{
+       struct cgroup *cgrp = of->kn->parent->priv;
+       struct cftype *cft = of_cft(of);
+
+       /*
+        * This is open and unprotected implementation of cgroup_css().
+        * seq_css() is only called from a kernfs file operation which has
+        * an active reference on the file.  Because all the subsystem
+        * files are drained before a css is disassociated with a cgroup,
+        * the matching css from the cgroup's subsys table is guaranteed to
+        * be and stay valid until the enclosing operation is complete.
+        */
+       if (cft->ss)
+               return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
+       else
+               return &cgrp->self;
+}
+EXPORT_SYMBOL_GPL(of_css);
+
+static int notify_on_release(const struct cgroup *cgrp)
+{
+       return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
+}
+
+/**
+ * for_each_css - iterate all css's of a cgroup
+ * @css: the iteration cursor
+ * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
+ * @cgrp: the target cgroup to iterate css's of
+ *
+ * Should be called under cgroup_[tree_]mutex.
+ */
+#define for_each_css(css, ssid, cgrp)                                  \
+       for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
+               if (!((css) = rcu_dereference_check(                    \
+                               (cgrp)->subsys[(ssid)],                 \
+                               lockdep_is_held(&cgroup_mutex)))) { }   \
+               else
+
+/**
+ * for_each_e_css - iterate all effective css's of a cgroup
+ * @css: the iteration cursor
+ * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
+ * @cgrp: the target cgroup to iterate css's of
+ *
+ * Should be called under cgroup_[tree_]mutex.
+ */
+#define for_each_e_css(css, ssid, cgrp)                                        \
+       for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
+               if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
+                       ;                                               \
+               else
+
+/**
+ * for_each_subsys - iterate all enabled cgroup subsystems
+ * @ss: the iteration cursor
+ * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
+ */
+#define for_each_subsys(ss, ssid)                                      \
+       for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&                \
+            (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
+
+/**
+ * do_each_subsys_mask - filter for_each_subsys with a bitmask
+ * @ss: the iteration cursor
+ * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
+ * @ss_mask: the bitmask
+ *
+ * The block will only run for cases where the ssid-th bit (1 << ssid) of
+ * @ss_mask is set.
+ */
+#define do_each_subsys_mask(ss, ssid, ss_mask) do {                    \
+       unsigned long __ss_mask = (ss_mask);                            \
+       if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
+               (ssid) = 0;                                             \
+               break;                                                  \
+       }                                                               \
+       for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
+               (ss) = cgroup_subsys[ssid];                             \
+               {
+
+#define while_each_subsys_mask()                                       \
+               }                                                       \
+       }                                                               \
+} while (false)
+
+/* iterate across the hierarchies */
+#define for_each_root(root)                                            \
+       list_for_each_entry((root), &cgroup_roots, root_list)
+
+/* iterate over child cgrps, lock should be held throughout iteration */
+#define cgroup_for_each_live_child(child, cgrp)                                \
+       list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
+               if (({ lockdep_assert_held(&cgroup_mutex);              \
+                      cgroup_is_dead(child); }))                       \
+                       ;                                               \
+               else
+
+/* walk live descendants in preorder */
+#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)         \
+       css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
+               if (({ lockdep_assert_held(&cgroup_mutex);              \
+                      (dsct) = (d_css)->cgroup;                        \
+                      cgroup_is_dead(dsct); }))                        \
+                       ;                                               \
+               else
+
+/* walk live descendants in postorder */
+#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)                \
+       css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
+               if (({ lockdep_assert_held(&cgroup_mutex);              \
+                      (dsct) = (d_css)->cgroup;                        \
+                      cgroup_is_dead(dsct); }))                        \
+                       ;                                               \
+               else
+
+static void cgroup_release_agent(struct work_struct *work);
+static void check_for_release(struct cgroup *cgrp);
+
+/*
+ * A cgroup can be associated with multiple css_sets as different tasks may
+ * belong to different cgroups on different hierarchies.  In the other
+ * direction, a css_set is naturally associated with multiple cgroups.
+ * This M:N relationship is represented by the following link structure
+ * which exists for each association and allows traversing the associations
+ * from both sides.
+ */
+struct cgrp_cset_link {
+       /* the cgroup and css_set this link associates */
+       struct cgroup           *cgrp;
+       struct css_set          *cset;
+
+       /* list of cgrp_cset_links anchored at cgrp->cset_links */
+       struct list_head        cset_link;
+
+       /* list of cgrp_cset_links anchored at css_set->cgrp_links */
+       struct list_head        cgrp_link;
+};
+
+/*
+ * The default css_set - used by init and its children prior to any
+ * hierarchies being mounted. It contains a pointer to the root state
+ * for each subsystem. Also used to anchor the list of css_sets. Not
+ * reference-counted, to improve performance when child cgroups
+ * haven't been created.
+ */
+struct css_set init_css_set = {
+       .refcount               = ATOMIC_INIT(1),
+       .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
+       .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
+       .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
+       .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
+       .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
+       .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
+};
+
+static int css_set_count       = 1;    /* 1 for init_css_set */
+
+/**
+ * css_set_populated - does a css_set contain any tasks?
+ * @cset: target css_set
+ */
+static bool css_set_populated(struct css_set *cset)
+{
+       lockdep_assert_held(&css_set_lock);
+
+       return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
+}
+
+/**
+ * cgroup_update_populated - updated populated count of a cgroup
+ * @cgrp: the target cgroup
+ * @populated: inc or dec populated count
+ *
+ * One of the css_sets associated with @cgrp is either getting its first
+ * task or losing the last.  Update @cgrp->populated_cnt accordingly.  The
+ * count is propagated towards root so that a given cgroup's populated_cnt
+ * is zero iff the cgroup and all its descendants don't contain any tasks.
+ *
+ * @cgrp's interface file "cgroup.populated" is zero if
+ * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
+ * changes from or to zero, userland is notified that the content of the
+ * interface file has changed.  This can be used to detect when @cgrp and
+ * its descendants become populated or empty.
+ */
+static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
+{
+       lockdep_assert_held(&css_set_lock);
+
+       do {
+               bool trigger;
+
+               if (populated)
+                       trigger = !cgrp->populated_cnt++;
+               else
+                       trigger = !--cgrp->populated_cnt;
+
+               if (!trigger)
+                       break;
+
+               check_for_release(cgrp);
+               cgroup_file_notify(&cgrp->events_file);
+
+               cgrp = cgroup_parent(cgrp);
+       } while (cgrp);
+}
+
+/**
+ * css_set_update_populated - update populated state of a css_set
+ * @cset: target css_set
+ * @populated: whether @cset is populated or depopulated
+ *
+ * @cset is either getting the first task or losing the last.  Update the
+ * ->populated_cnt of all associated cgroups accordingly.
+ */
+static void css_set_update_populated(struct css_set *cset, bool populated)
+{
+       struct cgrp_cset_link *link;
+
+       lockdep_assert_held(&css_set_lock);
+
+       list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
+               cgroup_update_populated(link->cgrp, populated);
+}
+
+/**
+ * css_set_move_task - move a task from one css_set to another
+ * @task: task being moved
+ * @from_cset: css_set @task currently belongs to (may be NULL)
+ * @to_cset: new css_set @task is being moved to (may be NULL)
+ * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
+ *
+ * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
+ * css_set, @from_cset can be NULL.  If @task is being disassociated
+ * instead of moved, @to_cset can be NULL.
+ *
+ * This function automatically handles populated_cnt updates and
+ * css_task_iter adjustments but the caller is responsible for managing
+ * @from_cset and @to_cset's reference counts.
+ */
+static void css_set_move_task(struct task_struct *task,
+                             struct css_set *from_cset, struct css_set *to_cset,
+                             bool use_mg_tasks)
+{
+       lockdep_assert_held(&css_set_lock);
+
+       if (to_cset && !css_set_populated(to_cset))
+               css_set_update_populated(to_cset, true);
+
+       if (from_cset) {
+               struct css_task_iter *it, *pos;
+
+               WARN_ON_ONCE(list_empty(&task->cg_list));
+
+               /*
+                * @task is leaving, advance task iterators which are
+                * pointing to it so that they can resume at the next
+                * position.  Advancing an iterator might remove it from
+                * the list, use safe walk.  See css_task_iter_advance*()
+                * for details.
+                */
+               list_for_each_entry_safe(it, pos, &from_cset->task_iters,
+                                        iters_node)
+                       if (it->task_pos == &task->cg_list)
+                               css_task_iter_advance(it);
+
+               list_del_init(&task->cg_list);
+               if (!css_set_populated(from_cset))
+                       css_set_update_populated(from_cset, false);
+       } else {
+               WARN_ON_ONCE(!list_empty(&task->cg_list));
+       }
+
+       if (to_cset) {
+               /*
+                * We are synchronized through cgroup_threadgroup_rwsem
+                * against PF_EXITING setting such that we can't race
+                * against cgroup_exit() changing the css_set to
+                * init_css_set and dropping the old one.
+                */
+               WARN_ON_ONCE(task->flags & PF_EXITING);
+
+               rcu_assign_pointer(task->cgroups, to_cset);
+               list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
+                                                            &to_cset->tasks);
+       }
+}
+
+/*
+ * hash table for cgroup groups. This improves the performance to find
+ * an existing css_set. This hash doesn't (currently) take into
+ * account cgroups in empty hierarchies.
+ */
+#define CSS_SET_HASH_BITS      7
+static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
+
+static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
+{
+       unsigned long key = 0UL;
+       struct cgroup_subsys *ss;
+       int i;
+
+       for_each_subsys(ss, i)
+               key += (unsigned long)css[i];
+       key = (key >> 16) ^ key;
+
+       return key;
+}
+
+static void put_css_set_locked(struct css_set *cset)
+{
+       struct cgrp_cset_link *link, *tmp_link;
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       lockdep_assert_held(&css_set_lock);
+
+       if (!atomic_dec_and_test(&cset->refcount))
+               return;
+
+       /* This css_set is dead. unlink it and release cgroup and css refs */
+       for_each_subsys(ss, ssid) {
+               list_del(&cset->e_cset_node[ssid]);
+               css_put(cset->subsys[ssid]);
+       }
+       hash_del(&cset->hlist);
+       css_set_count--;
+
+       list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
+               list_del(&link->cset_link);
+               list_del(&link->cgrp_link);
+               if (cgroup_parent(link->cgrp))
+                       cgroup_put(link->cgrp);
+               kfree(link);
+       }
+
+       kfree_rcu(cset, rcu_head);
+}
+
+static void put_css_set(struct css_set *cset)
+{
+       unsigned long flags;
+
+       /*
+        * Ensure that the refcount doesn't hit zero while any readers
+        * can see it. Similar to atomic_dec_and_lock(), but for an
+        * rwlock
+        */
+       if (atomic_add_unless(&cset->refcount, -1, 1))
+               return;
+
+       spin_lock_irqsave(&css_set_lock, flags);
+       put_css_set_locked(cset);
+       spin_unlock_irqrestore(&css_set_lock, flags);
+}
+
+/*
+ * refcounted get/put for css_set objects
+ */
+static inline void get_css_set(struct css_set *cset)
+{
+       atomic_inc(&cset->refcount);
+}
+
+/**
+ * compare_css_sets - helper function for find_existing_css_set().
+ * @cset: candidate css_set being tested
+ * @old_cset: existing css_set for a task
+ * @new_cgrp: cgroup that's being entered by the task
+ * @template: desired set of css pointers in css_set (pre-calculated)
+ *
+ * Returns true if "cset" matches "old_cset" except for the hierarchy
+ * which "new_cgrp" belongs to, for which it should match "new_cgrp".
+ */
+static bool compare_css_sets(struct css_set *cset,
+                            struct css_set *old_cset,
+                            struct cgroup *new_cgrp,
+                            struct cgroup_subsys_state *template[])
+{
+       struct list_head *l1, *l2;
+
+       /*
+        * On the default hierarchy, there can be csets which are
+        * associated with the same set of cgroups but different csses.
+        * Let's first ensure that csses match.
+        */
+       if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
+               return false;
+
+       /*
+        * Compare cgroup pointers in order to distinguish between
+        * different cgroups in hierarchies.  As different cgroups may
+        * share the same effective css, this comparison is always
+        * necessary.
+        */
+       l1 = &cset->cgrp_links;
+       l2 = &old_cset->cgrp_links;
+       while (1) {
+               struct cgrp_cset_link *link1, *link2;
+               struct cgroup *cgrp1, *cgrp2;
+
+               l1 = l1->next;
+               l2 = l2->next;
+               /* See if we reached the end - both lists are equal length. */
+               if (l1 == &cset->cgrp_links) {
+                       BUG_ON(l2 != &old_cset->cgrp_links);
+                       break;
+               } else {
+                       BUG_ON(l2 == &old_cset->cgrp_links);
+               }
+               /* Locate the cgroups associated with these links. */
+               link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
+               link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
+               cgrp1 = link1->cgrp;
+               cgrp2 = link2->cgrp;
+               /* Hierarchies should be linked in the same order. */
+               BUG_ON(cgrp1->root != cgrp2->root);
+
+               /*
+                * If this hierarchy is the hierarchy of the cgroup
+                * that's changing, then we need to check that this
+                * css_set points to the new cgroup; if it's any other
+                * hierarchy, then this css_set should point to the
+                * same cgroup as the old css_set.
+                */
+               if (cgrp1->root == new_cgrp->root) {
+                       if (cgrp1 != new_cgrp)
+                               return false;
+               } else {
+                       if (cgrp1 != cgrp2)
+                               return false;
+               }
+       }
+       return true;
+}
+
+/**
+ * find_existing_css_set - init css array and find the matching css_set
+ * @old_cset: the css_set that we're using before the cgroup transition
+ * @cgrp: the cgroup that we're moving into
+ * @template: out param for the new set of csses, should be clear on entry
+ */
+static struct css_set *find_existing_css_set(struct css_set *old_cset,
+                                       struct cgroup *cgrp,
+                                       struct cgroup_subsys_state *template[])
+{
+       struct cgroup_root *root = cgrp->root;
+       struct cgroup_subsys *ss;
+       struct css_set *cset;
+       unsigned long key;
+       int i;
+
+       /*
+        * Build the set of subsystem state objects that we want to see in the
+        * new css_set. while subsystems can change globally, the entries here
+        * won't change, so no need for locking.
+        */
+       for_each_subsys(ss, i) {
+               if (root->subsys_mask & (1UL << i)) {
+                       /*
+                        * @ss is in this hierarchy, so we want the
+                        * effective css from @cgrp.
+                        */
+                       template[i] = cgroup_e_css(cgrp, ss);
+               } else {
+                       /*
+                        * @ss is not in this hierarchy, so we don't want
+                        * to change the css.
+                        */
+                       template[i] = old_cset->subsys[i];
+               }
+       }
+
+       key = css_set_hash(template);
+       hash_for_each_possible(css_set_table, cset, hlist, key) {
+               if (!compare_css_sets(cset, old_cset, cgrp, template))
+                       continue;
+
+               /* This css_set matches what we need */
+               return cset;
+       }
+
+       /* No existing cgroup group matched */
+       return NULL;
+}
+
+static void free_cgrp_cset_links(struct list_head *links_to_free)
+{
+       struct cgrp_cset_link *link, *tmp_link;
+
+       list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
+               list_del(&link->cset_link);
+               kfree(link);
+       }
+}
+
+/**
+ * allocate_cgrp_cset_links - allocate cgrp_cset_links
+ * @count: the number of links to allocate
+ * @tmp_links: list_head the allocated links are put on
+ *
+ * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
+ * through ->cset_link.  Returns 0 on success or -errno.
+ */
+static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
+{
+       struct cgrp_cset_link *link;
+       int i;
+
+       INIT_LIST_HEAD(tmp_links);
+
+       for (i = 0; i < count; i++) {
+               link = kzalloc(sizeof(*link), GFP_KERNEL);
+               if (!link) {
+                       free_cgrp_cset_links(tmp_links);
+                       return -ENOMEM;
+               }
+               list_add(&link->cset_link, tmp_links);
+       }
+       return 0;
+}
+
+/**
+ * link_css_set - a helper function to link a css_set to a cgroup
+ * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
+ * @cset: the css_set to be linked
+ * @cgrp: the destination cgroup
+ */
+static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
+                        struct cgroup *cgrp)
+{
+       struct cgrp_cset_link *link;
+
+       BUG_ON(list_empty(tmp_links));
+
+       if (cgroup_on_dfl(cgrp))
+               cset->dfl_cgrp = cgrp;
+
+       link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
+       link->cset = cset;
+       link->cgrp = cgrp;
+
+       /*
+        * Always add links to the tail of the lists so that the lists are
+        * in choronological order.
+        */
+       list_move_tail(&link->cset_link, &cgrp->cset_links);
+       list_add_tail(&link->cgrp_link, &cset->cgrp_links);
+
+       if (cgroup_parent(cgrp))
+               cgroup_get(cgrp);
+}
+
+/**
+ * find_css_set - return a new css_set with one cgroup updated
+ * @old_cset: the baseline css_set
+ * @cgrp: the cgroup to be updated
+ *
+ * Return a new css_set that's equivalent to @old_cset, but with @cgrp
+ * substituted into the appropriate hierarchy.
+ */
+static struct css_set *find_css_set(struct css_set *old_cset,
+                                   struct cgroup *cgrp)
+{
+       struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
+       struct css_set *cset;
+       struct list_head tmp_links;
+       struct cgrp_cset_link *link;
+       struct cgroup_subsys *ss;
+       unsigned long key;
+       int ssid;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       /* First see if we already have a cgroup group that matches
+        * the desired set */
+       spin_lock_irq(&css_set_lock);
+       cset = find_existing_css_set(old_cset, cgrp, template);
+       if (cset)
+               get_css_set(cset);
+       spin_unlock_irq(&css_set_lock);
+
+       if (cset)
+               return cset;
+
+       cset = kzalloc(sizeof(*cset), GFP_KERNEL);
+       if (!cset)
+               return NULL;
+
+       /* Allocate all the cgrp_cset_link objects that we'll need */
+       if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
+               kfree(cset);
+               return NULL;
+       }
+
+       atomic_set(&cset->refcount, 1);
+       INIT_LIST_HEAD(&cset->tasks);
+       INIT_LIST_HEAD(&cset->mg_tasks);
+       INIT_LIST_HEAD(&cset->task_iters);
+       INIT_HLIST_NODE(&cset->hlist);
+       INIT_LIST_HEAD(&cset->cgrp_links);
+       INIT_LIST_HEAD(&cset->mg_preload_node);
+       INIT_LIST_HEAD(&cset->mg_node);
+
+       /* Copy the set of subsystem state objects generated in
+        * find_existing_css_set() */
+       memcpy(cset->subsys, template, sizeof(cset->subsys));
+
+       spin_lock_irq(&css_set_lock);
+       /* Add reference counts and links from the new css_set. */
+       list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
+               struct cgroup *c = link->cgrp;
+
+               if (c->root == cgrp->root)
+                       c = cgrp;
+               link_css_set(&tmp_links, cset, c);
+       }
+
+       BUG_ON(!list_empty(&tmp_links));
+
+       css_set_count++;
+
+       /* Add @cset to the hash table */
+       key = css_set_hash(cset->subsys);
+       hash_add(css_set_table, &cset->hlist, key);
+
+       for_each_subsys(ss, ssid) {
+               struct cgroup_subsys_state *css = cset->subsys[ssid];
+
+               list_add_tail(&cset->e_cset_node[ssid],
+                             &css->cgroup->e_csets[ssid]);
+               css_get(css);
+       }
+
+       spin_unlock_irq(&css_set_lock);
+
+       return cset;
+}
+
+static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
+{
+       struct cgroup *root_cgrp = kf_root->kn->priv;
+
+       return root_cgrp->root;
+}
+
+static int cgroup_init_root_id(struct cgroup_root *root)
+{
+       int id;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
+       if (id < 0)
+               return id;
+
+       root->hierarchy_id = id;
+       return 0;
+}
+
+static void cgroup_exit_root_id(struct cgroup_root *root)
+{
+       lockdep_assert_held(&cgroup_mutex);
+
+       idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
+}
+
+static void cgroup_free_root(struct cgroup_root *root)
+{
+       if (root) {
+               idr_destroy(&root->cgroup_idr);
+               kfree(root);
+       }
+}
+
+static void cgroup_destroy_root(struct cgroup_root *root)
+{
+       struct cgroup *cgrp = &root->cgrp;
+       struct cgrp_cset_link *link, *tmp_link;
+
+       trace_cgroup_destroy_root(root);
+
+       cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
+
+       BUG_ON(atomic_read(&root->nr_cgrps));
+       BUG_ON(!list_empty(&cgrp->self.children));
+
+       /* Rebind all subsystems back to the default hierarchy */
+       WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
+
+       /*
+        * Release all the links from cset_links to this hierarchy's
+        * root cgroup
+        */
+       spin_lock_irq(&css_set_lock);
+
+       list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
+               list_del(&link->cset_link);
+               list_del(&link->cgrp_link);
+               kfree(link);
+       }
+
+       spin_unlock_irq(&css_set_lock);
+
+       if (!list_empty(&root->root_list)) {
+               list_del(&root->root_list);
+               cgroup_root_count--;
+       }
+
+       cgroup_exit_root_id(root);
+
+       mutex_unlock(&cgroup_mutex);
+
+       kernfs_destroy_root(root->kf_root);
+       cgroup_free_root(root);
+}
+
+/*
+ * look up cgroup associated with current task's cgroup namespace on the
+ * specified hierarchy
+ */
+static struct cgroup *
+current_cgns_cgroup_from_root(struct cgroup_root *root)
+{
+       struct cgroup *res = NULL;
+       struct css_set *cset;
+
+       lockdep_assert_held(&css_set_lock);
+
+       rcu_read_lock();
+
+       cset = current->nsproxy->cgroup_ns->root_cset;
+       if (cset == &init_css_set) {
+               res = &root->cgrp;
+       } else {
+               struct cgrp_cset_link *link;
+
+               list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
+                       struct cgroup *c = link->cgrp;
+
+                       if (c->root == root) {
+                               res = c;
+                               break;
+                       }
+               }
+       }
+       rcu_read_unlock();
+
+       BUG_ON(!res);
+       return res;
+}
+
+/* look up cgroup associated with given css_set on the specified hierarchy */
+static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
+                                           struct cgroup_root *root)
+{
+       struct cgroup *res = NULL;
+
+       lockdep_assert_held(&cgroup_mutex);
+       lockdep_assert_held(&css_set_lock);
+
+       if (cset == &init_css_set) {
+               res = &root->cgrp;
+       } else {
+               struct cgrp_cset_link *link;
+
+               list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
+                       struct cgroup *c = link->cgrp;
+
+                       if (c->root == root) {
+                               res = c;
+                               break;
+                       }
+               }
+       }
+
+       BUG_ON(!res);
+       return res;
+}
+
+/*
+ * Return the cgroup for "task" from the given hierarchy. Must be
+ * called with cgroup_mutex and css_set_lock held.
+ */
+static struct cgroup *task_cgroup_from_root(struct task_struct *task,
+                                           struct cgroup_root *root)
+{
+       /*
+        * No need to lock the task - since we hold cgroup_mutex the
+        * task can't change groups, so the only thing that can happen
+        * is that it exits and its css is set back to init_css_set.
+        */
+       return cset_cgroup_from_root(task_css_set(task), root);
+}
+
+/*
+ * A task must hold cgroup_mutex to modify cgroups.
+ *
+ * Any task can increment and decrement the count field without lock.
+ * So in general, code holding cgroup_mutex can't rely on the count
+ * field not changing.  However, if the count goes to zero, then only
+ * cgroup_attach_task() can increment it again.  Because a count of zero
+ * means that no tasks are currently attached, therefore there is no
+ * way a task attached to that cgroup can fork (the other way to
+ * increment the count).  So code holding cgroup_mutex can safely
+ * assume that if the count is zero, it will stay zero. Similarly, if
+ * a task holds cgroup_mutex on a cgroup with zero count, it
+ * knows that the cgroup won't be removed, as cgroup_rmdir()
+ * needs that mutex.
+ *
+ * A cgroup can only be deleted if both its 'count' of using tasks
+ * is zero, and its list of 'children' cgroups is empty.  Since all
+ * tasks in the system use _some_ cgroup, and since there is always at
+ * least one task in the system (init, pid == 1), therefore, root cgroup
+ * always has either children cgroups and/or using tasks.  So we don't
+ * need a special hack to ensure that root cgroup cannot be deleted.
+ *
+ * P.S.  One more locking exception.  RCU is used to guard the
+ * update of a tasks cgroup pointer by cgroup_attach_task()
+ */
+
+static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
+static const struct file_operations proc_cgroupstats_operations;
+
+static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
+                             char *buf)
+{
+       struct cgroup_subsys *ss = cft->ss;
+
+       if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
+           !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
+               snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
+                        cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
+                        cft->name);
+       else
+               strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
+       return buf;
+}
+
+/**
+ * cgroup_file_mode - deduce file mode of a control file
+ * @cft: the control file in question
+ *
+ * S_IRUGO for read, S_IWUSR for write.
+ */
+static umode_t cgroup_file_mode(const struct cftype *cft)
+{
+       umode_t mode = 0;
+
+       if (cft->read_u64 || cft->read_s64 || cft->seq_show)
+               mode |= S_IRUGO;
+
+       if (cft->write_u64 || cft->write_s64 || cft->write) {
+               if (cft->flags & CFTYPE_WORLD_WRITABLE)
+                       mode |= S_IWUGO;
+               else
+                       mode |= S_IWUSR;
+       }
+
+       return mode;
+}
+
+/**
+ * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
+ * @subtree_control: the new subtree_control mask to consider
+ * @this_ss_mask: available subsystems
+ *
+ * On the default hierarchy, a subsystem may request other subsystems to be
+ * enabled together through its ->depends_on mask.  In such cases, more
+ * subsystems than specified in "cgroup.subtree_control" may be enabled.
+ *
+ * This function calculates which subsystems need to be enabled if
+ * @subtree_control is to be applied while restricted to @this_ss_mask.
+ */
+static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
+{
+       u16 cur_ss_mask = subtree_control;
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
+
+       while (true) {
+               u16 new_ss_mask = cur_ss_mask;
+
+               do_each_subsys_mask(ss, ssid, cur_ss_mask) {
+                       new_ss_mask |= ss->depends_on;
+               } while_each_subsys_mask();
+
+               /*
+                * Mask out subsystems which aren't available.  This can
+                * happen only if some depended-upon subsystems were bound
+                * to non-default hierarchies.
+                */
+               new_ss_mask &= this_ss_mask;
+
+               if (new_ss_mask == cur_ss_mask)
+                       break;
+               cur_ss_mask = new_ss_mask;
+       }
+
+       return cur_ss_mask;
+}
+
+/**
+ * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
+ * @kn: the kernfs_node being serviced
+ *
+ * This helper undoes cgroup_kn_lock_live() and should be invoked before
+ * the method finishes if locking succeeded.  Note that once this function
+ * returns the cgroup returned by cgroup_kn_lock_live() may become
+ * inaccessible any time.  If the caller intends to continue to access the
+ * cgroup, it should pin it before invoking this function.
+ */
+static void cgroup_kn_unlock(struct kernfs_node *kn)
+{
+       struct cgroup *cgrp;
+
+       if (kernfs_type(kn) == KERNFS_DIR)
+               cgrp = kn->priv;
+       else
+               cgrp = kn->parent->priv;
+
+       mutex_unlock(&cgroup_mutex);
+
+       kernfs_unbreak_active_protection(kn);
+       cgroup_put(cgrp);
+}
+
+/**
+ * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
+ * @kn: the kernfs_node being serviced
+ * @drain_offline: perform offline draining on the cgroup
+ *
+ * This helper is to be used by a cgroup kernfs method currently servicing
+ * @kn.  It breaks the active protection, performs cgroup locking and
+ * verifies that the associated cgroup is alive.  Returns the cgroup if
+ * alive; otherwise, %NULL.  A successful return should be undone by a
+ * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
+ * cgroup is drained of offlining csses before return.
+ *
+ * Any cgroup kernfs method implementation which requires locking the
+ * associated cgroup should use this helper.  It avoids nesting cgroup
+ * locking under kernfs active protection and allows all kernfs operations
+ * including self-removal.
+ */
+static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
+                                         bool drain_offline)
+{
+       struct cgroup *cgrp;
+
+       if (kernfs_type(kn) == KERNFS_DIR)
+               cgrp = kn->priv;
+       else
+               cgrp = kn->parent->priv;
+
+       /*
+        * We're gonna grab cgroup_mutex which nests outside kernfs
+        * active_ref.  cgroup liveliness check alone provides enough
+        * protection against removal.  Ensure @cgrp stays accessible and
+        * break the active_ref protection.
+        */
+       if (!cgroup_tryget(cgrp))
+               return NULL;
+       kernfs_break_active_protection(kn);
+
+       if (drain_offline)
+               cgroup_lock_and_drain_offline(cgrp);
+       else
+               mutex_lock(&cgroup_mutex);
+
+       if (!cgroup_is_dead(cgrp))
+               return cgrp;
+
+       cgroup_kn_unlock(kn);
+       return NULL;
+}
+
+static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
+{
+       char name[CGROUP_FILE_NAME_MAX];
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       if (cft->file_offset) {
+               struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
+               struct cgroup_file *cfile = (void *)css + cft->file_offset;
+
+               spin_lock_irq(&cgroup_file_kn_lock);
+               cfile->kn = NULL;
+               spin_unlock_irq(&cgroup_file_kn_lock);
+       }
+
+       kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
+}
+
+/**
+ * css_clear_dir - remove subsys files in a cgroup directory
+ * @css: taget css
+ */
+static void css_clear_dir(struct cgroup_subsys_state *css)
+{
+       struct cgroup *cgrp = css->cgroup;
+       struct cftype *cfts;
+
+       if (!(css->flags & CSS_VISIBLE))
+               return;
+
+       css->flags &= ~CSS_VISIBLE;
+
+       list_for_each_entry(cfts, &css->ss->cfts, node)
+               cgroup_addrm_files(css, cgrp, cfts, false);
+}
+
+/**
+ * css_populate_dir - create subsys files in a cgroup directory
+ * @css: target css
+ *
+ * On failure, no file is added.
+ */
+static int css_populate_dir(struct cgroup_subsys_state *css)
+{
+       struct cgroup *cgrp = css->cgroup;
+       struct cftype *cfts, *failed_cfts;
+       int ret;
+
+       if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
+               return 0;
+
+       if (!css->ss) {
+               if (cgroup_on_dfl(cgrp))
+                       cfts = cgroup_dfl_base_files;
+               else
+                       cfts = cgroup_legacy_base_files;
+
+               return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
+       }
+
+       list_for_each_entry(cfts, &css->ss->cfts, node) {
+               ret = cgroup_addrm_files(css, cgrp, cfts, true);
+               if (ret < 0) {
+                       failed_cfts = cfts;
+                       goto err;
+               }
+       }
+
+       css->flags |= CSS_VISIBLE;
+
+       return 0;
+err:
+       list_for_each_entry(cfts, &css->ss->cfts, node) {
+               if (cfts == failed_cfts)
+                       break;
+               cgroup_addrm_files(css, cgrp, cfts, false);
+       }
+       return ret;
+}
+
+static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
+{
+       struct cgroup *dcgrp = &dst_root->cgrp;
+       struct cgroup_subsys *ss;
+       int ssid, i, ret;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       do_each_subsys_mask(ss, ssid, ss_mask) {
+               /*
+                * If @ss has non-root csses attached to it, can't move.
+                * If @ss is an implicit controller, it is exempt from this
+                * rule and can be stolen.
+                */
+               if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
+                   !ss->implicit_on_dfl)
+                       return -EBUSY;
+
+               /* can't move between two non-dummy roots either */
+               if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
+                       return -EBUSY;
+       } while_each_subsys_mask();
+
+       do_each_subsys_mask(ss, ssid, ss_mask) {
+               struct cgroup_root *src_root = ss->root;
+               struct cgroup *scgrp = &src_root->cgrp;
+               struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
+               struct css_set *cset;
+
+               WARN_ON(!css || cgroup_css(dcgrp, ss));
+
+               /* disable from the source */
+               src_root->subsys_mask &= ~(1 << ssid);
+               WARN_ON(cgroup_apply_control(scgrp));
+               cgroup_finalize_control(scgrp, 0);
+
+               /* rebind */
+               RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
+               rcu_assign_pointer(dcgrp->subsys[ssid], css);
+               ss->root = dst_root;
+               css->cgroup = dcgrp;
+
+               spin_lock_irq(&css_set_lock);
+               hash_for_each(css_set_table, i, cset, hlist)
+                       list_move_tail(&cset->e_cset_node[ss->id],
+                                      &dcgrp->e_csets[ss->id]);
+               spin_unlock_irq(&css_set_lock);
+
+               /* default hierarchy doesn't enable controllers by default */
+               dst_root->subsys_mask |= 1 << ssid;
+               if (dst_root == &cgrp_dfl_root) {
+                       static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
+               } else {
+                       dcgrp->subtree_control |= 1 << ssid;
+                       static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
+               }
+
+               ret = cgroup_apply_control(dcgrp);
+               if (ret)
+                       pr_warn("partial failure to rebind %s controller (err=%d)\n",
+                               ss->name, ret);
+
+               if (ss->bind)
+                       ss->bind(css);
+       } while_each_subsys_mask();
+
+       kernfs_activate(dcgrp->kn);
+       return 0;
+}
+
+static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
+                           struct kernfs_root *kf_root)
+{
+       int len = 0;
+       char *buf = NULL;
+       struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
+       struct cgroup *ns_cgroup;
+
+       buf = kmalloc(PATH_MAX, GFP_KERNEL);
+       if (!buf)
+               return -ENOMEM;
+
+       spin_lock_irq(&css_set_lock);
+       ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
+       len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
+       spin_unlock_irq(&css_set_lock);
+
+       if (len >= PATH_MAX)
+               len = -ERANGE;
+       else if (len > 0) {
+               seq_escape(sf, buf, " \t\n\\");
+               len = 0;
+       }
+       kfree(buf);
+       return len;
+}
+
+static int cgroup_show_options(struct seq_file *seq,
+                              struct kernfs_root *kf_root)
+{
+       struct cgroup_root *root = cgroup_root_from_kf(kf_root);
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       if (root != &cgrp_dfl_root)
+               for_each_subsys(ss, ssid)
+                       if (root->subsys_mask & (1 << ssid))
+                               seq_show_option(seq, ss->legacy_name, NULL);
+       if (root->flags & CGRP_ROOT_NOPREFIX)
+               seq_puts(seq, ",noprefix");
+       if (root->flags & CGRP_ROOT_XATTR)
+               seq_puts(seq, ",xattr");
+
+       spin_lock(&release_agent_path_lock);
+       if (strlen(root->release_agent_path))
+               seq_show_option(seq, "release_agent",
+                               root->release_agent_path);
+       spin_unlock(&release_agent_path_lock);
+
+       if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
+               seq_puts(seq, ",clone_children");
+       if (strlen(root->name))
+               seq_show_option(seq, "name", root->name);
+       return 0;
+}
+
+struct cgroup_sb_opts {
+       u16 subsys_mask;
+       unsigned int flags;
+       char *release_agent;
+       bool cpuset_clone_children;
+       char *name;
+       /* User explicitly requested empty subsystem */
+       bool none;
+};
+
+static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
+{
+       char *token, *o = data;
+       bool all_ss = false, one_ss = false;
+       u16 mask = U16_MAX;
+       struct cgroup_subsys *ss;
+       int nr_opts = 0;
+       int i;
+
+#ifdef CONFIG_CPUSETS
+       mask = ~((u16)1 << cpuset_cgrp_id);
+#endif
+
+       memset(opts, 0, sizeof(*opts));
+
+       while ((token = strsep(&o, ",")) != NULL) {
+               nr_opts++;
+
+               if (!*token)
+                       return -EINVAL;
+               if (!strcmp(token, "none")) {
+                       /* Explicitly have no subsystems */
+                       opts->none = true;
+                       continue;
+               }
+               if (!strcmp(token, "all")) {
+                       /* Mutually exclusive option 'all' + subsystem name */
+                       if (one_ss)
+                               return -EINVAL;
+                       all_ss = true;
+                       continue;
+               }
+               if (!strcmp(token, "noprefix")) {
+                       opts->flags |= CGRP_ROOT_NOPREFIX;
+                       continue;
+               }
+               if (!strcmp(token, "clone_children")) {
+                       opts->cpuset_clone_children = true;
+                       continue;
+               }
+               if (!strcmp(token, "xattr")) {
+                       opts->flags |= CGRP_ROOT_XATTR;
+                       continue;
+               }
+               if (!strncmp(token, "release_agent=", 14)) {
+                       /* Specifying two release agents is forbidden */
+                       if (opts->release_agent)
+                               return -EINVAL;
+                       opts->release_agent =
+                               kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
+                       if (!opts->release_agent)
+                               return -ENOMEM;
+                       continue;
+               }
+               if (!strncmp(token, "name=", 5)) {
+                       const char *name = token + 5;
+                       /* Can't specify an empty name */
+                       if (!strlen(name))
+                               return -EINVAL;
+                       /* Must match [\w.-]+ */
+                       for (i = 0; i < strlen(name); i++) {
+                               char c = name[i];
+                               if (isalnum(c))
+                                       continue;
+                               if ((c == '.') || (c == '-') || (c == '_'))
+                                       continue;
+                               return -EINVAL;
+                       }
+                       /* Specifying two names is forbidden */
+                       if (opts->name)
+                               return -EINVAL;
+                       opts->name = kstrndup(name,
+                                             MAX_CGROUP_ROOT_NAMELEN - 1,
+                                             GFP_KERNEL);
+                       if (!opts->name)
+                               return -ENOMEM;
+
+                       continue;
+               }
+
+               for_each_subsys(ss, i) {
+                       if (strcmp(token, ss->legacy_name))
+                               continue;
+                       if (!cgroup_ssid_enabled(i))
+                               continue;
+                       if (cgroup_ssid_no_v1(i))
+                               continue;
+
+                       /* Mutually exclusive option 'all' + subsystem name */
+                       if (all_ss)
+                               return -EINVAL;
+                       opts->subsys_mask |= (1 << i);
+                       one_ss = true;
+
+                       break;
+               }
+               if (i == CGROUP_SUBSYS_COUNT)
+                       return -ENOENT;
+       }
+
+       /*
+        * If the 'all' option was specified select all the subsystems,
+        * otherwise if 'none', 'name=' and a subsystem name options were
+        * not specified, let's default to 'all'
+        */
+       if (all_ss || (!one_ss && !opts->none && !opts->name))
+               for_each_subsys(ss, i)
+                       if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
+                               opts->subsys_mask |= (1 << i);
+
+       /*
+        * We either have to specify by name or by subsystems. (So all
+        * empty hierarchies must have a name).
+        */
+       if (!opts->subsys_mask && !opts->name)
+               return -EINVAL;
+
+       /*
+        * Option noprefix was introduced just for backward compatibility
+        * with the old cpuset, so we allow noprefix only if mounting just
+        * the cpuset subsystem.
+        */
+       if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
+               return -EINVAL;
+
+       /* Can't specify "none" and some subsystems */
+       if (opts->subsys_mask && opts->none)
+               return -EINVAL;
+
+       return 0;
+}
+
+static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
+{
+       int ret = 0;
+       struct cgroup_root *root = cgroup_root_from_kf(kf_root);
+       struct cgroup_sb_opts opts;
+       u16 added_mask, removed_mask;
+
+       if (root == &cgrp_dfl_root) {
+               pr_err("remount is not allowed\n");
+               return -EINVAL;
+       }
+
+       cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
+
+       /* See what subsystems are wanted */
+       ret = parse_cgroupfs_options(data, &opts);
+       if (ret)
+               goto out_unlock;
+
+       if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
+               pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
+                       task_tgid_nr(current), current->comm);
+
+       added_mask = opts.subsys_mask & ~root->subsys_mask;
+       removed_mask = root->subsys_mask & ~opts.subsys_mask;
+
+       /* Don't allow flags or name to change at remount */
+       if ((opts.flags ^ root->flags) ||
+           (opts.name && strcmp(opts.name, root->name))) {
+               pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
+                      opts.flags, opts.name ?: "", root->flags, root->name);
+               ret = -EINVAL;
+               goto out_unlock;
+       }
+
+       /* remounting is not allowed for populated hierarchies */
+       if (!list_empty(&root->cgrp.self.children)) {
+               ret = -EBUSY;
+               goto out_unlock;
+       }
+
+       ret = rebind_subsystems(root, added_mask);
+       if (ret)
+               goto out_unlock;
+
+       WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
+
+       if (opts.release_agent) {
+               spin_lock(&release_agent_path_lock);
+               strcpy(root->release_agent_path, opts.release_agent);
+               spin_unlock(&release_agent_path_lock);
+       }
+
+       trace_cgroup_remount(root);
+
+ out_unlock:
+       kfree(opts.release_agent);
+       kfree(opts.name);
+       mutex_unlock(&cgroup_mutex);
+       return ret;
+}
+
+/*
+ * To reduce the fork() overhead for systems that are not actually using
+ * their cgroups capability, we don't maintain the lists running through
+ * each css_set to its tasks until we see the list actually used - in other
+ * words after the first mount.
+ */
+static bool use_task_css_set_links __read_mostly;
+
+static void cgroup_enable_task_cg_lists(void)
+{
+       struct task_struct *p, *g;
+
+       spin_lock_irq(&css_set_lock);
+
+       if (use_task_css_set_links)
+               goto out_unlock;
+
+       use_task_css_set_links = true;
+
+       /*
+        * We need tasklist_lock because RCU is not safe against
+        * while_each_thread(). Besides, a forking task that has passed
+        * cgroup_post_fork() without seeing use_task_css_set_links = 1
+        * is not guaranteed to have its child immediately visible in the
+        * tasklist if we walk through it with RCU.
+        */
+       read_lock(&tasklist_lock);
+       do_each_thread(g, p) {
+               WARN_ON_ONCE(!list_empty(&p->cg_list) ||
+                            task_css_set(p) != &init_css_set);
+
+               /*
+                * We should check if the process is exiting, otherwise
+                * it will race with cgroup_exit() in that the list
+                * entry won't be deleted though the process has exited.
+                * Do it while holding siglock so that we don't end up
+                * racing against cgroup_exit().
+                *
+                * Interrupts were already disabled while acquiring
+                * the css_set_lock, so we do not need to disable it
+                * again when acquiring the sighand->siglock here.
+                */
+               spin_lock(&p->sighand->siglock);
+               if (!(p->flags & PF_EXITING)) {
+                       struct css_set *cset = task_css_set(p);
+
+                       if (!css_set_populated(cset))
+                               css_set_update_populated(cset, true);
+                       list_add_tail(&p->cg_list, &cset->tasks);
+                       get_css_set(cset);
+               }
+               spin_unlock(&p->sighand->siglock);
+       } while_each_thread(g, p);
+       read_unlock(&tasklist_lock);
+out_unlock:
+       spin_unlock_irq(&css_set_lock);
+}
+
+static void init_cgroup_housekeeping(struct cgroup *cgrp)
+{
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       INIT_LIST_HEAD(&cgrp->self.sibling);
+       INIT_LIST_HEAD(&cgrp->self.children);
+       INIT_LIST_HEAD(&cgrp->cset_links);
+       INIT_LIST_HEAD(&cgrp->pidlists);
+       mutex_init(&cgrp->pidlist_mutex);
+       cgrp->self.cgroup = cgrp;
+       cgrp->self.flags |= CSS_ONLINE;
+
+       for_each_subsys(ss, ssid)
+               INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
+
+       init_waitqueue_head(&cgrp->offline_waitq);
+       INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
+}
+
+static void init_cgroup_root(struct cgroup_root *root,
+                            struct cgroup_sb_opts *opts)
+{
+       struct cgroup *cgrp = &root->cgrp;
+
+       INIT_LIST_HEAD(&root->root_list);
+       atomic_set(&root->nr_cgrps, 1);
+       cgrp->root = root;
+       init_cgroup_housekeeping(cgrp);
+       idr_init(&root->cgroup_idr);
+
+       root->flags = opts->flags;
+       if (opts->release_agent)
+               strcpy(root->release_agent_path, opts->release_agent);
+       if (opts->name)
+               strcpy(root->name, opts->name);
+       if (opts->cpuset_clone_children)
+               set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
+}
+
+static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
+{
+       LIST_HEAD(tmp_links);
+       struct cgroup *root_cgrp = &root->cgrp;
+       struct css_set *cset;
+       int i, ret;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
+       if (ret < 0)
+               goto out;
+       root_cgrp->id = ret;
+       root_cgrp->ancestor_ids[0] = ret;
+
+       ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
+                             GFP_KERNEL);
+       if (ret)
+               goto out;
+
+       /*
+        * We're accessing css_set_count without locking css_set_lock here,
+        * but that's OK - it can only be increased by someone holding
+        * cgroup_lock, and that's us.  Later rebinding may disable
+        * controllers on the default hierarchy and thus create new csets,
+        * which can't be more than the existing ones.  Allocate 2x.
+        */
+       ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
+       if (ret)
+               goto cancel_ref;
+
+       ret = cgroup_init_root_id(root);
+       if (ret)
+               goto cancel_ref;
+
+       root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
+                                          KERNFS_ROOT_CREATE_DEACTIVATED,
+                                          root_cgrp);
+       if (IS_ERR(root->kf_root)) {
+               ret = PTR_ERR(root->kf_root);
+               goto exit_root_id;
+       }
+       root_cgrp->kn = root->kf_root->kn;
+
+       ret = css_populate_dir(&root_cgrp->self);
+       if (ret)
+               goto destroy_root;
+
+       ret = rebind_subsystems(root, ss_mask);
+       if (ret)
+               goto destroy_root;
+
+       trace_cgroup_setup_root(root);
+
+       /*
+        * There must be no failure case after here, since rebinding takes
+        * care of subsystems' refcounts, which are explicitly dropped in
+        * the failure exit path.
+        */
+       list_add(&root->root_list, &cgroup_roots);
+       cgroup_root_count++;
+
+       /*
+        * Link the root cgroup in this hierarchy into all the css_set
+        * objects.
+        */
+       spin_lock_irq(&css_set_lock);
+       hash_for_each(css_set_table, i, cset, hlist) {
+               link_css_set(&tmp_links, cset, root_cgrp);
+               if (css_set_populated(cset))
+                       cgroup_update_populated(root_cgrp, true);
+       }
+       spin_unlock_irq(&css_set_lock);
+
+       BUG_ON(!list_empty(&root_cgrp->self.children));
+       BUG_ON(atomic_read(&root->nr_cgrps) != 1);
+
+       kernfs_activate(root_cgrp->kn);
+       ret = 0;
+       goto out;
+
+destroy_root:
+       kernfs_destroy_root(root->kf_root);
+       root->kf_root = NULL;
+exit_root_id:
+       cgroup_exit_root_id(root);
+cancel_ref:
+       percpu_ref_exit(&root_cgrp->self.refcnt);
+out:
+       free_cgrp_cset_links(&tmp_links);
+       return ret;
+}
+
+static struct dentry *cgroup_mount(struct file_system_type *fs_type,
+                        int flags, const char *unused_dev_name,
+                        void *data)
+{
+       bool is_v2 = fs_type == &cgroup2_fs_type;
+       struct super_block *pinned_sb = NULL;
+       struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
+       struct cgroup_subsys *ss;
+       struct cgroup_root *root;
+       struct cgroup_sb_opts opts;
+       struct dentry *dentry;
+       int ret;
+       int i;
+       bool new_sb;
+
+       get_cgroup_ns(ns);
+
+       /* Check if the caller has permission to mount. */
+       if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
+               put_cgroup_ns(ns);
+               return ERR_PTR(-EPERM);
+       }
+
+       /*
+        * The first time anyone tries to mount a cgroup, enable the list
+        * linking each css_set to its tasks and fix up all existing tasks.
+        */
+       if (!use_task_css_set_links)
+               cgroup_enable_task_cg_lists();
+
+       if (is_v2) {
+               if (data) {
+                       pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
+                       put_cgroup_ns(ns);
+                       return ERR_PTR(-EINVAL);
+               }
+               cgrp_dfl_visible = true;
+               root = &cgrp_dfl_root;
+               cgroup_get(&root->cgrp);
+               goto out_mount;
+       }
+
+       cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
+
+       /* First find the desired set of subsystems */
+       ret = parse_cgroupfs_options(data, &opts);
+       if (ret)
+               goto out_unlock;
+
+       /*
+        * Destruction of cgroup root is asynchronous, so subsystems may
+        * still be dying after the previous unmount.  Let's drain the
+        * dying subsystems.  We just need to ensure that the ones
+        * unmounted previously finish dying and don't care about new ones
+        * starting.  Testing ref liveliness is good enough.
+        */
+       for_each_subsys(ss, i) {
+               if (!(opts.subsys_mask & (1 << i)) ||
+                   ss->root == &cgrp_dfl_root)
+                       continue;
+
+               if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
+                       mutex_unlock(&cgroup_mutex);
+                       msleep(10);
+                       ret = restart_syscall();
+                       goto out_free;
+               }
+               cgroup_put(&ss->root->cgrp);
+       }
+
+       for_each_root(root) {
+               bool name_match = false;
+
+               if (root == &cgrp_dfl_root)
+                       continue;
+
+               /*
+                * If we asked for a name then it must match.  Also, if
+                * name matches but sybsys_mask doesn't, we should fail.
+                * Remember whether name matched.
+                */
+               if (opts.name) {
+                       if (strcmp(opts.name, root->name))
+                               continue;
+                       name_match = true;
+               }
+
+               /*
+                * If we asked for subsystems (or explicitly for no
+                * subsystems) then they must match.
+                */
+               if ((opts.subsys_mask || opts.none) &&
+                   (opts.subsys_mask != root->subsys_mask)) {
+                       if (!name_match)
+                               continue;
+                       ret = -EBUSY;
+                       goto out_unlock;
+               }
+
+               if (root->flags ^ opts.flags)
+                       pr_warn("new mount options do not match the existing superblock, will be ignored\n");
+
+               /*
+                * We want to reuse @root whose lifetime is governed by its
+                * ->cgrp.  Let's check whether @root is alive and keep it
+                * that way.  As cgroup_kill_sb() can happen anytime, we
+                * want to block it by pinning the sb so that @root doesn't
+                * get killed before mount is complete.
+                *
+                * With the sb pinned, tryget_live can reliably indicate
+                * whether @root can be reused.  If it's being killed,
+                * drain it.  We can use wait_queue for the wait but this
+                * path is super cold.  Let's just sleep a bit and retry.
+                */
+               pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
+               if (IS_ERR(pinned_sb) ||
+                   !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
+                       mutex_unlock(&cgroup_mutex);
+                       if (!IS_ERR_OR_NULL(pinned_sb))
+                               deactivate_super(pinned_sb);
+                       msleep(10);
+                       ret = restart_syscall();
+                       goto out_free;
+               }
+
+               ret = 0;
+               goto out_unlock;
+       }
+
+       /*
+        * No such thing, create a new one.  name= matching without subsys
+        * specification is allowed for already existing hierarchies but we
+        * can't create new one without subsys specification.
+        */
+       if (!opts.subsys_mask && !opts.none) {
+               ret = -EINVAL;
+               goto out_unlock;
+       }
+
+       /* Hierarchies may only be created in the initial cgroup namespace. */
+       if (ns != &init_cgroup_ns) {
+               ret = -EPERM;
+               goto out_unlock;
+       }
+
+       root = kzalloc(sizeof(*root), GFP_KERNEL);
+       if (!root) {
+               ret = -ENOMEM;
+               goto out_unlock;
+       }
+
+       init_cgroup_root(root, &opts);
+
+       ret = cgroup_setup_root(root, opts.subsys_mask);
+       if (ret)
+               cgroup_free_root(root);
+
+out_unlock:
+       mutex_unlock(&cgroup_mutex);
+out_free:
+       kfree(opts.release_agent);
+       kfree(opts.name);
+
+       if (ret) {
+               put_cgroup_ns(ns);
+               return ERR_PTR(ret);
+       }
+out_mount:
+       dentry = kernfs_mount(fs_type, flags, root->kf_root,
+                             is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
+                             &new_sb);
+
+       /*
+        * In non-init cgroup namespace, instead of root cgroup's
+        * dentry, we return the dentry corresponding to the
+        * cgroupns->root_cgrp.
+        */
+       if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
+               struct dentry *nsdentry;
+               struct cgroup *cgrp;
+
+               mutex_lock(&cgroup_mutex);
+               spin_lock_irq(&css_set_lock);
+
+               cgrp = cset_cgroup_from_root(ns->root_cset, root);
+
+               spin_unlock_irq(&css_set_lock);
+               mutex_unlock(&cgroup_mutex);
+
+               nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
+               dput(dentry);
+               dentry = nsdentry;
+       }
+
+       if (IS_ERR(dentry) || !new_sb)
+               cgroup_put(&root->cgrp);
+
+       /*
+        * If @pinned_sb, we're reusing an existing root and holding an
+        * extra ref on its sb.  Mount is complete.  Put the extra ref.
+        */
+       if (pinned_sb) {
+               WARN_ON(new_sb);
+               deactivate_super(pinned_sb);
+       }
+
+       put_cgroup_ns(ns);
+       return dentry;
+}
+
+static void cgroup_kill_sb(struct super_block *sb)
+{
+       struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
+       struct cgroup_root *root = cgroup_root_from_kf(kf_root);
+
+       /*
+        * If @root doesn't have any mounts or children, start killing it.
+        * This prevents new mounts by disabling percpu_ref_tryget_live().
+        * cgroup_mount() may wait for @root's release.
+        *
+        * And don't kill the default root.
+        */
+       if (!list_empty(&root->cgrp.self.children) ||
+           root == &cgrp_dfl_root)
+               cgroup_put(&root->cgrp);
+       else
+               percpu_ref_kill(&root->cgrp.self.refcnt);
+
+       kernfs_kill_sb(sb);
+}
+
+static struct file_system_type cgroup_fs_type = {
+       .name = "cgroup",
+       .mount = cgroup_mount,
+       .kill_sb = cgroup_kill_sb,
+       .fs_flags = FS_USERNS_MOUNT,
+};
+
+static struct file_system_type cgroup2_fs_type = {
+       .name = "cgroup2",
+       .mount = cgroup_mount,
+       .kill_sb = cgroup_kill_sb,
+       .fs_flags = FS_USERNS_MOUNT,
+};
+
+static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
+                                struct cgroup_namespace *ns)
+{
+       struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
+
+       return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
+}
+
+int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
+                  struct cgroup_namespace *ns)
+{
+       int ret;
+
+       mutex_lock(&cgroup_mutex);
+       spin_lock_irq(&css_set_lock);
+
+       ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
+
+       spin_unlock_irq(&css_set_lock);
+       mutex_unlock(&cgroup_mutex);
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(cgroup_path_ns);
+
+/**
+ * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
+ * @task: target task
+ * @buf: the buffer to write the path into
+ * @buflen: the length of the buffer
+ *
+ * Determine @task's cgroup on the first (the one with the lowest non-zero
+ * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
+ * function grabs cgroup_mutex and shouldn't be used inside locks used by
+ * cgroup controller callbacks.
+ *
+ * Return value is the same as kernfs_path().
+ */
+int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
+{
+       struct cgroup_root *root;
+       struct cgroup *cgrp;
+       int hierarchy_id = 1;
+       int ret;
+
+       mutex_lock(&cgroup_mutex);
+       spin_lock_irq(&css_set_lock);
+
+       root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
+
+       if (root) {
+               cgrp = task_cgroup_from_root(task, root);
+               ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
+       } else {
+               /* if no hierarchy exists, everyone is in "/" */
+               ret = strlcpy(buf, "/", buflen);
+       }
+
+       spin_unlock_irq(&css_set_lock);
+       mutex_unlock(&cgroup_mutex);
+       return ret;
+}
+EXPORT_SYMBOL_GPL(task_cgroup_path);
+
+/* used to track tasks and other necessary states during migration */
+struct cgroup_taskset {
+       /* the src and dst cset list running through cset->mg_node */
+       struct list_head        src_csets;
+       struct list_head        dst_csets;
+
+       /* the subsys currently being processed */
+       int                     ssid;
+
+       /*
+        * Fields for cgroup_taskset_*() iteration.
+        *
+        * Before migration is committed, the target migration tasks are on
+        * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
+        * the csets on ->dst_csets.  ->csets point to either ->src_csets
+        * or ->dst_csets depending on whether migration is committed.
+        *
+        * ->cur_csets and ->cur_task point to the current task position
+        * during iteration.
+        */
+       struct list_head        *csets;
+       struct css_set          *cur_cset;
+       struct task_struct      *cur_task;
+};
+
+#define CGROUP_TASKSET_INIT(tset)      (struct cgroup_taskset){        \
+       .src_csets              = LIST_HEAD_INIT(tset.src_csets),       \
+       .dst_csets              = LIST_HEAD_INIT(tset.dst_csets),       \
+       .csets                  = &tset.src_csets,                      \
+}
+
+/**
+ * cgroup_taskset_add - try to add a migration target task to a taskset
+ * @task: target task
+ * @tset: target taskset
+ *
+ * Add @task, which is a migration target, to @tset.  This function becomes
+ * noop if @task doesn't need to be migrated.  @task's css_set should have
+ * been added as a migration source and @task->cg_list will be moved from
+ * the css_set's tasks list to mg_tasks one.
+ */
+static void cgroup_taskset_add(struct task_struct *task,
+                              struct cgroup_taskset *tset)
+{
+       struct css_set *cset;
+
+       lockdep_assert_held(&css_set_lock);
+
+       /* @task either already exited or can't exit until the end */
+       if (task->flags & PF_EXITING)
+               return;
+
+       /* leave @task alone if post_fork() hasn't linked it yet */
+       if (list_empty(&task->cg_list))
+               return;
+
+       cset = task_css_set(task);
+       if (!cset->mg_src_cgrp)
+               return;
+
+       list_move_tail(&task->cg_list, &cset->mg_tasks);
+       if (list_empty(&cset->mg_node))
+               list_add_tail(&cset->mg_node, &tset->src_csets);
+       if (list_empty(&cset->mg_dst_cset->mg_node))
+               list_move_tail(&cset->mg_dst_cset->mg_node,
+                              &tset->dst_csets);
+}
+
+/**
+ * cgroup_taskset_first - reset taskset and return the first task
+ * @tset: taskset of interest
+ * @dst_cssp: output variable for the destination css
+ *
+ * @tset iteration is initialized and the first task is returned.
+ */
+struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
+                                        struct cgroup_subsys_state **dst_cssp)
+{
+       tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
+       tset->cur_task = NULL;
+
+       return cgroup_taskset_next(tset, dst_cssp);
+}
+
+/**
+ * cgroup_taskset_next - iterate to the next task in taskset
+ * @tset: taskset of interest
+ * @dst_cssp: output variable for the destination css
+ *
+ * Return the next task in @tset.  Iteration must have been initialized
+ * with cgroup_taskset_first().
+ */
+struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
+                                       struct cgroup_subsys_state **dst_cssp)
+{
+       struct css_set *cset = tset->cur_cset;
+       struct task_struct *task = tset->cur_task;
+
+       while (&cset->mg_node != tset->csets) {
+               if (!task)
+                       task = list_first_entry(&cset->mg_tasks,
+                                               struct task_struct, cg_list);
+               else
+                       task = list_next_entry(task, cg_list);
+
+               if (&task->cg_list != &cset->mg_tasks) {
+                       tset->cur_cset = cset;
+                       tset->cur_task = task;
+
+                       /*
+                        * This function may be called both before and
+                        * after cgroup_taskset_migrate().  The two cases
+                        * can be distinguished by looking at whether @cset
+                        * has its ->mg_dst_cset set.
+                        */
+                       if (cset->mg_dst_cset)
+                               *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
+                       else
+                               *dst_cssp = cset->subsys[tset->ssid];
+
+                       return task;
+               }
+
+               cset = list_next_entry(cset, mg_node);
+               task = NULL;
+       }
+
+       return NULL;
+}
+
+/**
+ * cgroup_taskset_migrate - migrate a taskset
+ * @tset: taget taskset
+ * @root: cgroup root the migration is taking place on
+ *
+ * Migrate tasks in @tset as setup by migration preparation functions.
+ * This function fails iff one of the ->can_attach callbacks fails and
+ * guarantees that either all or none of the tasks in @tset are migrated.
+ * @tset is consumed regardless of success.
+ */
+static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
+                                 struct cgroup_root *root)
+{
+       struct cgroup_subsys *ss;
+       struct task_struct *task, *tmp_task;
+       struct css_set *cset, *tmp_cset;
+       int ssid, failed_ssid, ret;
+
+       /* methods shouldn't be called if no task is actually migrating */
+       if (list_empty(&tset->src_csets))
+               return 0;
+
+       /* check that we can legitimately attach to the cgroup */
+       do_each_subsys_mask(ss, ssid, root->subsys_mask) {
+               if (ss->can_attach) {
+                       tset->ssid = ssid;
+                       ret = ss->can_attach(tset);
+                       if (ret) {
+                               failed_ssid = ssid;
+                               goto out_cancel_attach;
+                       }
+               }
+       } while_each_subsys_mask();
+
+       /*
+        * Now that we're guaranteed success, proceed to move all tasks to
+        * the new cgroup.  There are no failure cases after here, so this
+        * is the commit point.
+        */
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry(cset, &tset->src_csets, mg_node) {
+               list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
+                       struct css_set *from_cset = task_css_set(task);
+                       struct css_set *to_cset = cset->mg_dst_cset;
+
+                       get_css_set(to_cset);
+                       css_set_move_task(task, from_cset, to_cset, true);
+                       put_css_set_locked(from_cset);
+               }
+       }
+       spin_unlock_irq(&css_set_lock);
+
+       /*
+        * Migration is committed, all target tasks are now on dst_csets.
+        * Nothing is sensitive to fork() after this point.  Notify
+        * controllers that migration is complete.
+        */
+       tset->csets = &tset->dst_csets;
+
+       do_each_subsys_mask(ss, ssid, root->subsys_mask) {
+               if (ss->attach) {
+                       tset->ssid = ssid;
+                       ss->attach(tset);
+               }
+       } while_each_subsys_mask();
+
+       ret = 0;
+       goto out_release_tset;
+
+out_cancel_attach:
+       do_each_subsys_mask(ss, ssid, root->subsys_mask) {
+               if (ssid == failed_ssid)
+                       break;
+               if (ss->cancel_attach) {
+                       tset->ssid = ssid;
+                       ss->cancel_attach(tset);
+               }
+       } while_each_subsys_mask();
+out_release_tset:
+       spin_lock_irq(&css_set_lock);
+       list_splice_init(&tset->dst_csets, &tset->src_csets);
+       list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
+               list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
+               list_del_init(&cset->mg_node);
+       }
+       spin_unlock_irq(&css_set_lock);
+       return ret;
+}
+
+/**
+ * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
+ * @dst_cgrp: destination cgroup to test
+ *
+ * On the default hierarchy, except for the root, subtree_control must be
+ * zero for migration destination cgroups with tasks so that child cgroups
+ * don't compete against tasks.
+ */
+static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
+{
+       return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
+               !dst_cgrp->subtree_control;
+}
+
+/**
+ * cgroup_migrate_finish - cleanup after attach
+ * @preloaded_csets: list of preloaded css_sets
+ *
+ * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
+ * those functions for details.
+ */
+static void cgroup_migrate_finish(struct list_head *preloaded_csets)
+{
+       struct css_set *cset, *tmp_cset;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
+               cset->mg_src_cgrp = NULL;
+               cset->mg_dst_cgrp = NULL;
+               cset->mg_dst_cset = NULL;
+               list_del_init(&cset->mg_preload_node);
+               put_css_set_locked(cset);
+       }
+       spin_unlock_irq(&css_set_lock);
+}
+
+/**
+ * cgroup_migrate_add_src - add a migration source css_set
+ * @src_cset: the source css_set to add
+ * @dst_cgrp: the destination cgroup
+ * @preloaded_csets: list of preloaded css_sets
+ *
+ * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
+ * @src_cset and add it to @preloaded_csets, which should later be cleaned
+ * up by cgroup_migrate_finish().
+ *
+ * This function may be called without holding cgroup_threadgroup_rwsem
+ * even if the target is a process.  Threads may be created and destroyed
+ * but as long as cgroup_mutex is not dropped, no new css_set can be put
+ * into play and the preloaded css_sets are guaranteed to cover all
+ * migrations.
+ */
+static void cgroup_migrate_add_src(struct css_set *src_cset,
+                                  struct cgroup *dst_cgrp,
+                                  struct list_head *preloaded_csets)
+{
+       struct cgroup *src_cgrp;
+
+       lockdep_assert_held(&cgroup_mutex);
+       lockdep_assert_held(&css_set_lock);
+
+       /*
+        * If ->dead, @src_set is associated with one or more dead cgroups
+        * and doesn't contain any migratable tasks.  Ignore it early so
+        * that the rest of migration path doesn't get confused by it.
+        */
+       if (src_cset->dead)
+               return;
+
+       src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
+
+       if (!list_empty(&src_cset->mg_preload_node))
+               return;
+
+       WARN_ON(src_cset->mg_src_cgrp);
+       WARN_ON(src_cset->mg_dst_cgrp);
+       WARN_ON(!list_empty(&src_cset->mg_tasks));
+       WARN_ON(!list_empty(&src_cset->mg_node));
+
+       src_cset->mg_src_cgrp = src_cgrp;
+       src_cset->mg_dst_cgrp = dst_cgrp;
+       get_css_set(src_cset);
+       list_add(&src_cset->mg_preload_node, preloaded_csets);
+}
+
+/**
+ * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
+ * @preloaded_csets: list of preloaded source css_sets
+ *
+ * Tasks are about to be moved and all the source css_sets have been
+ * preloaded to @preloaded_csets.  This function looks up and pins all
+ * destination css_sets, links each to its source, and append them to
+ * @preloaded_csets.
+ *
+ * This function must be called after cgroup_migrate_add_src() has been
+ * called on each migration source css_set.  After migration is performed
+ * using cgroup_migrate(), cgroup_migrate_finish() must be called on
+ * @preloaded_csets.
+ */
+static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
+{
+       LIST_HEAD(csets);
+       struct css_set *src_cset, *tmp_cset;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       /* look up the dst cset for each src cset and link it to src */
+       list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
+               struct css_set *dst_cset;
+
+               dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
+               if (!dst_cset)
+                       goto err;
+
+               WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
+
+               /*
+                * If src cset equals dst, it's noop.  Drop the src.
+                * cgroup_migrate() will skip the cset too.  Note that we
+                * can't handle src == dst as some nodes are used by both.
+                */
+               if (src_cset == dst_cset) {
+                       src_cset->mg_src_cgrp = NULL;
+                       src_cset->mg_dst_cgrp = NULL;
+                       list_del_init(&src_cset->mg_preload_node);
+                       put_css_set(src_cset);
+                       put_css_set(dst_cset);
+                       continue;
+               }
+
+               src_cset->mg_dst_cset = dst_cset;
+
+               if (list_empty(&dst_cset->mg_preload_node))
+                       list_add(&dst_cset->mg_preload_node, &csets);
+               else
+                       put_css_set(dst_cset);
+       }
+
+       list_splice_tail(&csets, preloaded_csets);
+       return 0;
+err:
+       cgroup_migrate_finish(&csets);
+       return -ENOMEM;
+}
+
+/**
+ * cgroup_migrate - migrate a process or task to a cgroup
+ * @leader: the leader of the process or the task to migrate
+ * @threadgroup: whether @leader points to the whole process or a single task
+ * @root: cgroup root migration is taking place on
+ *
+ * Migrate a process or task denoted by @leader.  If migrating a process,
+ * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
+ * responsible for invoking cgroup_migrate_add_src() and
+ * cgroup_migrate_prepare_dst() on the targets before invoking this
+ * function and following up with cgroup_migrate_finish().
+ *
+ * As long as a controller's ->can_attach() doesn't fail, this function is
+ * guaranteed to succeed.  This means that, excluding ->can_attach()
+ * failure, when migrating multiple targets, the success or failure can be
+ * decided for all targets by invoking group_migrate_prepare_dst() before
+ * actually starting migrating.
+ */
+static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
+                         struct cgroup_root *root)
+{
+       struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
+       struct task_struct *task;
+
+       /*
+        * Prevent freeing of tasks while we take a snapshot. Tasks that are
+        * already PF_EXITING could be freed from underneath us unless we
+        * take an rcu_read_lock.
+        */
+       spin_lock_irq(&css_set_lock);
+       rcu_read_lock();
+       task = leader;
+       do {
+               cgroup_taskset_add(task, &tset);
+               if (!threadgroup)
+                       break;
+       } while_each_thread(leader, task);
+       rcu_read_unlock();
+       spin_unlock_irq(&css_set_lock);
+
+       return cgroup_taskset_migrate(&tset, root);
+}
+
+/**
+ * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
+ * @dst_cgrp: the cgroup to attach to
+ * @leader: the task or the leader of the threadgroup to be attached
+ * @threadgroup: attach the whole threadgroup?
+ *
+ * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
+ */
+static int cgroup_attach_task(struct cgroup *dst_cgrp,
+                             struct task_struct *leader, bool threadgroup)
+{
+       LIST_HEAD(preloaded_csets);
+       struct task_struct *task;
+       int ret;
+
+       if (!cgroup_may_migrate_to(dst_cgrp))
+               return -EBUSY;
+
+       /* look up all src csets */
+       spin_lock_irq(&css_set_lock);
+       rcu_read_lock();
+       task = leader;
+       do {
+               cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
+                                      &preloaded_csets);
+               if (!threadgroup)
+                       break;
+       } while_each_thread(leader, task);
+       rcu_read_unlock();
+       spin_unlock_irq(&css_set_lock);
+
+       /* prepare dst csets and commit */
+       ret = cgroup_migrate_prepare_dst(&preloaded_csets);
+       if (!ret)
+               ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
+
+       cgroup_migrate_finish(&preloaded_csets);
+
+       if (!ret)
+               trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
+
+       return ret;
+}
+
+static int cgroup_procs_write_permission(struct task_struct *task,
+                                        struct cgroup *dst_cgrp,
+                                        struct kernfs_open_file *of)
+{
+       const struct cred *cred = current_cred();
+       const struct cred *tcred = get_task_cred(task);
+       int ret = 0;
+
+       /*
+        * even if we're attaching all tasks in the thread group, we only
+        * need to check permissions on one of them.
+        */
+       if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
+           !uid_eq(cred->euid, tcred->uid) &&
+           !uid_eq(cred->euid, tcred->suid))
+               ret = -EACCES;
+
+       if (!ret && cgroup_on_dfl(dst_cgrp)) {
+               struct super_block *sb = of->file->f_path.dentry->d_sb;
+               struct cgroup *cgrp;
+               struct inode *inode;
+
+               spin_lock_irq(&css_set_lock);
+               cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
+               spin_unlock_irq(&css_set_lock);
+
+               while (!cgroup_is_descendant(dst_cgrp, cgrp))
+                       cgrp = cgroup_parent(cgrp);
+
+               ret = -ENOMEM;
+               inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
+               if (inode) {
+                       ret = inode_permission(inode, MAY_WRITE);
+                       iput(inode);
+               }
+       }
+
+       put_cred(tcred);
+       return ret;
+}
+
+/*
+ * Find the task_struct of the task to attach by vpid and pass it along to the
+ * function to attach either it or all tasks in its threadgroup. Will lock
+ * cgroup_mutex and threadgroup.
+ */
+static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
+                                   size_t nbytes, loff_t off, bool threadgroup)
+{
+       struct task_struct *tsk;
+       struct cgroup_subsys *ss;
+       struct cgroup *cgrp;
+       pid_t pid;
+       int ssid, ret;
+
+       if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
+               return -EINVAL;
+
+       cgrp = cgroup_kn_lock_live(of->kn, false);
+       if (!cgrp)
+               return -ENODEV;
+
+       percpu_down_write(&cgroup_threadgroup_rwsem);
+       rcu_read_lock();
+       if (pid) {
+               tsk = find_task_by_vpid(pid);
+               if (!tsk) {
+                       ret = -ESRCH;
+                       goto out_unlock_rcu;
+               }
+       } else {
+               tsk = current;
+       }
+
+       if (threadgroup)
+               tsk = tsk->group_leader;
+
+       /*
+        * Workqueue threads may acquire PF_NO_SETAFFINITY and become
+        * trapped in a cpuset, or RT worker may be born in a cgroup
+        * with no rt_runtime allocated.  Just say no.
+        */
+       if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
+               ret = -EINVAL;
+               goto out_unlock_rcu;
+       }
+
+       get_task_struct(tsk);
+       rcu_read_unlock();
+
+       ret = cgroup_procs_write_permission(tsk, cgrp, of);
+       if (!ret)
+               ret = cgroup_attach_task(cgrp, tsk, threadgroup);
+
+       put_task_struct(tsk);
+       goto out_unlock_threadgroup;
+
+out_unlock_rcu:
+       rcu_read_unlock();
+out_unlock_threadgroup:
+       percpu_up_write(&cgroup_threadgroup_rwsem);
+       for_each_subsys(ss, ssid)
+               if (ss->post_attach)
+                       ss->post_attach();
+       cgroup_kn_unlock(of->kn);
+       return ret ?: nbytes;
+}
+
+/**
+ * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
+ * @from: attach to all cgroups of a given task
+ * @tsk: the task to be attached
+ */
+int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
+{
+       struct cgroup_root *root;
+       int retval = 0;
+
+       mutex_lock(&cgroup_mutex);
+       percpu_down_write(&cgroup_threadgroup_rwsem);
+       for_each_root(root) {
+               struct cgroup *from_cgrp;
+
+               if (root == &cgrp_dfl_root)
+                       continue;
+
+               spin_lock_irq(&css_set_lock);
+               from_cgrp = task_cgroup_from_root(from, root);
+               spin_unlock_irq(&css_set_lock);
+
+               retval = cgroup_attach_task(from_cgrp, tsk, false);
+               if (retval)
+                       break;
+       }
+       percpu_up_write(&cgroup_threadgroup_rwsem);
+       mutex_unlock(&cgroup_mutex);
+
+       return retval;
+}
+EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
+
+static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
+                                 char *buf, size_t nbytes, loff_t off)
+{
+       return __cgroup_procs_write(of, buf, nbytes, off, false);
+}
+
+static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
+                                 char *buf, size_t nbytes, loff_t off)
+{
+       return __cgroup_procs_write(of, buf, nbytes, off, true);
+}
+
+static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
+                                         char *buf, size_t nbytes, loff_t off)
+{
+       struct cgroup *cgrp;
+
+       BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
+
+       cgrp = cgroup_kn_lock_live(of->kn, false);
+       if (!cgrp)
+               return -ENODEV;
+       spin_lock(&release_agent_path_lock);
+       strlcpy(cgrp->root->release_agent_path, strstrip(buf),
+               sizeof(cgrp->root->release_agent_path));
+       spin_unlock(&release_agent_path_lock);
+       cgroup_kn_unlock(of->kn);
+       return nbytes;
+}
+
+static int cgroup_release_agent_show(struct seq_file *seq, void *v)
+{
+       struct cgroup *cgrp = seq_css(seq)->cgroup;
+
+       spin_lock(&release_agent_path_lock);
+       seq_puts(seq, cgrp->root->release_agent_path);
+       spin_unlock(&release_agent_path_lock);
+       seq_putc(seq, '\n');
+       return 0;
+}
+
+static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
+{
+       seq_puts(seq, "0\n");
+       return 0;
+}
+
+static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
+{
+       struct cgroup_subsys *ss;
+       bool printed = false;
+       int ssid;
+
+       do_each_subsys_mask(ss, ssid, ss_mask) {
+               if (printed)
+                       seq_putc(seq, ' ');
+               seq_printf(seq, "%s", ss->name);
+               printed = true;
+       } while_each_subsys_mask();
+       if (printed)
+               seq_putc(seq, '\n');
+}
+
+/* show controllers which are enabled from the parent */
+static int cgroup_controllers_show(struct seq_file *seq, void *v)
+{
+       struct cgroup *cgrp = seq_css(seq)->cgroup;
+
+       cgroup_print_ss_mask(seq, cgroup_control(cgrp));
+       return 0;
+}
+
+/* show controllers which are enabled for a given cgroup's children */
+static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
+{
+       struct cgroup *cgrp = seq_css(seq)->cgroup;
+
+       cgroup_print_ss_mask(seq, cgrp->subtree_control);
+       return 0;
+}
+
+/**
+ * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
+ * @cgrp: root of the subtree to update csses for
+ *
+ * @cgrp's control masks have changed and its subtree's css associations
+ * need to be updated accordingly.  This function looks up all css_sets
+ * which are attached to the subtree, creates the matching updated css_sets
+ * and migrates the tasks to the new ones.
+ */
+static int cgroup_update_dfl_csses(struct cgroup *cgrp)
+{
+       LIST_HEAD(preloaded_csets);
+       struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
+       struct cgroup_subsys_state *d_css;
+       struct cgroup *dsct;
+       struct css_set *src_cset;
+       int ret;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       percpu_down_write(&cgroup_threadgroup_rwsem);
+
+       /* look up all csses currently attached to @cgrp's subtree */
+       spin_lock_irq(&css_set_lock);
+       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
+               struct cgrp_cset_link *link;
+
+               list_for_each_entry(link, &dsct->cset_links, cset_link)
+                       cgroup_migrate_add_src(link->cset, dsct,
+                                              &preloaded_csets);
+       }
+       spin_unlock_irq(&css_set_lock);
+
+       /* NULL dst indicates self on default hierarchy */
+       ret = cgroup_migrate_prepare_dst(&preloaded_csets);
+       if (ret)
+               goto out_finish;
+
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
+               struct task_struct *task, *ntask;
+
+               /* src_csets precede dst_csets, break on the first dst_cset */
+               if (!src_cset->mg_src_cgrp)
+                       break;
+
+               /* all tasks in src_csets need to be migrated */
+               list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
+                       cgroup_taskset_add(task, &tset);
+       }
+       spin_unlock_irq(&css_set_lock);
+
+       ret = cgroup_taskset_migrate(&tset, cgrp->root);
+out_finish:
+       cgroup_migrate_finish(&preloaded_csets);
+       percpu_up_write(&cgroup_threadgroup_rwsem);
+       return ret;
+}
+
+/**
+ * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
+ * @cgrp: root of the target subtree
+ *
+ * Because css offlining is asynchronous, userland may try to re-enable a
+ * controller while the previous css is still around.  This function grabs
+ * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
+ */
+static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
+       __acquires(&cgroup_mutex)
+{
+       struct cgroup *dsct;
+       struct cgroup_subsys_state *d_css;
+       struct cgroup_subsys *ss;
+       int ssid;
+
+restart:
+       mutex_lock(&cgroup_mutex);
+
+       cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
+               for_each_subsys(ss, ssid) {
+                       struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
+                       DEFINE_WAIT(wait);
+
+                       if (!css || !percpu_ref_is_dying(&css->refcnt))
+                               continue;
+
+                       cgroup_get(dsct);
+                       prepare_to_wait(&dsct->offline_waitq, &wait,
+                                       TASK_UNINTERRUPTIBLE);
+
+                       mutex_unlock(&cgroup_mutex);
+                       schedule();
+                       finish_wait(&dsct->offline_waitq, &wait);
+
+                       cgroup_put(dsct);
+                       goto restart;
+               }
+       }
+}
+
+/**
+ * cgroup_save_control - save control masks of a subtree
+ * @cgrp: root of the target subtree
+ *
+ * Save ->subtree_control and ->subtree_ss_mask to the respective old_
+ * prefixed fields for @cgrp's subtree including @cgrp itself.
+ */
+static void cgroup_save_control(struct cgroup *cgrp)
+{
+       struct cgroup *dsct;
+       struct cgroup_subsys_state *d_css;
+
+       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
+               dsct->old_subtree_control = dsct->subtree_control;
+               dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
+       }
+}
+
+/**
+ * cgroup_propagate_control - refresh control masks of a subtree
+ * @cgrp: root of the target subtree
+ *
+ * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
+ * ->subtree_control and propagate controller availability through the
+ * subtree so that descendants don't have unavailable controllers enabled.
+ */
+static void cgroup_propagate_control(struct cgroup *cgrp)
+{
+       struct cgroup *dsct;
+       struct cgroup_subsys_state *d_css;
+
+       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
+               dsct->subtree_control &= cgroup_control(dsct);
+               dsct->subtree_ss_mask =
+                       cgroup_calc_subtree_ss_mask(dsct->subtree_control,
+                                                   cgroup_ss_mask(dsct));
+       }
+}
+
+/**
+ * cgroup_restore_control - restore control masks of a subtree
+ * @cgrp: root of the target subtree
+ *
+ * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
+ * prefixed fields for @cgrp's subtree including @cgrp itself.
+ */
+static void cgroup_restore_control(struct cgroup *cgrp)
+{
+       struct cgroup *dsct;
+       struct cgroup_subsys_state *d_css;
+
+       cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
+               dsct->subtree_control = dsct->old_subtree_control;
+               dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
+       }
+}
+
+static bool css_visible(struct cgroup_subsys_state *css)
+{
+       struct cgroup_subsys *ss = css->ss;
+       struct cgroup *cgrp = css->cgroup;
+
+       if (cgroup_control(cgrp) & (1 << ss->id))
+               return true;
+       if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
+               return false;
+       return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
+}
+
+/**
+ * cgroup_apply_control_enable - enable or show csses according to control
+ * @cgrp: root of the target subtree
+ *
+ * Walk @cgrp's subtree and create new csses or make the existing ones
+ * visible.  A css is created invisible if it's being implicitly enabled
+ * through dependency.  An invisible css is made visible when the userland
+ * explicitly enables it.
+ *
+ * Returns 0 on success, -errno on failure.  On failure, csses which have
+ * been processed already aren't cleaned up.  The caller is responsible for
+ * cleaning up with cgroup_apply_control_disble().
+ */
+static int cgroup_apply_control_enable(struct cgroup *cgrp)
+{
+       struct cgroup *dsct;
+       struct cgroup_subsys_state *d_css;
+       struct cgroup_subsys *ss;
+       int ssid, ret;
+
+       cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
+               for_each_subsys(ss, ssid) {
+                       struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
+
+                       WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
+
+                       if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
+                               continue;
+
+                       if (!css) {
+                               css = css_create(dsct, ss);
+                               if (IS_ERR(css))
+                                       return PTR_ERR(css);
+                       }
+
+                       if (css_visible(css)) {
+                               ret = css_populate_dir(css);
+                               if (ret)
+                                       return ret;
+                       }
+               }
+       }
+
+       return 0;
+}
+
+/**
+ * cgroup_apply_control_disable - kill or hide csses according to control
+ * @cgrp: root of the target subtree
+ *
+ * Walk @cgrp's subtree and kill and hide csses so that they match
+ * cgroup_ss_mask() and cgroup_visible_mask().
+ *
+ * A css is hidden when the userland requests it to be disabled while other
+ * subsystems are still depending on it.  The css must not actively control
+ * resources and be in the vanilla state if it's made visible again later.
+ * Controllers which may be depended upon should provide ->css_reset() for
+ * this purpose.
+ */
+static void cgroup_apply_control_disable(struct cgroup *cgrp)
+{
+       struct cgroup *dsct;
+       struct cgroup_subsys_state *d_css;
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
+               for_each_subsys(ss, ssid) {
+                       struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
+
+                       WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
+
+                       if (!css)
+                               continue;
+
+                       if (css->parent &&
+                           !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
+                               kill_css(css);
+                       } else if (!css_visible(css)) {
+                               css_clear_dir(css);
+                               if (ss->css_reset)
+                                       ss->css_reset(css);
+                       }
+               }
+       }
+}
+
+/**
+ * cgroup_apply_control - apply control mask updates to the subtree
+ * @cgrp: root of the target subtree
+ *
+ * subsystems can be enabled and disabled in a subtree using the following
+ * steps.
+ *
+ * 1. Call cgroup_save_control() to stash the current state.
+ * 2. Update ->subtree_control masks in the subtree as desired.
+ * 3. Call cgroup_apply_control() to apply the changes.
+ * 4. Optionally perform other related operations.
+ * 5. Call cgroup_finalize_control() to finish up.
+ *
+ * This function implements step 3 and propagates the mask changes
+ * throughout @cgrp's subtree, updates csses accordingly and perform
+ * process migrations.
+ */
+static int cgroup_apply_control(struct cgroup *cgrp)
+{
+       int ret;
+
+       cgroup_propagate_control(cgrp);
+
+       ret = cgroup_apply_control_enable(cgrp);
+       if (ret)
+               return ret;
+
+       /*
+        * At this point, cgroup_e_css() results reflect the new csses
+        * making the following cgroup_update_dfl_csses() properly update
+        * css associations of all tasks in the subtree.
+        */
+       ret = cgroup_update_dfl_csses(cgrp);
+       if (ret)
+               return ret;
+
+       return 0;
+}
+
+/**
+ * cgroup_finalize_control - finalize control mask update
+ * @cgrp: root of the target subtree
+ * @ret: the result of the update
+ *
+ * Finalize control mask update.  See cgroup_apply_control() for more info.
+ */
+static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
+{
+       if (ret) {
+               cgroup_restore_control(cgrp);
+               cgroup_propagate_control(cgrp);
+       }
+
+       cgroup_apply_control_disable(cgrp);
+}
+
+/* change the enabled child controllers for a cgroup in the default hierarchy */
+static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
+                                           char *buf, size_t nbytes,
+                                           loff_t off)
+{
+       u16 enable = 0, disable = 0;
+       struct cgroup *cgrp, *child;
+       struct cgroup_subsys *ss;
+       char *tok;
+       int ssid, ret;
+
+       /*
+        * Parse input - space separated list of subsystem names prefixed
+        * with either + or -.
+        */
+       buf = strstrip(buf);
+       while ((tok = strsep(&buf, " "))) {
+               if (tok[0] == '\0')
+                       continue;
+               do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
+                       if (!cgroup_ssid_enabled(ssid) ||
+                           strcmp(tok + 1, ss->name))
+                               continue;
+
+                       if (*tok == '+') {
+                               enable |= 1 << ssid;
+                               disable &= ~(1 << ssid);
+                       } else if (*tok == '-') {
+                               disable |= 1 << ssid;
+                               enable &= ~(1 << ssid);
+                       } else {
+                               return -EINVAL;
+                       }
+                       break;
+               } while_each_subsys_mask();
+               if (ssid == CGROUP_SUBSYS_COUNT)
+                       return -EINVAL;
+       }
+
+       cgrp = cgroup_kn_lock_live(of->kn, true);
+       if (!cgrp)
+               return -ENODEV;
+
+       for_each_subsys(ss, ssid) {
+               if (enable & (1 << ssid)) {
+                       if (cgrp->subtree_control & (1 << ssid)) {
+                               enable &= ~(1 << ssid);
+                               continue;
+                       }
+
+                       if (!(cgroup_control(cgrp) & (1 << ssid))) {
+                               ret = -ENOENT;
+                               goto out_unlock;
+                       }
+               } else if (disable & (1 << ssid)) {
+                       if (!(cgrp->subtree_control & (1 << ssid))) {
+                               disable &= ~(1 << ssid);
+                               continue;
+                       }
+
+                       /* a child has it enabled? */
+                       cgroup_for_each_live_child(child, cgrp) {
+                               if (child->subtree_control & (1 << ssid)) {
+                                       ret = -EBUSY;
+                                       goto out_unlock;
+                               }
+                       }
+               }
+       }
+
+       if (!enable && !disable) {
+               ret = 0;
+               goto out_unlock;
+       }
+
+       /*
+        * Except for the root, subtree_control must be zero for a cgroup
+        * with tasks so that child cgroups don't compete against tasks.
+        */
+       if (enable && cgroup_parent(cgrp)) {
+               struct cgrp_cset_link *link;
+
+               /*
+                * Because namespaces pin csets too, @cgrp->cset_links
+                * might not be empty even when @cgrp is empty.  Walk and
+                * verify each cset.
+                */
+               spin_lock_irq(&css_set_lock);
+
+               ret = 0;
+               list_for_each_entry(link, &cgrp->cset_links, cset_link) {
+                       if (css_set_populated(link->cset)) {
+                               ret = -EBUSY;
+                               break;
+                       }
+               }
+
+               spin_unlock_irq(&css_set_lock);
+
+               if (ret)
+                       goto out_unlock;
+       }
+
+       /* save and update control masks and prepare csses */
+       cgroup_save_control(cgrp);
+
+       cgrp->subtree_control |= enable;
+       cgrp->subtree_control &= ~disable;
+
+       ret = cgroup_apply_control(cgrp);
+
+       cgroup_finalize_control(cgrp, ret);
+
+       kernfs_activate(cgrp->kn);
+       ret = 0;
+out_unlock:
+       cgroup_kn_unlock(of->kn);
+       return ret ?: nbytes;
+}
+
+static int cgroup_events_show(struct seq_file *seq, void *v)
+{
+       seq_printf(seq, "populated %d\n",
+                  cgroup_is_populated(seq_css(seq)->cgroup));
+       return 0;
+}
+
+static int cgroup_file_open(struct kernfs_open_file *of)
+{
+       struct cftype *cft = of->kn->priv;
+
+       if (cft->open)
+               return cft->open(of);
+       return 0;
+}
+
+static void cgroup_file_release(struct kernfs_open_file *of)
+{
+       struct cftype *cft = of->kn->priv;
+
+       if (cft->release)
+               cft->release(of);
+}
+
+static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
+                                size_t nbytes, loff_t off)
+{
+       struct cgroup *cgrp = of->kn->parent->priv;
+       struct cftype *cft = of->kn->priv;
+       struct cgroup_subsys_state *css;
+       int ret;
+
+       if (cft->write)
+               return cft->write(of, buf, nbytes, off);
+
+       /*
+        * kernfs guarantees that a file isn't deleted with operations in
+        * flight, which means that the matching css is and stays alive and
+        * doesn't need to be pinned.  The RCU locking is not necessary
+        * either.  It's just for the convenience of using cgroup_css().
+        */
+       rcu_read_lock();
+       css = cgroup_css(cgrp, cft->ss);
+       rcu_read_unlock();
+
+       if (cft->write_u64) {
+               unsigned long long v;
+               ret = kstrtoull(buf, 0, &v);
+               if (!ret)
+                       ret = cft->write_u64(css, cft, v);
+       } else if (cft->write_s64) {
+               long long v;
+               ret = kstrtoll(buf, 0, &v);
+               if (!ret)
+                       ret = cft->write_s64(css, cft, v);
+       } else {
+               ret = -EINVAL;
+       }
+
+       return ret ?: nbytes;
+}
+
+static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
+{
+       return seq_cft(seq)->seq_start(seq, ppos);
+}
+
+static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
+{
+       return seq_cft(seq)->seq_next(seq, v, ppos);
+}
+
+static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
+{
+       if (seq_cft(seq)->seq_stop)
+               seq_cft(seq)->seq_stop(seq, v);
+}
+
+static int cgroup_seqfile_show(struct seq_file *m, void *arg)
+{
+       struct cftype *cft = seq_cft(m);
+       struct cgroup_subsys_state *css = seq_css(m);
+
+       if (cft->seq_show)
+               return cft->seq_show(m, arg);
+
+       if (cft->read_u64)
+               seq_printf(m, "%llu\n", cft->read_u64(css, cft));
+       else if (cft->read_s64)
+               seq_printf(m, "%lld\n", cft->read_s64(css, cft));
+       else
+               return -EINVAL;
+       return 0;
+}
+
+static struct kernfs_ops cgroup_kf_single_ops = {
+       .atomic_write_len       = PAGE_SIZE,
+       .open                   = cgroup_file_open,
+       .release                = cgroup_file_release,
+       .write                  = cgroup_file_write,
+       .seq_show               = cgroup_seqfile_show,
+};
+
+static struct kernfs_ops cgroup_kf_ops = {
+       .atomic_write_len       = PAGE_SIZE,
+       .open                   = cgroup_file_open,
+       .release                = cgroup_file_release,
+       .write                  = cgroup_file_write,
+       .seq_start              = cgroup_seqfile_start,
+       .seq_next               = cgroup_seqfile_next,
+       .seq_stop               = cgroup_seqfile_stop,
+       .seq_show               = cgroup_seqfile_show,
+};
+
+/*
+ * cgroup_rename - Only allow simple rename of directories in place.
+ */
+static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
+                        const char *new_name_str)
+{
+       struct cgroup *cgrp = kn->priv;
+       int ret;
+
+       if (kernfs_type(kn) != KERNFS_DIR)
+               return -ENOTDIR;
+       if (kn->parent != new_parent)
+               return -EIO;
+
+       /*
+        * This isn't a proper migration and its usefulness is very
+        * limited.  Disallow on the default hierarchy.
+        */
+       if (cgroup_on_dfl(cgrp))
+               return -EPERM;
+
+       /*
+        * We're gonna grab cgroup_mutex which nests outside kernfs
+        * active_ref.  kernfs_rename() doesn't require active_ref
+        * protection.  Break them before grabbing cgroup_mutex.
+        */
+       kernfs_break_active_protection(new_parent);
+       kernfs_break_active_protection(kn);
+
+       mutex_lock(&cgroup_mutex);
+
+       ret = kernfs_rename(kn, new_parent, new_name_str);
+       if (!ret)
+               trace_cgroup_rename(cgrp);
+
+       mutex_unlock(&cgroup_mutex);
+
+       kernfs_unbreak_active_protection(kn);
+       kernfs_unbreak_active_protection(new_parent);
+       return ret;
+}
+
+/* set uid and gid of cgroup dirs and files to that of the creator */
+static int cgroup_kn_set_ugid(struct kernfs_node *kn)
+{
+       struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
+                              .ia_uid = current_fsuid(),
+                              .ia_gid = current_fsgid(), };
+
+       if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
+           gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
+               return 0;
+
+       return kernfs_setattr(kn, &iattr);
+}
+
+static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
+                          struct cftype *cft)
+{
+       char name[CGROUP_FILE_NAME_MAX];
+       struct kernfs_node *kn;
+       struct lock_class_key *key = NULL;
+       int ret;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+       key = &cft->lockdep_key;
+#endif
+       kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
+                                 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
+                                 NULL, key);
+       if (IS_ERR(kn))
+               return PTR_ERR(kn);
+
+       ret = cgroup_kn_set_ugid(kn);
+       if (ret) {
+               kernfs_remove(kn);
+               return ret;
+       }
+
+       if (cft->file_offset) {
+               struct cgroup_file *cfile = (void *)css + cft->file_offset;
+
+               spin_lock_irq(&cgroup_file_kn_lock);
+               cfile->kn = kn;
+               spin_unlock_irq(&cgroup_file_kn_lock);
+       }
+
+       return 0;
+}
+
+/**
+ * cgroup_addrm_files - add or remove files to a cgroup directory
+ * @css: the target css
+ * @cgrp: the target cgroup (usually css->cgroup)
+ * @cfts: array of cftypes to be added
+ * @is_add: whether to add or remove
+ *
+ * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
+ * For removals, this function never fails.
+ */
+static int cgroup_addrm_files(struct cgroup_subsys_state *css,
+                             struct cgroup *cgrp, struct cftype cfts[],
+                             bool is_add)
+{
+       struct cftype *cft, *cft_end = NULL;
+       int ret = 0;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+restart:
+       for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
+               /* does cft->flags tell us to skip this file on @cgrp? */
+               if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
+                       continue;
+               if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
+                       continue;
+               if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
+                       continue;
+               if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
+                       continue;
+
+               if (is_add) {
+                       ret = cgroup_add_file(css, cgrp, cft);
+                       if (ret) {
+                               pr_warn("%s: failed to add %s, err=%d\n",
+                                       __func__, cft->name, ret);
+                               cft_end = cft;
+                               is_add = false;
+                               goto restart;
+                       }
+               } else {
+                       cgroup_rm_file(cgrp, cft);
+               }
+       }
+       return ret;
+}
+
+static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
+{
+       LIST_HEAD(pending);
+       struct cgroup_subsys *ss = cfts[0].ss;
+       struct cgroup *root = &ss->root->cgrp;
+       struct cgroup_subsys_state *css;
+       int ret = 0;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       /* add/rm files for all cgroups created before */
+       css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
+               struct cgroup *cgrp = css->cgroup;
+
+               if (!(css->flags & CSS_VISIBLE))
+                       continue;
+
+               ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
+               if (ret)
+                       break;
+       }
+
+       if (is_add && !ret)
+               kernfs_activate(root->kn);
+       return ret;
+}
+
+static void cgroup_exit_cftypes(struct cftype *cfts)
+{
+       struct cftype *cft;
+
+       for (cft = cfts; cft->name[0] != '\0'; cft++) {
+               /* free copy for custom atomic_write_len, see init_cftypes() */
+               if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
+                       kfree(cft->kf_ops);
+               cft->kf_ops = NULL;
+               cft->ss = NULL;
+
+               /* revert flags set by cgroup core while adding @cfts */
+               cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
+       }
+}
+
+static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
+{
+       struct cftype *cft;
+
+       for (cft = cfts; cft->name[0] != '\0'; cft++) {
+               struct kernfs_ops *kf_ops;
+
+               WARN_ON(cft->ss || cft->kf_ops);
+
+               if (cft->seq_start)
+                       kf_ops = &cgroup_kf_ops;
+               else
+                       kf_ops = &cgroup_kf_single_ops;
+
+               /*
+                * Ugh... if @cft wants a custom max_write_len, we need to
+                * make a copy of kf_ops to set its atomic_write_len.
+                */
+               if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
+                       kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
+                       if (!kf_ops) {
+                               cgroup_exit_cftypes(cfts);
+                               return -ENOMEM;
+                       }
+                       kf_ops->atomic_write_len = cft->max_write_len;
+               }
+
+               cft->kf_ops = kf_ops;
+               cft->ss = ss;
+       }
+
+       return 0;
+}
+
+static int cgroup_rm_cftypes_locked(struct cftype *cfts)
+{
+       lockdep_assert_held(&cgroup_mutex);
+
+       if (!cfts || !cfts[0].ss)
+               return -ENOENT;
+
+       list_del(&cfts->node);
+       cgroup_apply_cftypes(cfts, false);
+       cgroup_exit_cftypes(cfts);
+       return 0;
+}
+
+/**
+ * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
+ * @cfts: zero-length name terminated array of cftypes
+ *
+ * Unregister @cfts.  Files described by @cfts are removed from all
+ * existing cgroups and all future cgroups won't have them either.  This
+ * function can be called anytime whether @cfts' subsys is attached or not.
+ *
+ * Returns 0 on successful unregistration, -ENOENT if @cfts is not
+ * registered.
+ */
+int cgroup_rm_cftypes(struct cftype *cfts)
+{
+       int ret;
+
+       mutex_lock(&cgroup_mutex);
+       ret = cgroup_rm_cftypes_locked(cfts);
+       mutex_unlock(&cgroup_mutex);
+       return ret;
+}
+
+/**
+ * cgroup_add_cftypes - add an array of cftypes to a subsystem
+ * @ss: target cgroup subsystem
+ * @cfts: zero-length name terminated array of cftypes
+ *
+ * Register @cfts to @ss.  Files described by @cfts are created for all
+ * existing cgroups to which @ss is attached and all future cgroups will
+ * have them too.  This function can be called anytime whether @ss is
+ * attached or not.
+ *
+ * Returns 0 on successful registration, -errno on failure.  Note that this
+ * function currently returns 0 as long as @cfts registration is successful
+ * even if some file creation attempts on existing cgroups fail.
+ */
+static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
+{
+       int ret;
+
+       if (!cgroup_ssid_enabled(ss->id))
+               return 0;
+
+       if (!cfts || cfts[0].name[0] == '\0')
+               return 0;
+
+       ret = cgroup_init_cftypes(ss, cfts);
+       if (ret)
+               return ret;
+
+       mutex_lock(&cgroup_mutex);
+
+       list_add_tail(&cfts->node, &ss->cfts);
+       ret = cgroup_apply_cftypes(cfts, true);
+       if (ret)
+               cgroup_rm_cftypes_locked(cfts);
+
+       mutex_unlock(&cgroup_mutex);
+       return ret;
+}
+
+/**
+ * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
+ * @ss: target cgroup subsystem
+ * @cfts: zero-length name terminated array of cftypes
+ *
+ * Similar to cgroup_add_cftypes() but the added files are only used for
+ * the default hierarchy.
+ */
+int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
+{
+       struct cftype *cft;
+
+       for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
+               cft->flags |= __CFTYPE_ONLY_ON_DFL;
+       return cgroup_add_cftypes(ss, cfts);
+}
+
+/**
+ * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
+ * @ss: target cgroup subsystem
+ * @cfts: zero-length name terminated array of cftypes
+ *
+ * Similar to cgroup_add_cftypes() but the added files are only used for
+ * the legacy hierarchies.
+ */
+int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
+{
+       struct cftype *cft;
+
+       for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
+               cft->flags |= __CFTYPE_NOT_ON_DFL;
+       return cgroup_add_cftypes(ss, cfts);
+}
+
+/**
+ * cgroup_file_notify - generate a file modified event for a cgroup_file
+ * @cfile: target cgroup_file
+ *
+ * @cfile must have been obtained by setting cftype->file_offset.
+ */
+void cgroup_file_notify(struct cgroup_file *cfile)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&cgroup_file_kn_lock, flags);
+       if (cfile->kn)
+               kernfs_notify(cfile->kn);
+       spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
+}
+
+/**
+ * cgroup_task_count - count the number of tasks in a cgroup.
+ * @cgrp: the cgroup in question
+ *
+ * Return the number of tasks in the cgroup.  The returned number can be
+ * higher than the actual number of tasks due to css_set references from
+ * namespace roots and temporary usages.
+ */
+static int cgroup_task_count(const struct cgroup *cgrp)
+{
+       int count = 0;
+       struct cgrp_cset_link *link;
+
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry(link, &cgrp->cset_links, cset_link)
+               count += atomic_read(&link->cset->refcount);
+       spin_unlock_irq(&css_set_lock);
+       return count;
+}
+
+/**
+ * css_next_child - find the next child of a given css
+ * @pos: the current position (%NULL to initiate traversal)
+ * @parent: css whose children to walk
+ *
+ * This function returns the next child of @parent and should be called
+ * under either cgroup_mutex or RCU read lock.  The only requirement is
+ * that @parent and @pos are accessible.  The next sibling is guaranteed to
+ * be returned regardless of their states.
+ *
+ * If a subsystem synchronizes ->css_online() and the start of iteration, a
+ * css which finished ->css_online() is guaranteed to be visible in the
+ * future iterations and will stay visible until the last reference is put.
+ * A css which hasn't finished ->css_online() or already finished
+ * ->css_offline() may show up during traversal.  It's each subsystem's
+ * responsibility to synchronize against on/offlining.
+ */
+struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
+                                          struct cgroup_subsys_state *parent)
+{
+       struct cgroup_subsys_state *next;
+
+       cgroup_assert_mutex_or_rcu_locked();
+
+       /*
+        * @pos could already have been unlinked from the sibling list.
+        * Once a cgroup is removed, its ->sibling.next is no longer
+        * updated when its next sibling changes.  CSS_RELEASED is set when
+        * @pos is taken off list, at which time its next pointer is valid,
+        * and, as releases are serialized, the one pointed to by the next
+        * pointer is guaranteed to not have started release yet.  This
+        * implies that if we observe !CSS_RELEASED on @pos in this RCU
+        * critical section, the one pointed to by its next pointer is
+        * guaranteed to not have finished its RCU grace period even if we
+        * have dropped rcu_read_lock() inbetween iterations.
+        *
+        * If @pos has CSS_RELEASED set, its next pointer can't be
+        * dereferenced; however, as each css is given a monotonically
+        * increasing unique serial number and always appended to the
+        * sibling list, the next one can be found by walking the parent's
+        * children until the first css with higher serial number than
+        * @pos's.  While this path can be slower, it happens iff iteration
+        * races against release and the race window is very small.
+        */
+       if (!pos) {
+               next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
+       } else if (likely(!(pos->flags & CSS_RELEASED))) {
+               next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
+       } else {
+               list_for_each_entry_rcu(next, &parent->children, sibling)
+                       if (next->serial_nr > pos->serial_nr)
+                               break;
+       }
+
+       /*
+        * @next, if not pointing to the head, can be dereferenced and is
+        * the next sibling.
+        */
+       if (&next->sibling != &parent->children)
+               return next;
+       return NULL;
+}
+
+/**
+ * css_next_descendant_pre - find the next descendant for pre-order walk
+ * @pos: the current position (%NULL to initiate traversal)
+ * @root: css whose descendants to walk
+ *
+ * To be used by css_for_each_descendant_pre().  Find the next descendant
+ * to visit for pre-order traversal of @root's descendants.  @root is
+ * included in the iteration and the first node to be visited.
+ *
+ * While this function requires cgroup_mutex or RCU read locking, it
+ * doesn't require the whole traversal to be contained in a single critical
+ * section.  This function will return the correct next descendant as long
+ * as both @pos and @root are accessible and @pos is a descendant of @root.
+ *
+ * If a subsystem synchronizes ->css_online() and the start of iteration, a
+ * css which finished ->css_online() is guaranteed to be visible in the
+ * future iterations and will stay visible until the last reference is put.
+ * A css which hasn't finished ->css_online() or already finished
+ * ->css_offline() may show up during traversal.  It's each subsystem's
+ * responsibility to synchronize against on/offlining.
+ */
+struct cgroup_subsys_state *
+css_next_descendant_pre(struct cgroup_subsys_state *pos,
+                       struct cgroup_subsys_state *root)
+{
+       struct cgroup_subsys_state *next;
+
+       cgroup_assert_mutex_or_rcu_locked();
+
+       /* if first iteration, visit @root */
+       if (!pos)
+               return root;
+
+       /* visit the first child if exists */
+       next = css_next_child(NULL, pos);
+       if (next)
+               return next;
+
+       /* no child, visit my or the closest ancestor's next sibling */
+       while (pos != root) {
+               next = css_next_child(pos, pos->parent);
+               if (next)
+                       return next;
+               pos = pos->parent;
+       }
+
+       return NULL;
+}
+
+/**
+ * css_rightmost_descendant - return the rightmost descendant of a css
+ * @pos: css of interest
+ *
+ * Return the rightmost descendant of @pos.  If there's no descendant, @pos
+ * is returned.  This can be used during pre-order traversal to skip
+ * subtree of @pos.
+ *
+ * While this function requires cgroup_mutex or RCU read locking, it
+ * doesn't require the whole traversal to be contained in a single critical
+ * section.  This function will return the correct rightmost descendant as
+ * long as @pos is accessible.
+ */
+struct cgroup_subsys_state *
+css_rightmost_descendant(struct cgroup_subsys_state *pos)
+{
+       struct cgroup_subsys_state *last, *tmp;
+
+       cgroup_assert_mutex_or_rcu_locked();
+
+       do {
+               last = pos;
+               /* ->prev isn't RCU safe, walk ->next till the end */
+               pos = NULL;
+               css_for_each_child(tmp, last)
+                       pos = tmp;
+       } while (pos);
+
+       return last;
+}
+
+static struct cgroup_subsys_state *
+css_leftmost_descendant(struct cgroup_subsys_state *pos)
+{
+       struct cgroup_subsys_state *last;
+
+       do {
+               last = pos;
+               pos = css_next_child(NULL, pos);
+       } while (pos);
+
+       return last;
+}
+
+/**
+ * css_next_descendant_post - find the next descendant for post-order walk
+ * @pos: the current position (%NULL to initiate traversal)
+ * @root: css whose descendants to walk
+ *
+ * To be used by css_for_each_descendant_post().  Find the next descendant
+ * to visit for post-order traversal of @root's descendants.  @root is
+ * included in the iteration and the last node to be visited.
+ *
+ * While this function requires cgroup_mutex or RCU read locking, it
+ * doesn't require the whole traversal to be contained in a single critical
+ * section.  This function will return the correct next descendant as long
+ * as both @pos and @cgroup are accessible and @pos is a descendant of
+ * @cgroup.
+ *
+ * If a subsystem synchronizes ->css_online() and the start of iteration, a
+ * css which finished ->css_online() is guaranteed to be visible in the
+ * future iterations and will stay visible until the last reference is put.
+ * A css which hasn't finished ->css_online() or already finished
+ * ->css_offline() may show up during traversal.  It's each subsystem's
+ * responsibility to synchronize against on/offlining.
+ */
+struct cgroup_subsys_state *
+css_next_descendant_post(struct cgroup_subsys_state *pos,
+                        struct cgroup_subsys_state *root)
+{
+       struct cgroup_subsys_state *next;
+
+       cgroup_assert_mutex_or_rcu_locked();
+
+       /* if first iteration, visit leftmost descendant which may be @root */
+       if (!pos)
+               return css_leftmost_descendant(root);
+
+       /* if we visited @root, we're done */
+       if (pos == root)
+               return NULL;
+
+       /* if there's an unvisited sibling, visit its leftmost descendant */
+       next = css_next_child(pos, pos->parent);
+       if (next)
+               return css_leftmost_descendant(next);
+
+       /* no sibling left, visit parent */
+       return pos->parent;
+}
+
+/**
+ * css_has_online_children - does a css have online children
+ * @css: the target css
+ *
+ * Returns %true if @css has any online children; otherwise, %false.  This
+ * function can be called from any context but the caller is responsible
+ * for synchronizing against on/offlining as necessary.
+ */
+bool css_has_online_children(struct cgroup_subsys_state *css)
+{
+       struct cgroup_subsys_state *child;
+       bool ret = false;
+
+       rcu_read_lock();
+       css_for_each_child(child, css) {
+               if (child->flags & CSS_ONLINE) {
+                       ret = true;
+                       break;
+               }
+       }
+       rcu_read_unlock();
+       return ret;
+}
+
+/**
+ * css_task_iter_advance_css_set - advance a task itererator to the next css_set
+ * @it: the iterator to advance
+ *
+ * Advance @it to the next css_set to walk.
+ */
+static void css_task_iter_advance_css_set(struct css_task_iter *it)
+{
+       struct list_head *l = it->cset_pos;
+       struct cgrp_cset_link *link;
+       struct css_set *cset;
+
+       lockdep_assert_held(&css_set_lock);
+
+       /* Advance to the next non-empty css_set */
+       do {
+               l = l->next;
+               if (l == it->cset_head) {
+                       it->cset_pos = NULL;
+                       it->task_pos = NULL;
+                       return;
+               }
+
+               if (it->ss) {
+                       cset = container_of(l, struct css_set,
+                                           e_cset_node[it->ss->id]);
+               } else {
+                       link = list_entry(l, struct cgrp_cset_link, cset_link);
+                       cset = link->cset;
+               }
+       } while (!css_set_populated(cset));
+
+       it->cset_pos = l;
+
+       if (!list_empty(&cset->tasks))
+               it->task_pos = cset->tasks.next;
+       else
+               it->task_pos = cset->mg_tasks.next;
+
+       it->tasks_head = &cset->tasks;
+       it->mg_tasks_head = &cset->mg_tasks;
+
+       /*
+        * We don't keep css_sets locked across iteration steps and thus
+        * need to take steps to ensure that iteration can be resumed after
+        * the lock is re-acquired.  Iteration is performed at two levels -
+        * css_sets and tasks in them.
+        *
+        * Once created, a css_set never leaves its cgroup lists, so a
+        * pinned css_set is guaranteed to stay put and we can resume
+        * iteration afterwards.
+        *
+        * Tasks may leave @cset across iteration steps.  This is resolved
+        * by registering each iterator with the css_set currently being
+        * walked and making css_set_move_task() advance iterators whose
+        * next task is leaving.
+        */
+       if (it->cur_cset) {
+               list_del(&it->iters_node);
+               put_css_set_locked(it->cur_cset);
+       }
+       get_css_set(cset);
+       it->cur_cset = cset;
+       list_add(&it->iters_node, &cset->task_iters);
+}
+
+static void css_task_iter_advance(struct css_task_iter *it)
+{
+       struct list_head *l = it->task_pos;
+
+       lockdep_assert_held(&css_set_lock);
+       WARN_ON_ONCE(!l);
+
+       /*
+        * Advance iterator to find next entry.  cset->tasks is consumed
+        * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
+        * next cset.
+        */
+       l = l->next;
+
+       if (l == it->tasks_head)
+               l = it->mg_tasks_head->next;
+
+       if (l == it->mg_tasks_head)
+               css_task_iter_advance_css_set(it);
+       else
+               it->task_pos = l;
+}
+
+/**
+ * css_task_iter_start - initiate task iteration
+ * @css: the css to walk tasks of
+ * @it: the task iterator to use
+ *
+ * Initiate iteration through the tasks of @css.  The caller can call
+ * css_task_iter_next() to walk through the tasks until the function
+ * returns NULL.  On completion of iteration, css_task_iter_end() must be
+ * called.
+ */
+void css_task_iter_start(struct cgroup_subsys_state *css,
+                        struct css_task_iter *it)
+{
+       /* no one should try to iterate before mounting cgroups */
+       WARN_ON_ONCE(!use_task_css_set_links);
+
+       memset(it, 0, sizeof(*it));
+
+       spin_lock_irq(&css_set_lock);
+
+       it->ss = css->ss;
+
+       if (it->ss)
+               it->cset_pos = &css->cgroup->e_csets[css->ss->id];
+       else
+               it->cset_pos = &css->cgroup->cset_links;
+
+       it->cset_head = it->cset_pos;
+
+       css_task_iter_advance_css_set(it);
+
+       spin_unlock_irq(&css_set_lock);
+}
+
+/**
+ * css_task_iter_next - return the next task for the iterator
+ * @it: the task iterator being iterated
+ *
+ * The "next" function for task iteration.  @it should have been
+ * initialized via css_task_iter_start().  Returns NULL when the iteration
+ * reaches the end.
+ */
+struct task_struct *css_task_iter_next(struct css_task_iter *it)
+{
+       if (it->cur_task) {
+               put_task_struct(it->cur_task);
+               it->cur_task = NULL;
+       }
+
+       spin_lock_irq(&css_set_lock);
+
+       if (it->task_pos) {
+               it->cur_task = list_entry(it->task_pos, struct task_struct,
+                                         cg_list);
+               get_task_struct(it->cur_task);
+               css_task_iter_advance(it);
+       }
+
+       spin_unlock_irq(&css_set_lock);
+
+       return it->cur_task;
+}
+
+/**
+ * css_task_iter_end - finish task iteration
+ * @it: the task iterator to finish
+ *
+ * Finish task iteration started by css_task_iter_start().
+ */
+void css_task_iter_end(struct css_task_iter *it)
+{
+       if (it->cur_cset) {
+               spin_lock_irq(&css_set_lock);
+               list_del(&it->iters_node);
+               put_css_set_locked(it->cur_cset);
+               spin_unlock_irq(&css_set_lock);
+       }
+
+       if (it->cur_task)
+               put_task_struct(it->cur_task);
+}
+
+/**
+ * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
+ * @to: cgroup to which the tasks will be moved
+ * @from: cgroup in which the tasks currently reside
+ *
+ * Locking rules between cgroup_post_fork() and the migration path
+ * guarantee that, if a task is forking while being migrated, the new child
+ * is guaranteed to be either visible in the source cgroup after the
+ * parent's migration is complete or put into the target cgroup.  No task
+ * can slip out of migration through forking.
+ */
+int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
+{
+       LIST_HEAD(preloaded_csets);
+       struct cgrp_cset_link *link;
+       struct css_task_iter it;
+       struct task_struct *task;
+       int ret;
+
+       if (cgroup_on_dfl(to))
+               return -EINVAL;
+
+       if (!cgroup_may_migrate_to(to))
+               return -EBUSY;
+
+       mutex_lock(&cgroup_mutex);
+
+       percpu_down_write(&cgroup_threadgroup_rwsem);
+
+       /* all tasks in @from are being moved, all csets are source */
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry(link, &from->cset_links, cset_link)
+               cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
+       spin_unlock_irq(&css_set_lock);
+
+       ret = cgroup_migrate_prepare_dst(&preloaded_csets);
+       if (ret)
+               goto out_err;
+
+       /*
+        * Migrate tasks one-by-one until @from is empty.  This fails iff
+        * ->can_attach() fails.
+        */
+       do {
+               css_task_iter_start(&from->self, &it);
+               task = css_task_iter_next(&it);
+               if (task)
+                       get_task_struct(task);
+               css_task_iter_end(&it);
+
+               if (task) {
+                       ret = cgroup_migrate(task, false, to->root);
+                       if (!ret)
+                               trace_cgroup_transfer_tasks(to, task, false);
+                       put_task_struct(task);
+               }
+       } while (task && !ret);
+out_err:
+       cgroup_migrate_finish(&preloaded_csets);
+       percpu_up_write(&cgroup_threadgroup_rwsem);
+       mutex_unlock(&cgroup_mutex);
+       return ret;
+}
+
+static void cgroup_procs_release(struct kernfs_open_file *of)
+{
+       if (of->priv) {
+               css_task_iter_end(of->priv);
+               kfree(of->priv);
+       }
+}
+
+static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
+{
+       struct kernfs_open_file *of = s->private;
+       struct css_task_iter *it = of->priv;
+       struct task_struct *task;
+
+       do {
+               task = css_task_iter_next(it);
+       } while (task && !thread_group_leader(task));
+
+       return task;
+}
+
+static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
+{
+       struct kernfs_open_file *of = s->private;
+       struct cgroup *cgrp = seq_css(s)->cgroup;
+       struct css_task_iter *it = of->priv;
+
+       /*
+        * When a seq_file is seeked, it's always traversed sequentially
+        * from position 0, so we can simply keep iterating on !0 *pos.
+        */
+       if (!it) {
+               if (WARN_ON_ONCE((*pos)++))
+                       return ERR_PTR(-EINVAL);
+
+               it = kzalloc(sizeof(*it), GFP_KERNEL);
+               if (!it)
+                       return ERR_PTR(-ENOMEM);
+               of->priv = it;
+               css_task_iter_start(&cgrp->self, it);
+       } else if (!(*pos)++) {
+               css_task_iter_end(it);
+               css_task_iter_start(&cgrp->self, it);
+       }
+
+       return cgroup_procs_next(s, NULL, NULL);
+}
+
+static int cgroup_procs_show(struct seq_file *s, void *v)
+{
+       seq_printf(s, "%d\n", task_tgid_vnr(v));
+       return 0;
+}
+
+/*
+ * Stuff for reading the 'tasks'/'procs' files.
+ *
+ * Reading this file can return large amounts of data if a cgroup has
+ * *lots* of attached tasks. So it may need several calls to read(),
+ * but we cannot guarantee that the information we produce is correct
+ * unless we produce it entirely atomically.
+ *
+ */
+
+/* which pidlist file are we talking about? */
+enum cgroup_filetype {
+       CGROUP_FILE_PROCS,
+       CGROUP_FILE_TASKS,
+};
+
+/*
+ * A pidlist is a list of pids that virtually represents the contents of one
+ * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
+ * a pair (one each for procs, tasks) for each pid namespace that's relevant
+ * to the cgroup.
+ */
+struct cgroup_pidlist {
+       /*
+        * used to find which pidlist is wanted. doesn't change as long as
+        * this particular list stays in the list.
+       */
+       struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
+       /* array of xids */
+       pid_t *list;
+       /* how many elements the above list has */
+       int length;
+       /* each of these stored in a list by its cgroup */
+       struct list_head links;
+       /* pointer to the cgroup we belong to, for list removal purposes */
+       struct cgroup *owner;
+       /* for delayed destruction */
+       struct delayed_work destroy_dwork;
+};
+
+/*
+ * The following two functions "fix" the issue where there are more pids
+ * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
+ * TODO: replace with a kernel-wide solution to this problem
+ */
+#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
+static void *pidlist_allocate(int count)
+{
+       if (PIDLIST_TOO_LARGE(count))
+               return vmalloc(count * sizeof(pid_t));
+       else
+               return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
+}
+
+static void pidlist_free(void *p)
+{
+       kvfree(p);
+}
+
+/*
+ * Used to destroy all pidlists lingering waiting for destroy timer.  None
+ * should be left afterwards.
+ */
+static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
+{
+       struct cgroup_pidlist *l, *tmp_l;
+
+       mutex_lock(&cgrp->pidlist_mutex);
+       list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
+               mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
+       mutex_unlock(&cgrp->pidlist_mutex);
+
+       flush_workqueue(cgroup_pidlist_destroy_wq);
+       BUG_ON(!list_empty(&cgrp->pidlists));
+}
+
+static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
+{
+       struct delayed_work *dwork = to_delayed_work(work);
+       struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
+                                               destroy_dwork);
+       struct cgroup_pidlist *tofree = NULL;
+
+       mutex_lock(&l->owner->pidlist_mutex);
+
+       /*
+        * Destroy iff we didn't get queued again.  The state won't change
+        * as destroy_dwork can only be queued while locked.
+        */
+       if (!delayed_work_pending(dwork)) {
+               list_del(&l->links);
+               pidlist_free(l->list);
+               put_pid_ns(l->key.ns);
+               tofree = l;
+       }
+
+       mutex_unlock(&l->owner->pidlist_mutex);
+       kfree(tofree);
+}
+
+/*
+ * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
+ * Returns the number of unique elements.
+ */
+static int pidlist_uniq(pid_t *list, int length)
+{
+       int src, dest = 1;
+
+       /*
+        * we presume the 0th element is unique, so i starts at 1. trivial
+        * edge cases first; no work needs to be done for either
+        */
+       if (length == 0 || length == 1)
+               return length;
+       /* src and dest walk down the list; dest counts unique elements */
+       for (src = 1; src < length; src++) {
+               /* find next unique element */
+               while (list[src] == list[src-1]) {
+                       src++;
+                       if (src == length)
+                               goto after;
+               }
+               /* dest always points to where the next unique element goes */
+               list[dest] = list[src];
+               dest++;
+       }
+after:
+       return dest;
+}
+
+/*
+ * The two pid files - task and cgroup.procs - guaranteed that the result
+ * is sorted, which forced this whole pidlist fiasco.  As pid order is
+ * different per namespace, each namespace needs differently sorted list,
+ * making it impossible to use, for example, single rbtree of member tasks
+ * sorted by task pointer.  As pidlists can be fairly large, allocating one
+ * per open file is dangerous, so cgroup had to implement shared pool of
+ * pidlists keyed by cgroup and namespace.
+ */
+static int cmppid(const void *a, const void *b)
+{
+       return *(pid_t *)a - *(pid_t *)b;
+}
+
+static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
+                                                 enum cgroup_filetype type)
+{
+       struct cgroup_pidlist *l;
+       /* don't need task_nsproxy() if we're looking at ourself */
+       struct pid_namespace *ns = task_active_pid_ns(current);
+
+       lockdep_assert_held(&cgrp->pidlist_mutex);
+
+       list_for_each_entry(l, &cgrp->pidlists, links)
+               if (l->key.type == type && l->key.ns == ns)
+                       return l;
+       return NULL;
+}
+
+/*
+ * find the appropriate pidlist for our purpose (given procs vs tasks)
+ * returns with the lock on that pidlist already held, and takes care
+ * of the use count, or returns NULL with no locks held if we're out of
+ * memory.
+ */
+static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
+                                               enum cgroup_filetype type)
+{
+       struct cgroup_pidlist *l;
+
+       lockdep_assert_held(&cgrp->pidlist_mutex);
+
+       l = cgroup_pidlist_find(cgrp, type);
+       if (l)
+               return l;
+
+       /* entry not found; create a new one */
+       l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
+       if (!l)
+               return l;
+
+       INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
+       l->key.type = type;
+       /* don't need task_nsproxy() if we're looking at ourself */
+       l->key.ns = get_pid_ns(task_active_pid_ns(current));
+       l->owner = cgrp;
+       list_add(&l->links, &cgrp->pidlists);
+       return l;
+}
+
+/*
+ * Load a cgroup's pidarray with either procs' tgids or tasks' pids
+ */
+static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
+                             struct cgroup_pidlist **lp)
+{
+       pid_t *array;
+       int length;
+       int pid, n = 0; /* used for populating the array */
+       struct css_task_iter it;
+       struct task_struct *tsk;
+       struct cgroup_pidlist *l;
+
+       lockdep_assert_held(&cgrp->pidlist_mutex);
+
+       /*
+        * If cgroup gets more users after we read count, we won't have
+        * enough space - tough.  This race is indistinguishable to the
+        * caller from the case that the additional cgroup users didn't
+        * show up until sometime later on.
+        */
+       length = cgroup_task_count(cgrp);
+       array = pidlist_allocate(length);
+       if (!array)
+               return -ENOMEM;
+       /* now, populate the array */
+       css_task_iter_start(&cgrp->self, &it);
+       while ((tsk = css_task_iter_next(&it))) {
+               if (unlikely(n == length))
+                       break;
+               /* get tgid or pid for procs or tasks file respectively */
+               if (type == CGROUP_FILE_PROCS)
+                       pid = task_tgid_vnr(tsk);
+               else
+                       pid = task_pid_vnr(tsk);
+               if (pid > 0) /* make sure to only use valid results */
+                       array[n++] = pid;
+       }
+       css_task_iter_end(&it);
+       length = n;
+       /* now sort & (if procs) strip out duplicates */
+       sort(array, length, sizeof(pid_t), cmppid, NULL);
+       if (type == CGROUP_FILE_PROCS)
+               length = pidlist_uniq(array, length);
+
+       l = cgroup_pidlist_find_create(cgrp, type);
+       if (!l) {
+               pidlist_free(array);
+               return -ENOMEM;
+       }
+
+       /* store array, freeing old if necessary */
+       pidlist_free(l->list);
+       l->list = array;
+       l->length = length;
+       *lp = l;
+       return 0;
+}
+
+/**
+ * cgroupstats_build - build and fill cgroupstats
+ * @stats: cgroupstats to fill information into
+ * @dentry: A dentry entry belonging to the cgroup for which stats have
+ * been requested.
+ *
+ * Build and fill cgroupstats so that taskstats can export it to user
+ * space.
+ */
+int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
+{
+       struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
+       struct cgroup *cgrp;
+       struct css_task_iter it;
+       struct task_struct *tsk;
+
+       /* it should be kernfs_node belonging to cgroupfs and is a directory */
+       if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
+           kernfs_type(kn) != KERNFS_DIR)
+               return -EINVAL;
+
+       mutex_lock(&cgroup_mutex);
+
+       /*
+        * We aren't being called from kernfs and there's no guarantee on
+        * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
+        * @kn->priv is RCU safe.  Let's do the RCU dancing.
+        */
+       rcu_read_lock();
+       cgrp = rcu_dereference(kn->priv);
+       if (!cgrp || cgroup_is_dead(cgrp)) {
+               rcu_read_unlock();
+               mutex_unlock(&cgroup_mutex);
+               return -ENOENT;
+       }
+       rcu_read_unlock();
+
+       css_task_iter_start(&cgrp->self, &it);
+       while ((tsk = css_task_iter_next(&it))) {
+               switch (tsk->state) {
+               case TASK_RUNNING:
+                       stats->nr_running++;
+                       break;
+               case TASK_INTERRUPTIBLE:
+                       stats->nr_sleeping++;
+                       break;
+               case TASK_UNINTERRUPTIBLE:
+                       stats->nr_uninterruptible++;
+                       break;
+               case TASK_STOPPED:
+                       stats->nr_stopped++;
+                       break;
+               default:
+                       if (delayacct_is_task_waiting_on_io(tsk))
+                               stats->nr_io_wait++;
+                       break;
+               }
+       }
+       css_task_iter_end(&it);
+
+       mutex_unlock(&cgroup_mutex);
+       return 0;
+}
+
+
+/*
+ * seq_file methods for the tasks/procs files. The seq_file position is the
+ * next pid to display; the seq_file iterator is a pointer to the pid
+ * in the cgroup->l->list array.
+ */
+
+static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
+{
+       /*
+        * Initially we receive a position value that corresponds to
+        * one more than the last pid shown (or 0 on the first call or
+        * after a seek to the start). Use a binary-search to find the
+        * next pid to display, if any
+        */
+       struct kernfs_open_file *of = s->private;
+       struct cgroup *cgrp = seq_css(s)->cgroup;
+       struct cgroup_pidlist *l;
+       enum cgroup_filetype type = seq_cft(s)->private;
+       int index = 0, pid = *pos;
+       int *iter, ret;
+
+       mutex_lock(&cgrp->pidlist_mutex);
+
+       /*
+        * !NULL @of->priv indicates that this isn't the first start()
+        * after open.  If the matching pidlist is around, we can use that.
+        * Look for it.  Note that @of->priv can't be used directly.  It
+        * could already have been destroyed.
+        */
+       if (of->priv)
+               of->priv = cgroup_pidlist_find(cgrp, type);
+
+       /*
+        * Either this is the first start() after open or the matching
+        * pidlist has been destroyed inbetween.  Create a new one.
+        */
+       if (!of->priv) {
+               ret = pidlist_array_load(cgrp, type,
+                                        (struct cgroup_pidlist **)&of->priv);
+               if (ret)
+                       return ERR_PTR(ret);
+       }
+       l = of->priv;
+
+       if (pid) {
+               int end = l->length;
+
+               while (index < end) {
+                       int mid = (index + end) / 2;
+                       if (l->list[mid] == pid) {
+                               index = mid;
+                               break;
+                       } else if (l->list[mid] <= pid)
+                               index = mid + 1;
+                       else
+                               end = mid;
+               }
+       }
+       /* If we're off the end of the array, we're done */
+       if (index >= l->length)
+               return NULL;
+       /* Update the abstract position to be the actual pid that we found */
+       iter = l->list + index;
+       *pos = *iter;
+       return iter;
+}
+
+static void cgroup_pidlist_stop(struct seq_file *s, void *v)
+{
+       struct kernfs_open_file *of = s->private;
+       struct cgroup_pidlist *l = of->priv;
+
+       if (l)
+               mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
+                                CGROUP_PIDLIST_DESTROY_DELAY);
+       mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
+}
+
+static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
+{
+       struct kernfs_open_file *of = s->private;
+       struct cgroup_pidlist *l = of->priv;
+       pid_t *p = v;
+       pid_t *end = l->list + l->length;
+       /*
+        * Advance to the next pid in the array. If this goes off the
+        * end, we're done
+        */
+       p++;
+       if (p >= end) {
+               return NULL;
+       } else {
+               *pos = *p;
+               return p;
+       }
+}
+
+static int cgroup_pidlist_show(struct seq_file *s, void *v)
+{
+       seq_printf(s, "%d\n", *(int *)v);
+
+       return 0;
+}
+
+static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
+                                        struct cftype *cft)
+{
+       return notify_on_release(css->cgroup);
+}
+
+static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
+                                         struct cftype *cft, u64 val)
+{
+       if (val)
+               set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
+       else
+               clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
+       return 0;
+}
+
+static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
+                                     struct cftype *cft)
+{
+       return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
+}
+
+static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
+                                      struct cftype *cft, u64 val)
+{
+       if (val)
+               set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
+       else
+               clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
+       return 0;
+}
+
+/* cgroup core interface files for the default hierarchy */
+static struct cftype cgroup_dfl_base_files[] = {
+       {
+               .name = "cgroup.procs",
+               .file_offset = offsetof(struct cgroup, procs_file),
+               .release = cgroup_procs_release,
+               .seq_start = cgroup_procs_start,
+               .seq_next = cgroup_procs_next,
+               .seq_show = cgroup_procs_show,
+               .write = cgroup_procs_write,
+       },
+       {
+               .name = "cgroup.controllers",
+               .seq_show = cgroup_controllers_show,
+       },
+       {
+               .name = "cgroup.subtree_control",
+               .seq_show = cgroup_subtree_control_show,
+               .write = cgroup_subtree_control_write,
+       },
+       {
+               .name = "cgroup.events",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .file_offset = offsetof(struct cgroup, events_file),
+               .seq_show = cgroup_events_show,
+       },
+       { }     /* terminate */
+};
+
+/* cgroup core interface files for the legacy hierarchies */
+static struct cftype cgroup_legacy_base_files[] = {
+       {
+               .name = "cgroup.procs",
+               .seq_start = cgroup_pidlist_start,
+               .seq_next = cgroup_pidlist_next,
+               .seq_stop = cgroup_pidlist_stop,
+               .seq_show = cgroup_pidlist_show,
+               .private = CGROUP_FILE_PROCS,
+               .write = cgroup_procs_write,
+       },
+       {
+               .name = "cgroup.clone_children",
+               .read_u64 = cgroup_clone_children_read,
+               .write_u64 = cgroup_clone_children_write,
+       },
+       {
+               .name = "cgroup.sane_behavior",
+               .flags = CFTYPE_ONLY_ON_ROOT,
+               .seq_show = cgroup_sane_behavior_show,
+       },
+       {
+               .name = "tasks",
+               .seq_start = cgroup_pidlist_start,
+               .seq_next = cgroup_pidlist_next,
+               .seq_stop = cgroup_pidlist_stop,
+               .seq_show = cgroup_pidlist_show,
+               .private = CGROUP_FILE_TASKS,
+               .write = cgroup_tasks_write,
+       },
+       {
+               .name = "notify_on_release",
+               .read_u64 = cgroup_read_notify_on_release,
+               .write_u64 = cgroup_write_notify_on_release,
+       },
+       {
+               .name = "release_agent",
+               .flags = CFTYPE_ONLY_ON_ROOT,
+               .seq_show = cgroup_release_agent_show,
+               .write = cgroup_release_agent_write,
+               .max_write_len = PATH_MAX - 1,
+       },
+       { }     /* terminate */
+};
+
+/*
+ * css destruction is four-stage process.
+ *
+ * 1. Destruction starts.  Killing of the percpu_ref is initiated.
+ *    Implemented in kill_css().
+ *
+ * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
+ *    and thus css_tryget_online() is guaranteed to fail, the css can be
+ *    offlined by invoking offline_css().  After offlining, the base ref is
+ *    put.  Implemented in css_killed_work_fn().
+ *
+ * 3. When the percpu_ref reaches zero, the only possible remaining
+ *    accessors are inside RCU read sections.  css_release() schedules the
+ *    RCU callback.
+ *
+ * 4. After the grace period, the css can be freed.  Implemented in
+ *    css_free_work_fn().
+ *
+ * It is actually hairier because both step 2 and 4 require process context
+ * and thus involve punting to css->destroy_work adding two additional
+ * steps to the already complex sequence.
+ */
+static void css_free_work_fn(struct work_struct *work)
+{
+       struct cgroup_subsys_state *css =
+               container_of(work, struct cgroup_subsys_state, destroy_work);
+       struct cgroup_subsys *ss = css->ss;
+       struct cgroup *cgrp = css->cgroup;
+
+       percpu_ref_exit(&css->refcnt);
+
+       if (ss) {
+               /* css free path */
+               struct cgroup_subsys_state *parent = css->parent;
+               int id = css->id;
+
+               ss->css_free(css);
+               cgroup_idr_remove(&ss->css_idr, id);
+               cgroup_put(cgrp);
+
+               if (parent)
+                       css_put(parent);
+       } else {
+               /* cgroup free path */
+               atomic_dec(&cgrp->root->nr_cgrps);
+               cgroup_pidlist_destroy_all(cgrp);
+               cancel_work_sync(&cgrp->release_agent_work);
+
+               if (cgroup_parent(cgrp)) {
+                       /*
+                        * We get a ref to the parent, and put the ref when
+                        * this cgroup is being freed, so it's guaranteed
+                        * that the parent won't be destroyed before its
+                        * children.
+                        */
+                       cgroup_put(cgroup_parent(cgrp));
+                       kernfs_put(cgrp->kn);
+                       kfree(cgrp);
+               } else {
+                       /*
+                        * This is root cgroup's refcnt reaching zero,
+                        * which indicates that the root should be
+                        * released.
+                        */
+                       cgroup_destroy_root(cgrp->root);
+               }
+       }
+}
+
+static void css_free_rcu_fn(struct rcu_head *rcu_head)
+{
+       struct cgroup_subsys_state *css =
+               container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
+
+       INIT_WORK(&css->destroy_work, css_free_work_fn);
+       queue_work(cgroup_destroy_wq, &css->destroy_work);
+}
+
+static void css_release_work_fn(struct work_struct *work)
+{
+       struct cgroup_subsys_state *css =
+               container_of(work, struct cgroup_subsys_state, destroy_work);
+       struct cgroup_subsys *ss = css->ss;
+       struct cgroup *cgrp = css->cgroup;
+
+       mutex_lock(&cgroup_mutex);
+
+       css->flags |= CSS_RELEASED;
+       list_del_rcu(&css->sibling);
+
+       if (ss) {
+               /* css release path */
+               cgroup_idr_replace(&ss->css_idr, NULL, css->id);
+               if (ss->css_released)
+                       ss->css_released(css);
+       } else {
+               /* cgroup release path */
+               trace_cgroup_release(cgrp);
+
+               cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
+               cgrp->id = -1;
+
+               /*
+                * There are two control paths which try to determine
+                * cgroup from dentry without going through kernfs -
+                * cgroupstats_build() and css_tryget_online_from_dir().
+                * Those are supported by RCU protecting clearing of
+                * cgrp->kn->priv backpointer.
+                */
+               if (cgrp->kn)
+                       RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
+                                        NULL);
+
+               cgroup_bpf_put(cgrp);
+       }
+
+       mutex_unlock(&cgroup_mutex);
+
+       call_rcu(&css->rcu_head, css_free_rcu_fn);
+}
+
+static void css_release(struct percpu_ref *ref)
+{
+       struct cgroup_subsys_state *css =
+               container_of(ref, struct cgroup_subsys_state, refcnt);
+
+       INIT_WORK(&css->destroy_work, css_release_work_fn);
+       queue_work(cgroup_destroy_wq, &css->destroy_work);
+}
+
+static void init_and_link_css(struct cgroup_subsys_state *css,
+                             struct cgroup_subsys *ss, struct cgroup *cgrp)
+{
+       lockdep_assert_held(&cgroup_mutex);
+
+       cgroup_get(cgrp);
+
+       memset(css, 0, sizeof(*css));
+       css->cgroup = cgrp;
+       css->ss = ss;
+       css->id = -1;
+       INIT_LIST_HEAD(&css->sibling);
+       INIT_LIST_HEAD(&css->children);
+       css->serial_nr = css_serial_nr_next++;
+       atomic_set(&css->online_cnt, 0);
+
+       if (cgroup_parent(cgrp)) {
+               css->parent = cgroup_css(cgroup_parent(cgrp), ss);
+               css_get(css->parent);
+       }
+
+       BUG_ON(cgroup_css(cgrp, ss));
+}
+
+/* invoke ->css_online() on a new CSS and mark it online if successful */
+static int online_css(struct cgroup_subsys_state *css)
+{
+       struct cgroup_subsys *ss = css->ss;
+       int ret = 0;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       if (ss->css_online)
+               ret = ss->css_online(css);
+       if (!ret) {
+               css->flags |= CSS_ONLINE;
+               rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
+
+               atomic_inc(&css->online_cnt);
+               if (css->parent)
+                       atomic_inc(&css->parent->online_cnt);
+       }
+       return ret;
+}
+
+/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
+static void offline_css(struct cgroup_subsys_state *css)
+{
+       struct cgroup_subsys *ss = css->ss;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       if (!(css->flags & CSS_ONLINE))
+               return;
+
+       if (ss->css_reset)
+               ss->css_reset(css);
+
+       if (ss->css_offline)
+               ss->css_offline(css);
+
+       css->flags &= ~CSS_ONLINE;
+       RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
+
+       wake_up_all(&css->cgroup->offline_waitq);
+}
+
+/**
+ * css_create - create a cgroup_subsys_state
+ * @cgrp: the cgroup new css will be associated with
+ * @ss: the subsys of new css
+ *
+ * Create a new css associated with @cgrp - @ss pair.  On success, the new
+ * css is online and installed in @cgrp.  This function doesn't create the
+ * interface files.  Returns 0 on success, -errno on failure.
+ */
+static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
+                                             struct cgroup_subsys *ss)
+{
+       struct cgroup *parent = cgroup_parent(cgrp);
+       struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
+       struct cgroup_subsys_state *css;
+       int err;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       css = ss->css_alloc(parent_css);
+       if (!css)
+               css = ERR_PTR(-ENOMEM);
+       if (IS_ERR(css))
+               return css;
+
+       init_and_link_css(css, ss, cgrp);
+
+       err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
+       if (err)
+               goto err_free_css;
+
+       err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
+       if (err < 0)
+               goto err_free_css;
+       css->id = err;
+
+       /* @css is ready to be brought online now, make it visible */
+       list_add_tail_rcu(&css->sibling, &parent_css->children);
+       cgroup_idr_replace(&ss->css_idr, css, css->id);
+
+       err = online_css(css);
+       if (err)
+               goto err_list_del;
+
+       if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
+           cgroup_parent(parent)) {
+               pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
+                       current->comm, current->pid, ss->name);
+               if (!strcmp(ss->name, "memory"))
+                       pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
+               ss->warned_broken_hierarchy = true;
+       }
+
+       return css;
+
+err_list_del:
+       list_del_rcu(&css->sibling);
+err_free_css:
+       call_rcu(&css->rcu_head, css_free_rcu_fn);
+       return ERR_PTR(err);
+}
+
+static struct cgroup *cgroup_create(struct cgroup *parent)
+{
+       struct cgroup_root *root = parent->root;
+       struct cgroup *cgrp, *tcgrp;
+       int level = parent->level + 1;
+       int ret;
+
+       /* allocate the cgroup and its ID, 0 is reserved for the root */
+       cgrp = kzalloc(sizeof(*cgrp) +
+                      sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
+       if (!cgrp)
+               return ERR_PTR(-ENOMEM);
+
+       ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
+       if (ret)
+               goto out_free_cgrp;
+
+       /*
+        * Temporarily set the pointer to NULL, so idr_find() won't return
+        * a half-baked cgroup.
+        */
+       cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
+       if (cgrp->id < 0) {
+               ret = -ENOMEM;
+               goto out_cancel_ref;
+       }
+
+       init_cgroup_housekeeping(cgrp);
+
+       cgrp->self.parent = &parent->self;
+       cgrp->root = root;
+       cgrp->level = level;
+
+       for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
+               cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
+
+       if (notify_on_release(parent))
+               set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
+
+       if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
+               set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
+
+       cgrp->self.serial_nr = css_serial_nr_next++;
+
+       /* allocation complete, commit to creation */
+       list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
+       atomic_inc(&root->nr_cgrps);
+       cgroup_get(parent);
+
+       /*
+        * @cgrp is now fully operational.  If something fails after this
+        * point, it'll be released via the normal destruction path.
+        */
+       cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
+
+       /*
+        * On the default hierarchy, a child doesn't automatically inherit
+        * subtree_control from the parent.  Each is configured manually.
+        */
+       if (!cgroup_on_dfl(cgrp))
+               cgrp->subtree_control = cgroup_control(cgrp);
+
+       if (parent)
+               cgroup_bpf_inherit(cgrp, parent);
+
+       cgroup_propagate_control(cgrp);
+
+       /* @cgrp doesn't have dir yet so the following will only create csses */
+       ret = cgroup_apply_control_enable(cgrp);
+       if (ret)
+               goto out_destroy;
+
+       return cgrp;
+
+out_cancel_ref:
+       percpu_ref_exit(&cgrp->self.refcnt);
+out_free_cgrp:
+       kfree(cgrp);
+       return ERR_PTR(ret);
+out_destroy:
+       cgroup_destroy_locked(cgrp);
+       return ERR_PTR(ret);
+}
+
+static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
+                       umode_t mode)
+{
+       struct cgroup *parent, *cgrp;
+       struct kernfs_node *kn;
+       int ret;
+
+       /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
+       if (strchr(name, '\n'))
+               return -EINVAL;
+
+       parent = cgroup_kn_lock_live(parent_kn, false);
+       if (!parent)
+               return -ENODEV;
+
+       cgrp = cgroup_create(parent);
+       if (IS_ERR(cgrp)) {
+               ret = PTR_ERR(cgrp);
+               goto out_unlock;
+       }
+
+       /* create the directory */
+       kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
+       if (IS_ERR(kn)) {
+               ret = PTR_ERR(kn);
+               goto out_destroy;
+       }
+       cgrp->kn = kn;
+
+       /*
+        * This extra ref will be put in cgroup_free_fn() and guarantees
+        * that @cgrp->kn is always accessible.
+        */
+       kernfs_get(kn);
+
+       ret = cgroup_kn_set_ugid(kn);
+       if (ret)
+               goto out_destroy;
+
+       ret = css_populate_dir(&cgrp->self);
+       if (ret)
+               goto out_destroy;
+
+       ret = cgroup_apply_control_enable(cgrp);
+       if (ret)
+               goto out_destroy;
+
+       trace_cgroup_mkdir(cgrp);
+
+       /* let's create and online css's */
+       kernfs_activate(kn);
+
+       ret = 0;
+       goto out_unlock;
+
+out_destroy:
+       cgroup_destroy_locked(cgrp);
+out_unlock:
+       cgroup_kn_unlock(parent_kn);
+       return ret;
+}
+
+/*
+ * This is called when the refcnt of a css is confirmed to be killed.
+ * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
+ * initate destruction and put the css ref from kill_css().
+ */
+static void css_killed_work_fn(struct work_struct *work)
+{
+       struct cgroup_subsys_state *css =
+               container_of(work, struct cgroup_subsys_state, destroy_work);
+
+       mutex_lock(&cgroup_mutex);
+
+       do {
+               offline_css(css);
+               css_put(css);
+               /* @css can't go away while we're holding cgroup_mutex */
+               css = css->parent;
+       } while (css && atomic_dec_and_test(&css->online_cnt));
+
+       mutex_unlock(&cgroup_mutex);
+}
+
+/* css kill confirmation processing requires process context, bounce */
+static void css_killed_ref_fn(struct percpu_ref *ref)
+{
+       struct cgroup_subsys_state *css =
+               container_of(ref, struct cgroup_subsys_state, refcnt);
+
+       if (atomic_dec_and_test(&css->online_cnt)) {
+               INIT_WORK(&css->destroy_work, css_killed_work_fn);
+               queue_work(cgroup_destroy_wq, &css->destroy_work);
+       }
+}
+
+/**
+ * kill_css - destroy a css
+ * @css: css to destroy
+ *
+ * This function initiates destruction of @css by removing cgroup interface
+ * files and putting its base reference.  ->css_offline() will be invoked
+ * asynchronously once css_tryget_online() is guaranteed to fail and when
+ * the reference count reaches zero, @css will be released.
+ */
+static void kill_css(struct cgroup_subsys_state *css)
+{
+       lockdep_assert_held(&cgroup_mutex);
+
+       /*
+        * This must happen before css is disassociated with its cgroup.
+        * See seq_css() for details.
+        */
+       css_clear_dir(css);
+
+       /*
+        * Killing would put the base ref, but we need to keep it alive
+        * until after ->css_offline().
+        */
+       css_get(css);
+
+       /*
+        * cgroup core guarantees that, by the time ->css_offline() is
+        * invoked, no new css reference will be given out via
+        * css_tryget_online().  We can't simply call percpu_ref_kill() and
+        * proceed to offlining css's because percpu_ref_kill() doesn't
+        * guarantee that the ref is seen as killed on all CPUs on return.
+        *
+        * Use percpu_ref_kill_and_confirm() to get notifications as each
+        * css is confirmed to be seen as killed on all CPUs.
+        */
+       percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
+}
+
+/**
+ * cgroup_destroy_locked - the first stage of cgroup destruction
+ * @cgrp: cgroup to be destroyed
+ *
+ * css's make use of percpu refcnts whose killing latency shouldn't be
+ * exposed to userland and are RCU protected.  Also, cgroup core needs to
+ * guarantee that css_tryget_online() won't succeed by the time
+ * ->css_offline() is invoked.  To satisfy all the requirements,
+ * destruction is implemented in the following two steps.
+ *
+ * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
+ *     userland visible parts and start killing the percpu refcnts of
+ *     css's.  Set up so that the next stage will be kicked off once all
+ *     the percpu refcnts are confirmed to be killed.
+ *
+ * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
+ *     rest of destruction.  Once all cgroup references are gone, the
+ *     cgroup is RCU-freed.
+ *
+ * This function implements s1.  After this step, @cgrp is gone as far as
+ * the userland is concerned and a new cgroup with the same name may be
+ * created.  As cgroup doesn't care about the names internally, this
+ * doesn't cause any problem.
+ */
+static int cgroup_destroy_locked(struct cgroup *cgrp)
+       __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
+{
+       struct cgroup_subsys_state *css;
+       struct cgrp_cset_link *link;
+       int ssid;
+
+       lockdep_assert_held(&cgroup_mutex);
+
+       /*
+        * Only migration can raise populated from zero and we're already
+        * holding cgroup_mutex.
+        */
+       if (cgroup_is_populated(cgrp))
+               return -EBUSY;
+
+       /*
+        * Make sure there's no live children.  We can't test emptiness of
+        * ->self.children as dead children linger on it while being
+        * drained; otherwise, "rmdir parent/child parent" may fail.
+        */
+       if (css_has_online_children(&cgrp->self))
+               return -EBUSY;
+
+       /*
+        * Mark @cgrp and the associated csets dead.  The former prevents
+        * further task migration and child creation by disabling
+        * cgroup_lock_live_group().  The latter makes the csets ignored by
+        * the migration path.
+        */
+       cgrp->self.flags &= ~CSS_ONLINE;
+
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry(link, &cgrp->cset_links, cset_link)
+               link->cset->dead = true;
+       spin_unlock_irq(&css_set_lock);
+
+       /* initiate massacre of all css's */
+       for_each_css(css, ssid, cgrp)
+               kill_css(css);
+
+       /*
+        * Remove @cgrp directory along with the base files.  @cgrp has an
+        * extra ref on its kn.
+        */
+       kernfs_remove(cgrp->kn);
+
+       check_for_release(cgroup_parent(cgrp));
+
+       /* put the base reference */
+       percpu_ref_kill(&cgrp->self.refcnt);
+
+       return 0;
+};
+
+static int cgroup_rmdir(struct kernfs_node *kn)
+{
+       struct cgroup *cgrp;
+       int ret = 0;
+
+       cgrp = cgroup_kn_lock_live(kn, false);
+       if (!cgrp)
+               return 0;
+
+       ret = cgroup_destroy_locked(cgrp);
+
+       if (!ret)
+               trace_cgroup_rmdir(cgrp);
+
+       cgroup_kn_unlock(kn);
+       return ret;
+}
+
+static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
+       .remount_fs             = cgroup_remount,
+       .show_options           = cgroup_show_options,
+       .mkdir                  = cgroup_mkdir,
+       .rmdir                  = cgroup_rmdir,
+       .rename                 = cgroup_rename,
+       .show_path              = cgroup_show_path,
+};
+
+static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
+{
+       struct cgroup_subsys_state *css;
+
+       pr_debug("Initializing cgroup subsys %s\n", ss->name);
+
+       mutex_lock(&cgroup_mutex);
+
+       idr_init(&ss->css_idr);
+       INIT_LIST_HEAD(&ss->cfts);
+
+       /* Create the root cgroup state for this subsystem */
+       ss->root = &cgrp_dfl_root;
+       css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
+       /* We don't handle early failures gracefully */
+       BUG_ON(IS_ERR(css));
+       init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
+
+       /*
+        * Root csses are never destroyed and we can't initialize
+        * percpu_ref during early init.  Disable refcnting.
+        */
+       css->flags |= CSS_NO_REF;
+
+       if (early) {
+               /* allocation can't be done safely during early init */
+               css->id = 1;
+       } else {
+               css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
+               BUG_ON(css->id < 0);
+       }
+
+       /* Update the init_css_set to contain a subsys
+        * pointer to this state - since the subsystem is
+        * newly registered, all tasks and hence the
+        * init_css_set is in the subsystem's root cgroup. */
+       init_css_set.subsys[ss->id] = css;
+
+       have_fork_callback |= (bool)ss->fork << ss->id;
+       have_exit_callback |= (bool)ss->exit << ss->id;
+       have_free_callback |= (bool)ss->free << ss->id;
+       have_canfork_callback |= (bool)ss->can_fork << ss->id;
+
+       /* At system boot, before all subsystems have been
+        * registered, no tasks have been forked, so we don't
+        * need to invoke fork callbacks here. */
+       BUG_ON(!list_empty(&init_task.tasks));
+
+       BUG_ON(online_css(css));
+
+       mutex_unlock(&cgroup_mutex);
+}
+
+/**
+ * cgroup_init_early - cgroup initialization at system boot
+ *
+ * Initialize cgroups at system boot, and initialize any
+ * subsystems that request early init.
+ */
+int __init cgroup_init_early(void)
+{
+       static struct cgroup_sb_opts __initdata opts;
+       struct cgroup_subsys *ss;
+       int i;
+
+       init_cgroup_root(&cgrp_dfl_root, &opts);
+       cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
+
+       RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
+
+       for_each_subsys(ss, i) {
+               WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
+                    "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
+                    i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
+                    ss->id, ss->name);
+               WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
+                    "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
+
+               ss->id = i;
+               ss->name = cgroup_subsys_name[i];
+               if (!ss->legacy_name)
+                       ss->legacy_name = cgroup_subsys_name[i];
+
+               if (ss->early_init)
+                       cgroup_init_subsys(ss, true);
+       }
+       return 0;
+}
+
+static u16 cgroup_disable_mask __initdata;
+
+/**
+ * cgroup_init - cgroup initialization
+ *
+ * Register cgroup filesystem and /proc file, and initialize
+ * any subsystems that didn't request early init.
+ */
+int __init cgroup_init(void)
+{
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
+       BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
+       BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
+       BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
+
+       /*
+        * The latency of the synchronize_sched() is too high for cgroups,
+        * avoid it at the cost of forcing all readers into the slow path.
+        */
+       rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
+
+       get_user_ns(init_cgroup_ns.user_ns);
+
+       mutex_lock(&cgroup_mutex);
+
+       /*
+        * Add init_css_set to the hash table so that dfl_root can link to
+        * it during init.
+        */
+       hash_add(css_set_table, &init_css_set.hlist,
+                css_set_hash(init_css_set.subsys));
+
+       BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
+
+       mutex_unlock(&cgroup_mutex);
+
+       for_each_subsys(ss, ssid) {
+               if (ss->early_init) {
+                       struct cgroup_subsys_state *css =
+                               init_css_set.subsys[ss->id];
+
+                       css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
+                                                  GFP_KERNEL);
+                       BUG_ON(css->id < 0);
+               } else {
+                       cgroup_init_subsys(ss, false);
+               }
+
+               list_add_tail(&init_css_set.e_cset_node[ssid],
+                             &cgrp_dfl_root.cgrp.e_csets[ssid]);
+
+               /*
+                * Setting dfl_root subsys_mask needs to consider the
+                * disabled flag and cftype registration needs kmalloc,
+                * both of which aren't available during early_init.
+                */
+               if (cgroup_disable_mask & (1 << ssid)) {
+                       static_branch_disable(cgroup_subsys_enabled_key[ssid]);
+                       printk(KERN_INFO "Disabling %s control group subsystem\n",
+                              ss->name);
+                       continue;
+               }
+
+               if (cgroup_ssid_no_v1(ssid))
+                       printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
+                              ss->name);
+
+               cgrp_dfl_root.subsys_mask |= 1 << ss->id;
+
+               if (ss->implicit_on_dfl)
+                       cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
+               else if (!ss->dfl_cftypes)
+                       cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
+
+               if (ss->dfl_cftypes == ss->legacy_cftypes) {
+                       WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
+               } else {
+                       WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
+                       WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
+               }
+
+               if (ss->bind)
+                       ss->bind(init_css_set.subsys[ssid]);
+       }
+
+       /* init_css_set.subsys[] has been updated, re-hash */
+       hash_del(&init_css_set.hlist);
+       hash_add(css_set_table, &init_css_set.hlist,
+                css_set_hash(init_css_set.subsys));
+
+       WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
+       WARN_ON(register_filesystem(&cgroup_fs_type));
+       WARN_ON(register_filesystem(&cgroup2_fs_type));
+       WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
+
+       return 0;
+}
+
+static int __init cgroup_wq_init(void)
+{
+       /*
+        * There isn't much point in executing destruction path in
+        * parallel.  Good chunk is serialized with cgroup_mutex anyway.
+        * Use 1 for @max_active.
+        *
+        * We would prefer to do this in cgroup_init() above, but that
+        * is called before init_workqueues(): so leave this until after.
+        */
+       cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
+       BUG_ON(!cgroup_destroy_wq);
+
+       /*
+        * Used to destroy pidlists and separate to serve as flush domain.
+        * Cap @max_active to 1 too.
+        */
+       cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
+                                                   0, 1);
+       BUG_ON(!cgroup_pidlist_destroy_wq);
+
+       return 0;
+}
+core_initcall(cgroup_wq_init);
+
+/*
+ * proc_cgroup_show()
+ *  - Print task's cgroup paths into seq_file, one line for each hierarchy
+ *  - Used for /proc/<pid>/cgroup.
+ */
+int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
+                    struct pid *pid, struct task_struct *tsk)
+{
+       char *buf;
+       int retval;
+       struct cgroup_root *root;
+
+       retval = -ENOMEM;
+       buf = kmalloc(PATH_MAX, GFP_KERNEL);
+       if (!buf)
+               goto out;
+
+       mutex_lock(&cgroup_mutex);
+       spin_lock_irq(&css_set_lock);
+
+       for_each_root(root) {
+               struct cgroup_subsys *ss;
+               struct cgroup *cgrp;
+               int ssid, count = 0;
+
+               if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
+                       continue;
+
+               seq_printf(m, "%d:", root->hierarchy_id);
+               if (root != &cgrp_dfl_root)
+                       for_each_subsys(ss, ssid)
+                               if (root->subsys_mask & (1 << ssid))
+                                       seq_printf(m, "%s%s", count++ ? "," : "",
+                                                  ss->legacy_name);
+               if (strlen(root->name))
+                       seq_printf(m, "%sname=%s", count ? "," : "",
+                                  root->name);
+               seq_putc(m, ':');
+
+               cgrp = task_cgroup_from_root(tsk, root);
+
+               /*
+                * On traditional hierarchies, all zombie tasks show up as
+                * belonging to the root cgroup.  On the default hierarchy,
+                * while a zombie doesn't show up in "cgroup.procs" and
+                * thus can't be migrated, its /proc/PID/cgroup keeps
+                * reporting the cgroup it belonged to before exiting.  If
+                * the cgroup is removed before the zombie is reaped,
+                * " (deleted)" is appended to the cgroup path.
+                */
+               if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
+                       retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
+                                               current->nsproxy->cgroup_ns);
+                       if (retval >= PATH_MAX)
+                               retval = -ENAMETOOLONG;
+                       if (retval < 0)
+                               goto out_unlock;
+
+                       seq_puts(m, buf);
+               } else {
+                       seq_puts(m, "/");
+               }
+
+               if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
+                       seq_puts(m, " (deleted)\n");
+               else
+                       seq_putc(m, '\n');
+       }
+
+       retval = 0;
+out_unlock:
+       spin_unlock_irq(&css_set_lock);
+       mutex_unlock(&cgroup_mutex);
+       kfree(buf);
+out:
+       return retval;
+}
+
+/* Display information about each subsystem and each hierarchy */
+static int proc_cgroupstats_show(struct seq_file *m, void *v)
+{
+       struct cgroup_subsys *ss;
+       int i;
+
+       seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
+       /*
+        * ideally we don't want subsystems moving around while we do this.
+        * cgroup_mutex is also necessary to guarantee an atomic snapshot of
+        * subsys/hierarchy state.
+        */
+       mutex_lock(&cgroup_mutex);
+
+       for_each_subsys(ss, i)
+               seq_printf(m, "%s\t%d\t%d\t%d\n",
+                          ss->legacy_name, ss->root->hierarchy_id,
+                          atomic_read(&ss->root->nr_cgrps),
+                          cgroup_ssid_enabled(i));
+
+       mutex_unlock(&cgroup_mutex);
+       return 0;
+}
+
+static int cgroupstats_open(struct inode *inode, struct file *file)
+{
+       return single_open(file, proc_cgroupstats_show, NULL);
+}
+
+static const struct file_operations proc_cgroupstats_operations = {
+       .open = cgroupstats_open,
+       .read = seq_read,
+       .llseek = seq_lseek,
+       .release = single_release,
+};
+
+/**
+ * cgroup_fork - initialize cgroup related fields during copy_process()
+ * @child: pointer to task_struct of forking parent process.
+ *
+ * A task is associated with the init_css_set until cgroup_post_fork()
+ * attaches it to the parent's css_set.  Empty cg_list indicates that
+ * @child isn't holding reference to its css_set.
+ */
+void cgroup_fork(struct task_struct *child)
+{
+       RCU_INIT_POINTER(child->cgroups, &init_css_set);
+       INIT_LIST_HEAD(&child->cg_list);
+}
+
+/**
+ * cgroup_can_fork - called on a new task before the process is exposed
+ * @child: the task in question.
+ *
+ * This calls the subsystem can_fork() callbacks. If the can_fork() callback
+ * returns an error, the fork aborts with that error code. This allows for
+ * a cgroup subsystem to conditionally allow or deny new forks.
+ */
+int cgroup_can_fork(struct task_struct *child)
+{
+       struct cgroup_subsys *ss;
+       int i, j, ret;
+
+       do_each_subsys_mask(ss, i, have_canfork_callback) {
+               ret = ss->can_fork(child);
+               if (ret)
+                       goto out_revert;
+       } while_each_subsys_mask();
+
+       return 0;
+
+out_revert:
+       for_each_subsys(ss, j) {
+               if (j >= i)
+                       break;
+               if (ss->cancel_fork)
+                       ss->cancel_fork(child);
+       }
+
+       return ret;
+}
+
+/**
+ * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
+ * @child: the task in question
+ *
+ * This calls the cancel_fork() callbacks if a fork failed *after*
+ * cgroup_can_fork() succeded.
+ */
+void cgroup_cancel_fork(struct task_struct *child)
+{
+       struct cgroup_subsys *ss;
+       int i;
+
+       for_each_subsys(ss, i)
+               if (ss->cancel_fork)
+                       ss->cancel_fork(child);
+}
+
+/**
+ * cgroup_post_fork - called on a new task after adding it to the task list
+ * @child: the task in question
+ *
+ * Adds the task to the list running through its css_set if necessary and
+ * call the subsystem fork() callbacks.  Has to be after the task is
+ * visible on the task list in case we race with the first call to
+ * cgroup_task_iter_start() - to guarantee that the new task ends up on its
+ * list.
+ */
+void cgroup_post_fork(struct task_struct *child)
+{
+       struct cgroup_subsys *ss;
+       int i;
+
+       /*
+        * This may race against cgroup_enable_task_cg_lists().  As that
+        * function sets use_task_css_set_links before grabbing
+        * tasklist_lock and we just went through tasklist_lock to add
+        * @child, it's guaranteed that either we see the set
+        * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
+        * @child during its iteration.
+        *
+        * If we won the race, @child is associated with %current's
+        * css_set.  Grabbing css_set_lock guarantees both that the
+        * association is stable, and, on completion of the parent's
+        * migration, @child is visible in the source of migration or
+        * already in the destination cgroup.  This guarantee is necessary
+        * when implementing operations which need to migrate all tasks of
+        * a cgroup to another.
+        *
+        * Note that if we lose to cgroup_enable_task_cg_lists(), @child
+        * will remain in init_css_set.  This is safe because all tasks are
+        * in the init_css_set before cg_links is enabled and there's no
+        * operation which transfers all tasks out of init_css_set.
+        */
+       if (use_task_css_set_links) {
+               struct css_set *cset;
+
+               spin_lock_irq(&css_set_lock);
+               cset = task_css_set(current);
+               if (list_empty(&child->cg_list)) {
+                       get_css_set(cset);
+                       css_set_move_task(child, NULL, cset, false);
+               }
+               spin_unlock_irq(&css_set_lock);
+       }
+
+       /*
+        * Call ss->fork().  This must happen after @child is linked on
+        * css_set; otherwise, @child might change state between ->fork()
+        * and addition to css_set.
+        */
+       do_each_subsys_mask(ss, i, have_fork_callback) {
+               ss->fork(child);
+       } while_each_subsys_mask();
+}
+
+/**
+ * cgroup_exit - detach cgroup from exiting task
+ * @tsk: pointer to task_struct of exiting process
+ *
+ * Description: Detach cgroup from @tsk and release it.
+ *
+ * Note that cgroups marked notify_on_release force every task in
+ * them to take the global cgroup_mutex mutex when exiting.
+ * This could impact scaling on very large systems.  Be reluctant to
+ * use notify_on_release cgroups where very high task exit scaling
+ * is required on large systems.
+ *
+ * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
+ * call cgroup_exit() while the task is still competent to handle
+ * notify_on_release(), then leave the task attached to the root cgroup in
+ * each hierarchy for the remainder of its exit.  No need to bother with
+ * init_css_set refcnting.  init_css_set never goes away and we can't race
+ * with migration path - PF_EXITING is visible to migration path.
+ */
+void cgroup_exit(struct task_struct *tsk)
+{
+       struct cgroup_subsys *ss;
+       struct css_set *cset;
+       int i;
+
+       /*
+        * Unlink from @tsk from its css_set.  As migration path can't race
+        * with us, we can check css_set and cg_list without synchronization.
+        */
+       cset = task_css_set(tsk);
+
+       if (!list_empty(&tsk->cg_list)) {
+               spin_lock_irq(&css_set_lock);
+               css_set_move_task(tsk, cset, NULL, false);
+               spin_unlock_irq(&css_set_lock);
+       } else {
+               get_css_set(cset);
+       }
+
+       /* see cgroup_post_fork() for details */
+       do_each_subsys_mask(ss, i, have_exit_callback) {
+               ss->exit(tsk);
+       } while_each_subsys_mask();
+}
+
+void cgroup_free(struct task_struct *task)
+{
+       struct css_set *cset = task_css_set(task);
+       struct cgroup_subsys *ss;
+       int ssid;
+
+       do_each_subsys_mask(ss, ssid, have_free_callback) {
+               ss->free(task);
+       } while_each_subsys_mask();
+
+       put_css_set(cset);
+}
+
+static void check_for_release(struct cgroup *cgrp)
+{
+       if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
+           !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
+               schedule_work(&cgrp->release_agent_work);
+}
+
+/*
+ * Notify userspace when a cgroup is released, by running the
+ * configured release agent with the name of the cgroup (path
+ * relative to the root of cgroup file system) as the argument.
+ *
+ * Most likely, this user command will try to rmdir this cgroup.
+ *
+ * This races with the possibility that some other task will be
+ * attached to this cgroup before it is removed, or that some other
+ * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
+ * The presumed 'rmdir' will fail quietly if this cgroup is no longer
+ * unused, and this cgroup will be reprieved from its death sentence,
+ * to continue to serve a useful existence.  Next time it's released,
+ * we will get notified again, if it still has 'notify_on_release' set.
+ *
+ * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
+ * means only wait until the task is successfully execve()'d.  The
+ * separate release agent task is forked by call_usermodehelper(),
+ * then control in this thread returns here, without waiting for the
+ * release agent task.  We don't bother to wait because the caller of
+ * this routine has no use for the exit status of the release agent
+ * task, so no sense holding our caller up for that.
+ */
+static void cgroup_release_agent(struct work_struct *work)
+{
+       struct cgroup *cgrp =
+               container_of(work, struct cgroup, release_agent_work);
+       char *pathbuf = NULL, *agentbuf = NULL;
+       char *argv[3], *envp[3];
+       int ret;
+
+       mutex_lock(&cgroup_mutex);
+
+       pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
+       agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
+       if (!pathbuf || !agentbuf)
+               goto out;
+
+       spin_lock_irq(&css_set_lock);
+       ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
+       spin_unlock_irq(&css_set_lock);
+       if (ret < 0 || ret >= PATH_MAX)
+               goto out;
+
+       argv[0] = agentbuf;
+       argv[1] = pathbuf;
+       argv[2] = NULL;
+
+       /* minimal command environment */
+       envp[0] = "HOME=/";
+       envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
+       envp[2] = NULL;
+
+       mutex_unlock(&cgroup_mutex);
+       call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
+       goto out_free;
+out:
+       mutex_unlock(&cgroup_mutex);
+out_free:
+       kfree(agentbuf);
+       kfree(pathbuf);
+}
+
+static int __init cgroup_disable(char *str)
+{
+       struct cgroup_subsys *ss;
+       char *token;
+       int i;
+
+       while ((token = strsep(&str, ",")) != NULL) {
+               if (!*token)
+                       continue;
+
+               for_each_subsys(ss, i) {
+                       if (strcmp(token, ss->name) &&
+                           strcmp(token, ss->legacy_name))
+                               continue;
+                       cgroup_disable_mask |= 1 << i;
+               }
+       }
+       return 1;
+}
+__setup("cgroup_disable=", cgroup_disable);
+
+static int __init cgroup_no_v1(char *str)
+{
+       struct cgroup_subsys *ss;
+       char *token;
+       int i;
+
+       while ((token = strsep(&str, ",")) != NULL) {
+               if (!*token)
+                       continue;
+
+               if (!strcmp(token, "all")) {
+                       cgroup_no_v1_mask = U16_MAX;
+                       break;
+               }
+
+               for_each_subsys(ss, i) {
+                       if (strcmp(token, ss->name) &&
+                           strcmp(token, ss->legacy_name))
+                               continue;
+
+                       cgroup_no_v1_mask |= 1 << i;
+               }
+       }
+       return 1;
+}
+__setup("cgroup_no_v1=", cgroup_no_v1);
+
+/**
+ * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
+ * @dentry: directory dentry of interest
+ * @ss: subsystem of interest
+ *
+ * If @dentry is a directory for a cgroup which has @ss enabled on it, try
+ * to get the corresponding css and return it.  If such css doesn't exist
+ * or can't be pinned, an ERR_PTR value is returned.
+ */
+struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
+                                                      struct cgroup_subsys *ss)
+{
+       struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
+       struct file_system_type *s_type = dentry->d_sb->s_type;
+       struct cgroup_subsys_state *css = NULL;
+       struct cgroup *cgrp;
+
+       /* is @dentry a cgroup dir? */
+       if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
+           !kn || kernfs_type(kn) != KERNFS_DIR)
+               return ERR_PTR(-EBADF);
+
+       rcu_read_lock();
+
+       /*
+        * This path doesn't originate from kernfs and @kn could already
+        * have been or be removed at any point.  @kn->priv is RCU
+        * protected for this access.  See css_release_work_fn() for details.
+        */
+       cgrp = rcu_dereference(kn->priv);
+       if (cgrp)
+               css = cgroup_css(cgrp, ss);
+
+       if (!css || !css_tryget_online(css))
+               css = ERR_PTR(-ENOENT);
+
+       rcu_read_unlock();
+       return css;
+}
+
+/**
+ * css_from_id - lookup css by id
+ * @id: the cgroup id
+ * @ss: cgroup subsys to be looked into
+ *
+ * Returns the css if there's valid one with @id, otherwise returns NULL.
+ * Should be called under rcu_read_lock().
+ */
+struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
+{
+       WARN_ON_ONCE(!rcu_read_lock_held());
+       return idr_find(&ss->css_idr, id);
+}
+
+/**
+ * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
+ * @path: path on the default hierarchy
+ *
+ * Find the cgroup at @path on the default hierarchy, increment its
+ * reference count and return it.  Returns pointer to the found cgroup on
+ * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
+ * if @path points to a non-directory.
+ */
+struct cgroup *cgroup_get_from_path(const char *path)
+{
+       struct kernfs_node *kn;
+       struct cgroup *cgrp;
+
+       mutex_lock(&cgroup_mutex);
+
+       kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
+       if (kn) {
+               if (kernfs_type(kn) == KERNFS_DIR) {
+                       cgrp = kn->priv;
+                       cgroup_get(cgrp);
+               } else {
+                       cgrp = ERR_PTR(-ENOTDIR);
+               }
+               kernfs_put(kn);
+       } else {
+               cgrp = ERR_PTR(-ENOENT);
+       }
+
+       mutex_unlock(&cgroup_mutex);
+       return cgrp;
+}
+EXPORT_SYMBOL_GPL(cgroup_get_from_path);
+
+/**
+ * cgroup_get_from_fd - get a cgroup pointer from a fd
+ * @fd: fd obtained by open(cgroup2_dir)
+ *
+ * Find the cgroup from a fd which should be obtained
+ * by opening a cgroup directory.  Returns a pointer to the
+ * cgroup on success. ERR_PTR is returned if the cgroup
+ * cannot be found.
+ */
+struct cgroup *cgroup_get_from_fd(int fd)
+{
+       struct cgroup_subsys_state *css;
+       struct cgroup *cgrp;
+       struct file *f;
+
+       f = fget_raw(fd);
+       if (!f)
+               return ERR_PTR(-EBADF);
+
+       css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
+       fput(f);
+       if (IS_ERR(css))
+               return ERR_CAST(css);
+
+       cgrp = css->cgroup;
+       if (!cgroup_on_dfl(cgrp)) {
+               cgroup_put(cgrp);
+               return ERR_PTR(-EBADF);
+       }
+
+       return cgrp;
+}
+EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
+
+/*
+ * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
+ * definition in cgroup-defs.h.
+ */
+#ifdef CONFIG_SOCK_CGROUP_DATA
+
+#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
+
+DEFINE_SPINLOCK(cgroup_sk_update_lock);
+static bool cgroup_sk_alloc_disabled __read_mostly;
+
+void cgroup_sk_alloc_disable(void)
+{
+       if (cgroup_sk_alloc_disabled)
+               return;
+       pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
+       cgroup_sk_alloc_disabled = true;
+}
+
+#else
+
+#define cgroup_sk_alloc_disabled       false
+
+#endif
+
+void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
+{
+       if (cgroup_sk_alloc_disabled)
+               return;
+
+       /* Socket clone path */
+       if (skcd->val) {
+               cgroup_get(sock_cgroup_ptr(skcd));
+               return;
+       }
+
+       rcu_read_lock();
+
+       while (true) {
+               struct css_set *cset;
+
+               cset = task_css_set(current);
+               if (likely(cgroup_tryget(cset->dfl_cgrp))) {
+                       skcd->val = (unsigned long)cset->dfl_cgrp;
+                       break;
+               }
+               cpu_relax();
+       }
+
+       rcu_read_unlock();
+}
+
+void cgroup_sk_free(struct sock_cgroup_data *skcd)
+{
+       cgroup_put(sock_cgroup_ptr(skcd));
+}
+
+#endif /* CONFIG_SOCK_CGROUP_DATA */
+
+/* cgroup namespaces */
+
+static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns)
+{
+       return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES);
+}
+
+static void dec_cgroup_namespaces(struct ucounts *ucounts)
+{
+       dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES);
+}
+
+static struct cgroup_namespace *alloc_cgroup_ns(void)
+{
+       struct cgroup_namespace *new_ns;
+       int ret;
+
+       new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
+       if (!new_ns)
+               return ERR_PTR(-ENOMEM);
+       ret = ns_alloc_inum(&new_ns->ns);
+       if (ret) {
+               kfree(new_ns);
+               return ERR_PTR(ret);
+       }
+       atomic_set(&new_ns->count, 1);
+       new_ns->ns.ops = &cgroupns_operations;
+       return new_ns;
+}
+
+void free_cgroup_ns(struct cgroup_namespace *ns)
+{
+       put_css_set(ns->root_cset);
+       dec_cgroup_namespaces(ns->ucounts);
+       put_user_ns(ns->user_ns);
+       ns_free_inum(&ns->ns);
+       kfree(ns);
+}
+EXPORT_SYMBOL(free_cgroup_ns);
+
+struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
+                                       struct user_namespace *user_ns,
+                                       struct cgroup_namespace *old_ns)
+{
+       struct cgroup_namespace *new_ns;
+       struct ucounts *ucounts;
+       struct css_set *cset;
+
+       BUG_ON(!old_ns);
+
+       if (!(flags & CLONE_NEWCGROUP)) {
+               get_cgroup_ns(old_ns);
+               return old_ns;
+       }
+
+       /* Allow only sysadmin to create cgroup namespace. */
+       if (!ns_capable(user_ns, CAP_SYS_ADMIN))
+               return ERR_PTR(-EPERM);
+
+       ucounts = inc_cgroup_namespaces(user_ns);
+       if (!ucounts)
+               return ERR_PTR(-ENOSPC);
+
+       /* It is not safe to take cgroup_mutex here */
+       spin_lock_irq(&css_set_lock);
+       cset = task_css_set(current);
+       get_css_set(cset);
+       spin_unlock_irq(&css_set_lock);
+
+       new_ns = alloc_cgroup_ns();
+       if (IS_ERR(new_ns)) {
+               put_css_set(cset);
+               dec_cgroup_namespaces(ucounts);
+               return new_ns;
+       }
+
+       new_ns->user_ns = get_user_ns(user_ns);
+       new_ns->ucounts = ucounts;
+       new_ns->root_cset = cset;
+
+       return new_ns;
+}
+
+static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
+{
+       return container_of(ns, struct cgroup_namespace, ns);
+}
+
+static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
+{
+       struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
+
+       if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
+           !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
+               return -EPERM;
+
+       /* Don't need to do anything if we are attaching to our own cgroupns. */
+       if (cgroup_ns == nsproxy->cgroup_ns)
+               return 0;
+
+       get_cgroup_ns(cgroup_ns);
+       put_cgroup_ns(nsproxy->cgroup_ns);
+       nsproxy->cgroup_ns = cgroup_ns;
+
+       return 0;
+}
+
+static struct ns_common *cgroupns_get(struct task_struct *task)
+{
+       struct cgroup_namespace *ns = NULL;
+       struct nsproxy *nsproxy;
+
+       task_lock(task);
+       nsproxy = task->nsproxy;
+       if (nsproxy) {
+               ns = nsproxy->cgroup_ns;
+               get_cgroup_ns(ns);
+       }
+       task_unlock(task);
+
+       return ns ? &ns->ns : NULL;
+}
+
+static void cgroupns_put(struct ns_common *ns)
+{
+       put_cgroup_ns(to_cg_ns(ns));
+}
+
+static struct user_namespace *cgroupns_owner(struct ns_common *ns)
+{
+       return to_cg_ns(ns)->user_ns;
+}
+
+const struct proc_ns_operations cgroupns_operations = {
+       .name           = "cgroup",
+       .type           = CLONE_NEWCGROUP,
+       .get            = cgroupns_get,
+       .put            = cgroupns_put,
+       .install        = cgroupns_install,
+       .owner          = cgroupns_owner,
+};
+
+static __init int cgroup_namespaces_init(void)
+{
+       return 0;
+}
+subsys_initcall(cgroup_namespaces_init);
+
+#ifdef CONFIG_CGROUP_BPF
+void cgroup_bpf_update(struct cgroup *cgrp,
+                      struct bpf_prog *prog,
+                      enum bpf_attach_type type)
+{
+       struct cgroup *parent = cgroup_parent(cgrp);
+
+       mutex_lock(&cgroup_mutex);
+       __cgroup_bpf_update(cgrp, parent, prog, type);
+       mutex_unlock(&cgroup_mutex);
+}
+#endif /* CONFIG_CGROUP_BPF */
+
+#ifdef CONFIG_CGROUP_DEBUG
+static struct cgroup_subsys_state *
+debug_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+       struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
+
+       if (!css)
+               return ERR_PTR(-ENOMEM);
+
+       return css;
+}
+
+static void debug_css_free(struct cgroup_subsys_state *css)
+{
+       kfree(css);
+}
+
+static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
+                               struct cftype *cft)
+{
+       return cgroup_task_count(css->cgroup);
+}
+
+static u64 current_css_set_read(struct cgroup_subsys_state *css,
+                               struct cftype *cft)
+{
+       return (u64)(unsigned long)current->cgroups;
+}
+
+static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
+                                        struct cftype *cft)
+{
+       u64 count;
+
+       rcu_read_lock();
+       count = atomic_read(&task_css_set(current)->refcount);
+       rcu_read_unlock();
+       return count;
+}
+
+static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
+{
+       struct cgrp_cset_link *link;
+       struct css_set *cset;
+       char *name_buf;
+
+       name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
+       if (!name_buf)
+               return -ENOMEM;
+
+       spin_lock_irq(&css_set_lock);
+       rcu_read_lock();
+       cset = rcu_dereference(current->cgroups);
+       list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
+               struct cgroup *c = link->cgrp;
+
+               cgroup_name(c, name_buf, NAME_MAX + 1);
+               seq_printf(seq, "Root %d group %s\n",
+                          c->root->hierarchy_id, name_buf);
+       }
+       rcu_read_unlock();
+       spin_unlock_irq(&css_set_lock);
+       kfree(name_buf);
+       return 0;
+}
+
+#define MAX_TASKS_SHOWN_PER_CSS 25
+static int cgroup_css_links_read(struct seq_file *seq, void *v)
+{
+       struct cgroup_subsys_state *css = seq_css(seq);
+       struct cgrp_cset_link *link;
+
+       spin_lock_irq(&css_set_lock);
+       list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
+               struct css_set *cset = link->cset;
+               struct task_struct *task;
+               int count = 0;
+
+               seq_printf(seq, "css_set %p\n", cset);
+
+               list_for_each_entry(task, &cset->tasks, cg_list) {
+                       if (count++ > MAX_TASKS_SHOWN_PER_CSS)
+                               goto overflow;
+                       seq_printf(seq, "  task %d\n", task_pid_vnr(task));
+               }
+
+               list_for_each_entry(task, &cset->mg_tasks, cg_list) {
+                       if (count++ > MAX_TASKS_SHOWN_PER_CSS)
+                               goto overflow;
+                       seq_printf(seq, "  task %d\n", task_pid_vnr(task));
+               }
+               continue;
+       overflow:
+               seq_puts(seq, "  ...\n");
+       }
+       spin_unlock_irq(&css_set_lock);
+       return 0;
+}
+
+static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+       return (!cgroup_is_populated(css->cgroup) &&
+               !css_has_online_children(&css->cgroup->self));
+}
+
+static struct cftype debug_files[] =  {
+       {
+               .name = "taskcount",
+               .read_u64 = debug_taskcount_read,
+       },
+
+       {
+               .name = "current_css_set",
+               .read_u64 = current_css_set_read,
+       },
+
+       {
+               .name = "current_css_set_refcount",
+               .read_u64 = current_css_set_refcount_read,
+       },
+
+       {
+               .name = "current_css_set_cg_links",
+               .seq_show = current_css_set_cg_links_read,
+       },
+
+       {
+               .name = "cgroup_css_links",
+               .seq_show = cgroup_css_links_read,
+       },
+
+       {
+               .name = "releasable",
+               .read_u64 = releasable_read,
+       },
+
+       { }     /* terminate */
+};
+
+struct cgroup_subsys debug_cgrp_subsys = {
+       .css_alloc = debug_css_alloc,
+       .css_free = debug_css_free,
+       .legacy_cftypes = debug_files,
+};
+#endif /* CONFIG_CGROUP_DEBUG */
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
new file mode 100644 (file)
index 0000000..b308888
--- /dev/null
@@ -0,0 +1,2752 @@
+/*
+ *  kernel/cpuset.c
+ *
+ *  Processor and Memory placement constraints for sets of tasks.
+ *
+ *  Copyright (C) 2003 BULL SA.
+ *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
+ *  Copyright (C) 2006 Google, Inc
+ *
+ *  Portions derived from Patrick Mochel's sysfs code.
+ *  sysfs is Copyright (c) 2001-3 Patrick Mochel
+ *
+ *  2003-10-10 Written by Simon Derr.
+ *  2003-10-22 Updates by Stephen Hemminger.
+ *  2004 May-July Rework by Paul Jackson.
+ *  2006 Rework by Paul Menage to use generic cgroups
+ *  2008 Rework of the scheduler domains and CPU hotplug handling
+ *       by Max Krasnyansky
+ *
+ *  This file is subject to the terms and conditions of the GNU General Public
+ *  License.  See the file COPYING in the main directory of the Linux
+ *  distribution for more details.
+ */
+
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/cpuset.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/kmod.h>
+#include <linux/list.h>
+#include <linux/mempolicy.h>
+#include <linux/mm.h>
+#include <linux/memory.h>
+#include <linux/export.h>
+#include <linux/mount.h>
+#include <linux/namei.h>
+#include <linux/pagemap.h>
+#include <linux/proc_fs.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/security.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/stat.h>
+#include <linux/string.h>
+#include <linux/time.h>
+#include <linux/time64.h>
+#include <linux/backing-dev.h>
+#include <linux/sort.h>
+
+#include <linux/uaccess.h>
+#include <linux/atomic.h>
+#include <linux/mutex.h>
+#include <linux/cgroup.h>
+#include <linux/wait.h>
+
+DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
+
+/* See "Frequency meter" comments, below. */
+
+struct fmeter {
+       int cnt;                /* unprocessed events count */
+       int val;                /* most recent output value */
+       time64_t time;          /* clock (secs) when val computed */
+       spinlock_t lock;        /* guards read or write of above */
+};
+
+struct cpuset {
+       struct cgroup_subsys_state css;
+
+       unsigned long flags;            /* "unsigned long" so bitops work */
+
+       /*
+        * On default hierarchy:
+        *
+        * The user-configured masks can only be changed by writing to
+        * cpuset.cpus and cpuset.mems, and won't be limited by the
+        * parent masks.
+        *
+        * The effective masks is the real masks that apply to the tasks
+        * in the cpuset. They may be changed if the configured masks are
+        * changed or hotplug happens.
+        *
+        * effective_mask == configured_mask & parent's effective_mask,
+        * and if it ends up empty, it will inherit the parent's mask.
+        *
+        *
+        * On legacy hierachy:
+        *
+        * The user-configured masks are always the same with effective masks.
+        */
+
+       /* user-configured CPUs and Memory Nodes allow to tasks */
+       cpumask_var_t cpus_allowed;
+       nodemask_t mems_allowed;
+
+       /* effective CPUs and Memory Nodes allow to tasks */
+       cpumask_var_t effective_cpus;
+       nodemask_t effective_mems;
+
+       /*
+        * This is old Memory Nodes tasks took on.
+        *
+        * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
+        * - A new cpuset's old_mems_allowed is initialized when some
+        *   task is moved into it.
+        * - old_mems_allowed is used in cpuset_migrate_mm() when we change
+        *   cpuset.mems_allowed and have tasks' nodemask updated, and
+        *   then old_mems_allowed is updated to mems_allowed.
+        */
+       nodemask_t old_mems_allowed;
+
+       struct fmeter fmeter;           /* memory_pressure filter */
+
+       /*
+        * Tasks are being attached to this cpuset.  Used to prevent
+        * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
+        */
+       int attach_in_progress;
+
+       /* partition number for rebuild_sched_domains() */
+       int pn;
+
+       /* for custom sched domain */
+       int relax_domain_level;
+};
+
+static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
+{
+       return css ? container_of(css, struct cpuset, css) : NULL;
+}
+
+/* Retrieve the cpuset for a task */
+static inline struct cpuset *task_cs(struct task_struct *task)
+{
+       return css_cs(task_css(task, cpuset_cgrp_id));
+}
+
+static inline struct cpuset *parent_cs(struct cpuset *cs)
+{
+       return css_cs(cs->css.parent);
+}
+
+#ifdef CONFIG_NUMA
+static inline bool task_has_mempolicy(struct task_struct *task)
+{
+       return task->mempolicy;
+}
+#else
+static inline bool task_has_mempolicy(struct task_struct *task)
+{
+       return false;
+}
+#endif
+
+
+/* bits in struct cpuset flags field */
+typedef enum {
+       CS_ONLINE,
+       CS_CPU_EXCLUSIVE,
+       CS_MEM_EXCLUSIVE,
+       CS_MEM_HARDWALL,
+       CS_MEMORY_MIGRATE,
+       CS_SCHED_LOAD_BALANCE,
+       CS_SPREAD_PAGE,
+       CS_SPREAD_SLAB,
+} cpuset_flagbits_t;
+
+/* convenient tests for these bits */
+static inline bool is_cpuset_online(const struct cpuset *cs)
+{
+       return test_bit(CS_ONLINE, &cs->flags);
+}
+
+static inline int is_cpu_exclusive(const struct cpuset *cs)
+{
+       return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
+}
+
+static inline int is_mem_exclusive(const struct cpuset *cs)
+{
+       return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
+}
+
+static inline int is_mem_hardwall(const struct cpuset *cs)
+{
+       return test_bit(CS_MEM_HARDWALL, &cs->flags);
+}
+
+static inline int is_sched_load_balance(const struct cpuset *cs)
+{
+       return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+}
+
+static inline int is_memory_migrate(const struct cpuset *cs)
+{
+       return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
+}
+
+static inline int is_spread_page(const struct cpuset *cs)
+{
+       return test_bit(CS_SPREAD_PAGE, &cs->flags);
+}
+
+static inline int is_spread_slab(const struct cpuset *cs)
+{
+       return test_bit(CS_SPREAD_SLAB, &cs->flags);
+}
+
+static struct cpuset top_cpuset = {
+       .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
+                 (1 << CS_MEM_EXCLUSIVE)),
+};
+
+/**
+ * cpuset_for_each_child - traverse online children of a cpuset
+ * @child_cs: loop cursor pointing to the current child
+ * @pos_css: used for iteration
+ * @parent_cs: target cpuset to walk children of
+ *
+ * Walk @child_cs through the online children of @parent_cs.  Must be used
+ * with RCU read locked.
+ */
+#define cpuset_for_each_child(child_cs, pos_css, parent_cs)            \
+       css_for_each_child((pos_css), &(parent_cs)->css)                \
+               if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
+
+/**
+ * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
+ * @des_cs: loop cursor pointing to the current descendant
+ * @pos_css: used for iteration
+ * @root_cs: target cpuset to walk ancestor of
+ *
+ * Walk @des_cs through the online descendants of @root_cs.  Must be used
+ * with RCU read locked.  The caller may modify @pos_css by calling
+ * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
+ * iteration and the first node to be visited.
+ */
+#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)       \
+       css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
+               if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
+
+/*
+ * There are two global locks guarding cpuset structures - cpuset_mutex and
+ * callback_lock. We also require taking task_lock() when dereferencing a
+ * task's cpuset pointer. See "The task_lock() exception", at the end of this
+ * comment.
+ *
+ * A task must hold both locks to modify cpusets.  If a task holds
+ * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
+ * is the only task able to also acquire callback_lock and be able to
+ * modify cpusets.  It can perform various checks on the cpuset structure
+ * first, knowing nothing will change.  It can also allocate memory while
+ * just holding cpuset_mutex.  While it is performing these checks, various
+ * callback routines can briefly acquire callback_lock to query cpusets.
+ * Once it is ready to make the changes, it takes callback_lock, blocking
+ * everyone else.
+ *
+ * Calls to the kernel memory allocator can not be made while holding
+ * callback_lock, as that would risk double tripping on callback_lock
+ * from one of the callbacks into the cpuset code from within
+ * __alloc_pages().
+ *
+ * If a task is only holding callback_lock, then it has read-only
+ * access to cpusets.
+ *
+ * Now, the task_struct fields mems_allowed and mempolicy may be changed
+ * by other task, we use alloc_lock in the task_struct fields to protect
+ * them.
+ *
+ * The cpuset_common_file_read() handlers only hold callback_lock across
+ * small pieces of code, such as when reading out possibly multi-word
+ * cpumasks and nodemasks.
+ *
+ * Accessing a task's cpuset should be done in accordance with the
+ * guidelines for accessing subsystem state in kernel/cgroup.c
+ */
+
+static DEFINE_MUTEX(cpuset_mutex);
+static DEFINE_SPINLOCK(callback_lock);
+
+static struct workqueue_struct *cpuset_migrate_mm_wq;
+
+/*
+ * CPU / memory hotplug is handled asynchronously.
+ */
+static void cpuset_hotplug_workfn(struct work_struct *work);
+static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
+
+static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
+
+/*
+ * This is ugly, but preserves the userspace API for existing cpuset
+ * users. If someone tries to mount the "cpuset" filesystem, we
+ * silently switch it to mount "cgroup" instead
+ */
+static struct dentry *cpuset_mount(struct file_system_type *fs_type,
+                        int flags, const char *unused_dev_name, void *data)
+{
+       struct file_system_type *cgroup_fs = get_fs_type("cgroup");
+       struct dentry *ret = ERR_PTR(-ENODEV);
+       if (cgroup_fs) {
+               char mountopts[] =
+                       "cpuset,noprefix,"
+                       "release_agent=/sbin/cpuset_release_agent";
+               ret = cgroup_fs->mount(cgroup_fs, flags,
+                                          unused_dev_name, mountopts);
+               put_filesystem(cgroup_fs);
+       }
+       return ret;
+}
+
+static struct file_system_type cpuset_fs_type = {
+       .name = "cpuset",
+       .mount = cpuset_mount,
+};
+
+/*
+ * Return in pmask the portion of a cpusets's cpus_allowed that
+ * are online.  If none are online, walk up the cpuset hierarchy
+ * until we find one that does have some online cpus.
+ *
+ * One way or another, we guarantee to return some non-empty subset
+ * of cpu_online_mask.
+ *
+ * Call with callback_lock or cpuset_mutex held.
+ */
+static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
+{
+       while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
+               cs = parent_cs(cs);
+               if (unlikely(!cs)) {
+                       /*
+                        * The top cpuset doesn't have any online cpu as a
+                        * consequence of a race between cpuset_hotplug_work
+                        * and cpu hotplug notifier.  But we know the top
+                        * cpuset's effective_cpus is on its way to to be
+                        * identical to cpu_online_mask.
+                        */
+                       cpumask_copy(pmask, cpu_online_mask);
+                       return;
+               }
+       }
+       cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
+}
+
+/*
+ * Return in *pmask the portion of a cpusets's mems_allowed that
+ * are online, with memory.  If none are online with memory, walk
+ * up the cpuset hierarchy until we find one that does have some
+ * online mems.  The top cpuset always has some mems online.
+ *
+ * One way or another, we guarantee to return some non-empty subset
+ * of node_states[N_MEMORY].
+ *
+ * Call with callback_lock or cpuset_mutex held.
+ */
+static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
+{
+       while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
+               cs = parent_cs(cs);
+       nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
+}
+
+/*
+ * update task's spread flag if cpuset's page/slab spread flag is set
+ *
+ * Call with callback_lock or cpuset_mutex held.
+ */
+static void cpuset_update_task_spread_flag(struct cpuset *cs,
+                                       struct task_struct *tsk)
+{
+       if (is_spread_page(cs))
+               task_set_spread_page(tsk);
+       else
+               task_clear_spread_page(tsk);
+
+       if (is_spread_slab(cs))
+               task_set_spread_slab(tsk);
+       else
+               task_clear_spread_slab(tsk);
+}
+
+/*
+ * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
+ *
+ * One cpuset is a subset of another if all its allowed CPUs and
+ * Memory Nodes are a subset of the other, and its exclusive flags
+ * are only set if the other's are set.  Call holding cpuset_mutex.
+ */
+
+static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
+{
+       return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
+               nodes_subset(p->mems_allowed, q->mems_allowed) &&
+               is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
+               is_mem_exclusive(p) <= is_mem_exclusive(q);
+}
+
+/**
+ * alloc_trial_cpuset - allocate a trial cpuset
+ * @cs: the cpuset that the trial cpuset duplicates
+ */
+static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
+{
+       struct cpuset *trial;
+
+       trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
+       if (!trial)
+               return NULL;
+
+       if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
+               goto free_cs;
+       if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
+               goto free_cpus;
+
+       cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
+       cpumask_copy(trial->effective_cpus, cs->effective_cpus);
+       return trial;
+
+free_cpus:
+       free_cpumask_var(trial->cpus_allowed);
+free_cs:
+       kfree(trial);
+       return NULL;
+}
+
+/**
+ * free_trial_cpuset - free the trial cpuset
+ * @trial: the trial cpuset to be freed
+ */
+static void free_trial_cpuset(struct cpuset *trial)
+{
+       free_cpumask_var(trial->effective_cpus);
+       free_cpumask_var(trial->cpus_allowed);
+       kfree(trial);
+}
+
+/*
+ * validate_change() - Used to validate that any proposed cpuset change
+ *                    follows the structural rules for cpusets.
+ *
+ * If we replaced the flag and mask values of the current cpuset
+ * (cur) with those values in the trial cpuset (trial), would
+ * our various subset and exclusive rules still be valid?  Presumes
+ * cpuset_mutex held.
+ *
+ * 'cur' is the address of an actual, in-use cpuset.  Operations
+ * such as list traversal that depend on the actual address of the
+ * cpuset in the list must use cur below, not trial.
+ *
+ * 'trial' is the address of bulk structure copy of cur, with
+ * perhaps one or more of the fields cpus_allowed, mems_allowed,
+ * or flags changed to new, trial values.
+ *
+ * Return 0 if valid, -errno if not.
+ */
+
+static int validate_change(struct cpuset *cur, struct cpuset *trial)
+{
+       struct cgroup_subsys_state *css;
+       struct cpuset *c, *par;
+       int ret;
+
+       rcu_read_lock();
+
+       /* Each of our child cpusets must be a subset of us */
+       ret = -EBUSY;
+       cpuset_for_each_child(c, css, cur)
+               if (!is_cpuset_subset(c, trial))
+                       goto out;
+
+       /* Remaining checks don't apply to root cpuset */
+       ret = 0;
+       if (cur == &top_cpuset)
+               goto out;
+
+       par = parent_cs(cur);
+
+       /* On legacy hiearchy, we must be a subset of our parent cpuset. */
+       ret = -EACCES;
+       if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+           !is_cpuset_subset(trial, par))
+               goto out;
+
+       /*
+        * If either I or some sibling (!= me) is exclusive, we can't
+        * overlap
+        */
+       ret = -EINVAL;
+       cpuset_for_each_child(c, css, par) {
+               if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
+                   c != cur &&
+                   cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
+                       goto out;
+               if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
+                   c != cur &&
+                   nodes_intersects(trial->mems_allowed, c->mems_allowed))
+                       goto out;
+       }
+
+       /*
+        * Cpusets with tasks - existing or newly being attached - can't
+        * be changed to have empty cpus_allowed or mems_allowed.
+        */
+       ret = -ENOSPC;
+       if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
+               if (!cpumask_empty(cur->cpus_allowed) &&
+                   cpumask_empty(trial->cpus_allowed))
+                       goto out;
+               if (!nodes_empty(cur->mems_allowed) &&
+                   nodes_empty(trial->mems_allowed))
+                       goto out;
+       }
+
+       /*
+        * We can't shrink if we won't have enough room for SCHED_DEADLINE
+        * tasks.
+        */
+       ret = -EBUSY;
+       if (is_cpu_exclusive(cur) &&
+           !cpuset_cpumask_can_shrink(cur->cpus_allowed,
+                                      trial->cpus_allowed))
+               goto out;
+
+       ret = 0;
+out:
+       rcu_read_unlock();
+       return ret;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Helper routine for generate_sched_domains().
+ * Do cpusets a, b have overlapping effective cpus_allowed masks?
+ */
+static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
+{
+       return cpumask_intersects(a->effective_cpus, b->effective_cpus);
+}
+
+static void
+update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
+{
+       if (dattr->relax_domain_level < c->relax_domain_level)
+               dattr->relax_domain_level = c->relax_domain_level;
+       return;
+}
+
+static void update_domain_attr_tree(struct sched_domain_attr *dattr,
+                                   struct cpuset *root_cs)
+{
+       struct cpuset *cp;
+       struct cgroup_subsys_state *pos_css;
+
+       rcu_read_lock();
+       cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
+               /* skip the whole subtree if @cp doesn't have any CPU */
+               if (cpumask_empty(cp->cpus_allowed)) {
+                       pos_css = css_rightmost_descendant(pos_css);
+                       continue;
+               }
+
+               if (is_sched_load_balance(cp))
+                       update_domain_attr(dattr, cp);
+       }
+       rcu_read_unlock();
+}
+
+/*
+ * generate_sched_domains()
+ *
+ * This function builds a partial partition of the systems CPUs
+ * A 'partial partition' is a set of non-overlapping subsets whose
+ * union is a subset of that set.
+ * The output of this function needs to be passed to kernel/sched/core.c
+ * partition_sched_domains() routine, which will rebuild the scheduler's
+ * load balancing domains (sched domains) as specified by that partial
+ * partition.
+ *
+ * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
+ * for a background explanation of this.
+ *
+ * Does not return errors, on the theory that the callers of this
+ * routine would rather not worry about failures to rebuild sched
+ * domains when operating in the severe memory shortage situations
+ * that could cause allocation failures below.
+ *
+ * Must be called with cpuset_mutex held.
+ *
+ * The three key local variables below are:
+ *    q  - a linked-list queue of cpuset pointers, used to implement a
+ *        top-down scan of all cpusets.  This scan loads a pointer
+ *        to each cpuset marked is_sched_load_balance into the
+ *        array 'csa'.  For our purposes, rebuilding the schedulers
+ *        sched domains, we can ignore !is_sched_load_balance cpusets.
+ *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
+ *        that need to be load balanced, for convenient iterative
+ *        access by the subsequent code that finds the best partition,
+ *        i.e the set of domains (subsets) of CPUs such that the
+ *        cpus_allowed of every cpuset marked is_sched_load_balance
+ *        is a subset of one of these domains, while there are as
+ *        many such domains as possible, each as small as possible.
+ * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
+ *        the kernel/sched/core.c routine partition_sched_domains() in a
+ *        convenient format, that can be easily compared to the prior
+ *        value to determine what partition elements (sched domains)
+ *        were changed (added or removed.)
+ *
+ * Finding the best partition (set of domains):
+ *     The triple nested loops below over i, j, k scan over the
+ *     load balanced cpusets (using the array of cpuset pointers in
+ *     csa[]) looking for pairs of cpusets that have overlapping
+ *     cpus_allowed, but which don't have the same 'pn' partition
+ *     number and gives them in the same partition number.  It keeps
+ *     looping on the 'restart' label until it can no longer find
+ *     any such pairs.
+ *
+ *     The union of the cpus_allowed masks from the set of
+ *     all cpusets having the same 'pn' value then form the one
+ *     element of the partition (one sched domain) to be passed to
+ *     partition_sched_domains().
+ */
+static int generate_sched_domains(cpumask_var_t **domains,
+                       struct sched_domain_attr **attributes)
+{
+       struct cpuset *cp;      /* scans q */
+       struct cpuset **csa;    /* array of all cpuset ptrs */
+       int csn;                /* how many cpuset ptrs in csa so far */
+       int i, j, k;            /* indices for partition finding loops */
+       cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
+       cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
+       struct sched_domain_attr *dattr;  /* attributes for custom domains */
+       int ndoms = 0;          /* number of sched domains in result */
+       int nslot;              /* next empty doms[] struct cpumask slot */
+       struct cgroup_subsys_state *pos_css;
+
+       doms = NULL;
+       dattr = NULL;
+       csa = NULL;
+
+       if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
+               goto done;
+       cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
+
+       /* Special case for the 99% of systems with one, full, sched domain */
+       if (is_sched_load_balance(&top_cpuset)) {
+               ndoms = 1;
+               doms = alloc_sched_domains(ndoms);
+               if (!doms)
+                       goto done;
+
+               dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
+               if (dattr) {
+                       *dattr = SD_ATTR_INIT;
+                       update_domain_attr_tree(dattr, &top_cpuset);
+               }
+               cpumask_and(doms[0], top_cpuset.effective_cpus,
+                                    non_isolated_cpus);
+
+               goto done;
+       }
+
+       csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
+       if (!csa)
+               goto done;
+       csn = 0;
+
+       rcu_read_lock();
+       cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
+               if (cp == &top_cpuset)
+                       continue;
+               /*
+                * Continue traversing beyond @cp iff @cp has some CPUs and
+                * isn't load balancing.  The former is obvious.  The
+                * latter: All child cpusets contain a subset of the
+                * parent's cpus, so just skip them, and then we call
+                * update_domain_attr_tree() to calc relax_domain_level of
+                * the corresponding sched domain.
+                */
+               if (!cpumask_empty(cp->cpus_allowed) &&
+                   !(is_sched_load_balance(cp) &&
+                     cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
+                       continue;
+
+               if (is_sched_load_balance(cp))
+                       csa[csn++] = cp;
+
+               /* skip @cp's subtree */
+               pos_css = css_rightmost_descendant(pos_css);
+       }
+       rcu_read_unlock();
+
+       for (i = 0; i < csn; i++)
+               csa[i]->pn = i;
+       ndoms = csn;
+
+restart:
+       /* Find the best partition (set of sched domains) */
+       for (i = 0; i < csn; i++) {
+               struct cpuset *a = csa[i];
+               int apn = a->pn;
+
+               for (j = 0; j < csn; j++) {
+                       struct cpuset *b = csa[j];
+                       int bpn = b->pn;
+
+                       if (apn != bpn && cpusets_overlap(a, b)) {
+                               for (k = 0; k < csn; k++) {
+                                       struct cpuset *c = csa[k];
+
+                                       if (c->pn == bpn)
+                                               c->pn = apn;
+                               }
+                               ndoms--;        /* one less element */
+                               goto restart;
+                       }
+               }
+       }
+
+       /*
+        * Now we know how many domains to create.
+        * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
+        */
+       doms = alloc_sched_domains(ndoms);
+       if (!doms)
+               goto done;
+
+       /*
+        * The rest of the code, including the scheduler, can deal with
+        * dattr==NULL case. No need to abort if alloc fails.
+        */
+       dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
+
+       for (nslot = 0, i = 0; i < csn; i++) {
+               struct cpuset *a = csa[i];
+               struct cpumask *dp;
+               int apn = a->pn;
+
+               if (apn < 0) {
+                       /* Skip completed partitions */
+                       continue;
+               }
+
+               dp = doms[nslot];
+
+               if (nslot == ndoms) {
+                       static int warnings = 10;
+                       if (warnings) {
+                               pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
+                                       nslot, ndoms, csn, i, apn);
+                               warnings--;
+                       }
+                       continue;
+               }
+
+               cpumask_clear(dp);
+               if (dattr)
+                       *(dattr + nslot) = SD_ATTR_INIT;
+               for (j = i; j < csn; j++) {
+                       struct cpuset *b = csa[j];
+
+                       if (apn == b->pn) {
+                               cpumask_or(dp, dp, b->effective_cpus);
+                               cpumask_and(dp, dp, non_isolated_cpus);
+                               if (dattr)
+                                       update_domain_attr_tree(dattr + nslot, b);
+
+                               /* Done with this partition */
+                               b->pn = -1;
+                       }
+               }
+               nslot++;
+       }
+       BUG_ON(nslot != ndoms);
+
+done:
+       free_cpumask_var(non_isolated_cpus);
+       kfree(csa);
+
+       /*
+        * Fallback to the default domain if kmalloc() failed.
+        * See comments in partition_sched_domains().
+        */
+       if (doms == NULL)
+               ndoms = 1;
+
+       *domains    = doms;
+       *attributes = dattr;
+       return ndoms;
+}
+
+/*
+ * Rebuild scheduler domains.
+ *
+ * If the flag 'sched_load_balance' of any cpuset with non-empty
+ * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
+ * which has that flag enabled, or if any cpuset with a non-empty
+ * 'cpus' is removed, then call this routine to rebuild the
+ * scheduler's dynamic sched domains.
+ *
+ * Call with cpuset_mutex held.  Takes get_online_cpus().
+ */
+static void rebuild_sched_domains_locked(void)
+{
+       struct sched_domain_attr *attr;
+       cpumask_var_t *doms;
+       int ndoms;
+
+       lockdep_assert_held(&cpuset_mutex);
+       get_online_cpus();
+
+       /*
+        * We have raced with CPU hotplug. Don't do anything to avoid
+        * passing doms with offlined cpu to partition_sched_domains().
+        * Anyways, hotplug work item will rebuild sched domains.
+        */
+       if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
+               goto out;
+
+       /* Generate domain masks and attrs */
+       ndoms = generate_sched_domains(&doms, &attr);
+
+       /* Have scheduler rebuild the domains */
+       partition_sched_domains(ndoms, doms, attr);
+out:
+       put_online_cpus();
+}
+#else /* !CONFIG_SMP */
+static void rebuild_sched_domains_locked(void)
+{
+}
+#endif /* CONFIG_SMP */
+
+void rebuild_sched_domains(void)
+{
+       mutex_lock(&cpuset_mutex);
+       rebuild_sched_domains_locked();
+       mutex_unlock(&cpuset_mutex);
+}
+
+/**
+ * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
+ * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
+ *
+ * Iterate through each task of @cs updating its cpus_allowed to the
+ * effective cpuset's.  As this function is called with cpuset_mutex held,
+ * cpuset membership stays stable.
+ */
+static void update_tasks_cpumask(struct cpuset *cs)
+{
+       struct css_task_iter it;
+       struct task_struct *task;
+
+       css_task_iter_start(&cs->css, &it);
+       while ((task = css_task_iter_next(&it)))
+               set_cpus_allowed_ptr(task, cs->effective_cpus);
+       css_task_iter_end(&it);
+}
+
+/*
+ * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
+ * @cs: the cpuset to consider
+ * @new_cpus: temp variable for calculating new effective_cpus
+ *
+ * When congifured cpumask is changed, the effective cpumasks of this cpuset
+ * and all its descendants need to be updated.
+ *
+ * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
+ *
+ * Called with cpuset_mutex held
+ */
+static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
+{
+       struct cpuset *cp;
+       struct cgroup_subsys_state *pos_css;
+       bool need_rebuild_sched_domains = false;
+
+       rcu_read_lock();
+       cpuset_for_each_descendant_pre(cp, pos_css, cs) {
+               struct cpuset *parent = parent_cs(cp);
+
+               cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
+
+               /*
+                * If it becomes empty, inherit the effective mask of the
+                * parent, which is guaranteed to have some CPUs.
+                */
+               if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+                   cpumask_empty(new_cpus))
+                       cpumask_copy(new_cpus, parent->effective_cpus);
+
+               /* Skip the whole subtree if the cpumask remains the same. */
+               if (cpumask_equal(new_cpus, cp->effective_cpus)) {
+                       pos_css = css_rightmost_descendant(pos_css);
+                       continue;
+               }
+
+               if (!css_tryget_online(&cp->css))
+                       continue;
+               rcu_read_unlock();
+
+               spin_lock_irq(&callback_lock);
+               cpumask_copy(cp->effective_cpus, new_cpus);
+               spin_unlock_irq(&callback_lock);
+
+               WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+                       !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
+
+               update_tasks_cpumask(cp);
+
+               /*
+                * If the effective cpumask of any non-empty cpuset is changed,
+                * we need to rebuild sched domains.
+                */
+               if (!cpumask_empty(cp->cpus_allowed) &&
+                   is_sched_load_balance(cp))
+                       need_rebuild_sched_domains = true;
+
+               rcu_read_lock();
+               css_put(&cp->css);
+       }
+       rcu_read_unlock();
+
+       if (need_rebuild_sched_domains)
+               rebuild_sched_domains_locked();
+}
+
+/**
+ * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
+ * @cs: the cpuset to consider
+ * @trialcs: trial cpuset
+ * @buf: buffer of cpu numbers written to this cpuset
+ */
+static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
+                         const char *buf)
+{
+       int retval;
+
+       /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
+       if (cs == &top_cpuset)
+               return -EACCES;
+
+       /*
+        * An empty cpus_allowed is ok only if the cpuset has no tasks.
+        * Since cpulist_parse() fails on an empty mask, we special case
+        * that parsing.  The validate_change() call ensures that cpusets
+        * with tasks have cpus.
+        */
+       if (!*buf) {
+               cpumask_clear(trialcs->cpus_allowed);
+       } else {
+               retval = cpulist_parse(buf, trialcs->cpus_allowed);
+               if (retval < 0)
+                       return retval;
+
+               if (!cpumask_subset(trialcs->cpus_allowed,
+                                   top_cpuset.cpus_allowed))
+                       return -EINVAL;
+       }
+
+       /* Nothing to do if the cpus didn't change */
+       if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
+               return 0;
+
+       retval = validate_change(cs, trialcs);
+       if (retval < 0)
+               return retval;
+
+       spin_lock_irq(&callback_lock);
+       cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
+       spin_unlock_irq(&callback_lock);
+
+       /* use trialcs->cpus_allowed as a temp variable */
+       update_cpumasks_hier(cs, trialcs->cpus_allowed);
+       return 0;
+}
+
+/*
+ * Migrate memory region from one set of nodes to another.  This is
+ * performed asynchronously as it can be called from process migration path
+ * holding locks involved in process management.  All mm migrations are
+ * performed in the queued order and can be waited for by flushing
+ * cpuset_migrate_mm_wq.
+ */
+
+struct cpuset_migrate_mm_work {
+       struct work_struct      work;
+       struct mm_struct        *mm;
+       nodemask_t              from;
+       nodemask_t              to;
+};
+
+static void cpuset_migrate_mm_workfn(struct work_struct *work)
+{
+       struct cpuset_migrate_mm_work *mwork =
+               container_of(work, struct cpuset_migrate_mm_work, work);
+
+       /* on a wq worker, no need to worry about %current's mems_allowed */
+       do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
+       mmput(mwork->mm);
+       kfree(mwork);
+}
+
+static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
+                                                       const nodemask_t *to)
+{
+       struct cpuset_migrate_mm_work *mwork;
+
+       mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
+       if (mwork) {
+               mwork->mm = mm;
+               mwork->from = *from;
+               mwork->to = *to;
+               INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
+               queue_work(cpuset_migrate_mm_wq, &mwork->work);
+       } else {
+               mmput(mm);
+       }
+}
+
+static void cpuset_post_attach(void)
+{
+       flush_workqueue(cpuset_migrate_mm_wq);
+}
+
+/*
+ * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
+ * @tsk: the task to change
+ * @newmems: new nodes that the task will be set
+ *
+ * In order to avoid seeing no nodes if the old and new nodes are disjoint,
+ * we structure updates as setting all new allowed nodes, then clearing newly
+ * disallowed ones.
+ */
+static void cpuset_change_task_nodemask(struct task_struct *tsk,
+                                       nodemask_t *newmems)
+{
+       bool need_loop;
+
+       task_lock(tsk);
+       /*
+        * Determine if a loop is necessary if another thread is doing
+        * read_mems_allowed_begin().  If at least one node remains unchanged and
+        * tsk does not have a mempolicy, then an empty nodemask will not be
+        * possible when mems_allowed is larger than a word.
+        */
+       need_loop = task_has_mempolicy(tsk) ||
+                       !nodes_intersects(*newmems, tsk->mems_allowed);
+
+       if (need_loop) {
+               local_irq_disable();
+               write_seqcount_begin(&tsk->mems_allowed_seq);
+       }
+
+       nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
+       mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
+
+       mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
+       tsk->mems_allowed = *newmems;
+
+       if (need_loop) {
+               write_seqcount_end(&tsk->mems_allowed_seq);
+               local_irq_enable();
+       }
+
+       task_unlock(tsk);
+}
+
+static void *cpuset_being_rebound;
+
+/**
+ * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
+ * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
+ *
+ * Iterate through each task of @cs updating its mems_allowed to the
+ * effective cpuset's.  As this function is called with cpuset_mutex held,
+ * cpuset membership stays stable.
+ */
+static void update_tasks_nodemask(struct cpuset *cs)
+{
+       static nodemask_t newmems;      /* protected by cpuset_mutex */
+       struct css_task_iter it;
+       struct task_struct *task;
+
+       cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
+
+       guarantee_online_mems(cs, &newmems);
+
+       /*
+        * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
+        * take while holding tasklist_lock.  Forks can happen - the
+        * mpol_dup() cpuset_being_rebound check will catch such forks,
+        * and rebind their vma mempolicies too.  Because we still hold
+        * the global cpuset_mutex, we know that no other rebind effort
+        * will be contending for the global variable cpuset_being_rebound.
+        * It's ok if we rebind the same mm twice; mpol_rebind_mm()
+        * is idempotent.  Also migrate pages in each mm to new nodes.
+        */
+       css_task_iter_start(&cs->css, &it);
+       while ((task = css_task_iter_next(&it))) {
+               struct mm_struct *mm;
+               bool migrate;
+
+               cpuset_change_task_nodemask(task, &newmems);
+
+               mm = get_task_mm(task);
+               if (!mm)
+                       continue;
+
+               migrate = is_memory_migrate(cs);
+
+               mpol_rebind_mm(mm, &cs->mems_allowed);
+               if (migrate)
+                       cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
+               else
+                       mmput(mm);
+       }
+       css_task_iter_end(&it);
+
+       /*
+        * All the tasks' nodemasks have been updated, update
+        * cs->old_mems_allowed.
+        */
+       cs->old_mems_allowed = newmems;
+
+       /* We're done rebinding vmas to this cpuset's new mems_allowed. */
+       cpuset_being_rebound = NULL;
+}
+
+/*
+ * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
+ * @cs: the cpuset to consider
+ * @new_mems: a temp variable for calculating new effective_mems
+ *
+ * When configured nodemask is changed, the effective nodemasks of this cpuset
+ * and all its descendants need to be updated.
+ *
+ * On legacy hiearchy, effective_mems will be the same with mems_allowed.
+ *
+ * Called with cpuset_mutex held
+ */
+static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
+{
+       struct cpuset *cp;
+       struct cgroup_subsys_state *pos_css;
+
+       rcu_read_lock();
+       cpuset_for_each_descendant_pre(cp, pos_css, cs) {
+               struct cpuset *parent = parent_cs(cp);
+
+               nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
+
+               /*
+                * If it becomes empty, inherit the effective mask of the
+                * parent, which is guaranteed to have some MEMs.
+                */
+               if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+                   nodes_empty(*new_mems))
+                       *new_mems = parent->effective_mems;
+
+               /* Skip the whole subtree if the nodemask remains the same. */
+               if (nodes_equal(*new_mems, cp->effective_mems)) {
+                       pos_css = css_rightmost_descendant(pos_css);
+                       continue;
+               }
+
+               if (!css_tryget_online(&cp->css))
+                       continue;
+               rcu_read_unlock();
+
+               spin_lock_irq(&callback_lock);
+               cp->effective_mems = *new_mems;
+               spin_unlock_irq(&callback_lock);
+
+               WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+                       !nodes_equal(cp->mems_allowed, cp->effective_mems));
+
+               update_tasks_nodemask(cp);
+
+               rcu_read_lock();
+               css_put(&cp->css);
+       }
+       rcu_read_unlock();
+}
+
+/*
+ * Handle user request to change the 'mems' memory placement
+ * of a cpuset.  Needs to validate the request, update the
+ * cpusets mems_allowed, and for each task in the cpuset,
+ * update mems_allowed and rebind task's mempolicy and any vma
+ * mempolicies and if the cpuset is marked 'memory_migrate',
+ * migrate the tasks pages to the new memory.
+ *
+ * Call with cpuset_mutex held. May take callback_lock during call.
+ * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
+ * lock each such tasks mm->mmap_sem, scan its vma's and rebind
+ * their mempolicies to the cpusets new mems_allowed.
+ */
+static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
+                          const char *buf)
+{
+       int retval;
+
+       /*
+        * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
+        * it's read-only
+        */
+       if (cs == &top_cpuset) {
+               retval = -EACCES;
+               goto done;
+       }
+
+       /*
+        * An empty mems_allowed is ok iff there are no tasks in the cpuset.
+        * Since nodelist_parse() fails on an empty mask, we special case
+        * that parsing.  The validate_change() call ensures that cpusets
+        * with tasks have memory.
+        */
+       if (!*buf) {
+               nodes_clear(trialcs->mems_allowed);
+       } else {
+               retval = nodelist_parse(buf, trialcs->mems_allowed);
+               if (retval < 0)
+                       goto done;
+
+               if (!nodes_subset(trialcs->mems_allowed,
+                                 top_cpuset.mems_allowed)) {
+                       retval = -EINVAL;
+                       goto done;
+               }
+       }
+
+       if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
+               retval = 0;             /* Too easy - nothing to do */
+               goto done;
+       }
+       retval = validate_change(cs, trialcs);
+       if (retval < 0)
+               goto done;
+
+       spin_lock_irq(&callback_lock);
+       cs->mems_allowed = trialcs->mems_allowed;
+       spin_unlock_irq(&callback_lock);
+
+       /* use trialcs->mems_allowed as a temp variable */
+       update_nodemasks_hier(cs, &trialcs->mems_allowed);
+done:
+       return retval;
+}
+
+int current_cpuset_is_being_rebound(void)
+{
+       int ret;
+
+       rcu_read_lock();
+       ret = task_cs(current) == cpuset_being_rebound;
+       rcu_read_unlock();
+
+       return ret;
+}
+
+static int update_relax_domain_level(struct cpuset *cs, s64 val)
+{
+#ifdef CONFIG_SMP
+       if (val < -1 || val >= sched_domain_level_max)
+               return -EINVAL;
+#endif
+
+       if (val != cs->relax_domain_level) {
+               cs->relax_domain_level = val;
+               if (!cpumask_empty(cs->cpus_allowed) &&
+                   is_sched_load_balance(cs))
+                       rebuild_sched_domains_locked();
+       }
+
+       return 0;
+}
+
+/**
+ * update_tasks_flags - update the spread flags of tasks in the cpuset.
+ * @cs: the cpuset in which each task's spread flags needs to be changed
+ *
+ * Iterate through each task of @cs updating its spread flags.  As this
+ * function is called with cpuset_mutex held, cpuset membership stays
+ * stable.
+ */
+static void update_tasks_flags(struct cpuset *cs)
+{
+       struct css_task_iter it;
+       struct task_struct *task;
+
+       css_task_iter_start(&cs->css, &it);
+       while ((task = css_task_iter_next(&it)))
+               cpuset_update_task_spread_flag(cs, task);
+       css_task_iter_end(&it);
+}
+
+/*
+ * update_flag - read a 0 or a 1 in a file and update associated flag
+ * bit:                the bit to update (see cpuset_flagbits_t)
+ * cs:         the cpuset to update
+ * turning_on:         whether the flag is being set or cleared
+ *
+ * Call with cpuset_mutex held.
+ */
+
+static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
+                      int turning_on)
+{
+       struct cpuset *trialcs;
+       int balance_flag_changed;
+       int spread_flag_changed;
+       int err;
+
+       trialcs = alloc_trial_cpuset(cs);
+       if (!trialcs)
+               return -ENOMEM;
+
+       if (turning_on)
+               set_bit(bit, &trialcs->flags);
+       else
+               clear_bit(bit, &trialcs->flags);
+
+       err = validate_change(cs, trialcs);
+       if (err < 0)
+               goto out;
+
+       balance_flag_changed = (is_sched_load_balance(cs) !=
+                               is_sched_load_balance(trialcs));
+
+       spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
+                       || (is_spread_page(cs) != is_spread_page(trialcs)));
+
+       spin_lock_irq(&callback_lock);
+       cs->flags = trialcs->flags;
+       spin_unlock_irq(&callback_lock);
+
+       if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
+               rebuild_sched_domains_locked();
+
+       if (spread_flag_changed)
+               update_tasks_flags(cs);
+out:
+       free_trial_cpuset(trialcs);
+       return err;
+}
+
+/*
+ * Frequency meter - How fast is some event occurring?
+ *
+ * These routines manage a digitally filtered, constant time based,
+ * event frequency meter.  There are four routines:
+ *   fmeter_init() - initialize a frequency meter.
+ *   fmeter_markevent() - called each time the event happens.
+ *   fmeter_getrate() - returns the recent rate of such events.
+ *   fmeter_update() - internal routine used to update fmeter.
+ *
+ * A common data structure is passed to each of these routines,
+ * which is used to keep track of the state required to manage the
+ * frequency meter and its digital filter.
+ *
+ * The filter works on the number of events marked per unit time.
+ * The filter is single-pole low-pass recursive (IIR).  The time unit
+ * is 1 second.  Arithmetic is done using 32-bit integers scaled to
+ * simulate 3 decimal digits of precision (multiplied by 1000).
+ *
+ * With an FM_COEF of 933, and a time base of 1 second, the filter
+ * has a half-life of 10 seconds, meaning that if the events quit
+ * happening, then the rate returned from the fmeter_getrate()
+ * will be cut in half each 10 seconds, until it converges to zero.
+ *
+ * It is not worth doing a real infinitely recursive filter.  If more
+ * than FM_MAXTICKS ticks have elapsed since the last filter event,
+ * just compute FM_MAXTICKS ticks worth, by which point the level
+ * will be stable.
+ *
+ * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
+ * arithmetic overflow in the fmeter_update() routine.
+ *
+ * Given the simple 32 bit integer arithmetic used, this meter works
+ * best for reporting rates between one per millisecond (msec) and
+ * one per 32 (approx) seconds.  At constant rates faster than one
+ * per msec it maxes out at values just under 1,000,000.  At constant
+ * rates between one per msec, and one per second it will stabilize
+ * to a value N*1000, where N is the rate of events per second.
+ * At constant rates between one per second and one per 32 seconds,
+ * it will be choppy, moving up on the seconds that have an event,
+ * and then decaying until the next event.  At rates slower than
+ * about one in 32 seconds, it decays all the way back to zero between
+ * each event.
+ */
+
+#define FM_COEF 933            /* coefficient for half-life of 10 secs */
+#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
+#define FM_MAXCNT 1000000      /* limit cnt to avoid overflow */
+#define FM_SCALE 1000          /* faux fixed point scale */
+
+/* Initialize a frequency meter */
+static void fmeter_init(struct fmeter *fmp)
+{
+       fmp->cnt = 0;
+       fmp->val = 0;
+       fmp->time = 0;
+       spin_lock_init(&fmp->lock);
+}
+
+/* Internal meter update - process cnt events and update value */
+static void fmeter_update(struct fmeter *fmp)
+{
+       time64_t now;
+       u32 ticks;
+
+       now = ktime_get_seconds();
+       ticks = now - fmp->time;
+
+       if (ticks == 0)
+               return;
+
+       ticks = min(FM_MAXTICKS, ticks);
+       while (ticks-- > 0)
+               fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
+       fmp->time = now;
+
+       fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
+       fmp->cnt = 0;
+}
+
+/* Process any previous ticks, then bump cnt by one (times scale). */
+static void fmeter_markevent(struct fmeter *fmp)
+{
+       spin_lock(&fmp->lock);
+       fmeter_update(fmp);
+       fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
+       spin_unlock(&fmp->lock);
+}
+
+/* Process any previous ticks, then return current value. */
+static int fmeter_getrate(struct fmeter *fmp)
+{
+       int val;
+
+       spin_lock(&fmp->lock);
+       fmeter_update(fmp);
+       val = fmp->val;
+       spin_unlock(&fmp->lock);
+       return val;
+}
+
+static struct cpuset *cpuset_attach_old_cs;
+
+/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
+static int cpuset_can_attach(struct cgroup_taskset *tset)
+{
+       struct cgroup_subsys_state *css;
+       struct cpuset *cs;
+       struct task_struct *task;
+       int ret;
+
+       /* used later by cpuset_attach() */
+       cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
+       cs = css_cs(css);
+
+       mutex_lock(&cpuset_mutex);
+
+       /* allow moving tasks into an empty cpuset if on default hierarchy */
+       ret = -ENOSPC;
+       if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
+           (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
+               goto out_unlock;
+
+       cgroup_taskset_for_each(task, css, tset) {
+               ret = task_can_attach(task, cs->cpus_allowed);
+               if (ret)
+                       goto out_unlock;
+               ret = security_task_setscheduler(task);
+               if (ret)
+                       goto out_unlock;
+       }
+
+       /*
+        * Mark attach is in progress.  This makes validate_change() fail
+        * changes which zero cpus/mems_allowed.
+        */
+       cs->attach_in_progress++;
+       ret = 0;
+out_unlock:
+       mutex_unlock(&cpuset_mutex);
+       return ret;
+}
+
+static void cpuset_cancel_attach(struct cgroup_taskset *tset)
+{
+       struct cgroup_subsys_state *css;
+       struct cpuset *cs;
+
+       cgroup_taskset_first(tset, &css);
+       cs = css_cs(css);
+
+       mutex_lock(&cpuset_mutex);
+       css_cs(css)->attach_in_progress--;
+       mutex_unlock(&cpuset_mutex);
+}
+
+/*
+ * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
+ * but we can't allocate it dynamically there.  Define it global and
+ * allocate from cpuset_init().
+ */
+static cpumask_var_t cpus_attach;
+
+static void cpuset_attach(struct cgroup_taskset *tset)
+{
+       /* static buf protected by cpuset_mutex */
+       static nodemask_t cpuset_attach_nodemask_to;
+       struct task_struct *task;
+       struct task_struct *leader;
+       struct cgroup_subsys_state *css;
+       struct cpuset *cs;
+       struct cpuset *oldcs = cpuset_attach_old_cs;
+
+       cgroup_taskset_first(tset, &css);
+       cs = css_cs(css);
+
+       mutex_lock(&cpuset_mutex);
+
+       /* prepare for attach */
+       if (cs == &top_cpuset)
+               cpumask_copy(cpus_attach, cpu_possible_mask);
+       else
+               guarantee_online_cpus(cs, cpus_attach);
+
+       guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
+
+       cgroup_taskset_for_each(task, css, tset) {
+               /*
+                * can_attach beforehand should guarantee that this doesn't
+                * fail.  TODO: have a better way to handle failure here
+                */
+               WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
+
+               cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
+               cpuset_update_task_spread_flag(cs, task);
+       }
+
+       /*
+        * Change mm for all threadgroup leaders. This is expensive and may
+        * sleep and should be moved outside migration path proper.
+        */
+       cpuset_attach_nodemask_to = cs->effective_mems;
+       cgroup_taskset_for_each_leader(leader, css, tset) {
+               struct mm_struct *mm = get_task_mm(leader);
+
+               if (mm) {
+                       mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
+
+                       /*
+                        * old_mems_allowed is the same with mems_allowed
+                        * here, except if this task is being moved
+                        * automatically due to hotplug.  In that case
+                        * @mems_allowed has been updated and is empty, so
+                        * @old_mems_allowed is the right nodesets that we
+                        * migrate mm from.
+                        */
+                       if (is_memory_migrate(cs))
+                               cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
+                                                 &cpuset_attach_nodemask_to);
+                       else
+                               mmput(mm);
+               }
+       }
+
+       cs->old_mems_allowed = cpuset_attach_nodemask_to;
+
+       cs->attach_in_progress--;
+       if (!cs->attach_in_progress)
+               wake_up(&cpuset_attach_wq);
+
+       mutex_unlock(&cpuset_mutex);
+}
+
+/* The various types of files and directories in a cpuset file system */
+
+typedef enum {
+       FILE_MEMORY_MIGRATE,
+       FILE_CPULIST,
+       FILE_MEMLIST,
+       FILE_EFFECTIVE_CPULIST,
+       FILE_EFFECTIVE_MEMLIST,
+       FILE_CPU_EXCLUSIVE,
+       FILE_MEM_EXCLUSIVE,
+       FILE_MEM_HARDWALL,
+       FILE_SCHED_LOAD_BALANCE,
+       FILE_SCHED_RELAX_DOMAIN_LEVEL,
+       FILE_MEMORY_PRESSURE_ENABLED,
+       FILE_MEMORY_PRESSURE,
+       FILE_SPREAD_PAGE,
+       FILE_SPREAD_SLAB,
+} cpuset_filetype_t;
+
+static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
+                           u64 val)
+{
+       struct cpuset *cs = css_cs(css);
+       cpuset_filetype_t type = cft->private;
+       int retval = 0;
+
+       mutex_lock(&cpuset_mutex);
+       if (!is_cpuset_online(cs)) {
+               retval = -ENODEV;
+               goto out_unlock;
+       }
+
+       switch (type) {
+       case FILE_CPU_EXCLUSIVE:
+               retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
+               break;
+       case FILE_MEM_EXCLUSIVE:
+               retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
+               break;
+       case FILE_MEM_HARDWALL:
+               retval = update_flag(CS_MEM_HARDWALL, cs, val);
+               break;
+       case FILE_SCHED_LOAD_BALANCE:
+               retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
+               break;
+       case FILE_MEMORY_MIGRATE:
+               retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
+               break;
+       case FILE_MEMORY_PRESSURE_ENABLED:
+               cpuset_memory_pressure_enabled = !!val;
+               break;
+       case FILE_SPREAD_PAGE:
+               retval = update_flag(CS_SPREAD_PAGE, cs, val);
+               break;
+       case FILE_SPREAD_SLAB:
+               retval = update_flag(CS_SPREAD_SLAB, cs, val);
+               break;
+       default:
+               retval = -EINVAL;
+               break;
+       }
+out_unlock:
+       mutex_unlock(&cpuset_mutex);
+       return retval;
+}
+
+static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
+                           s64 val)
+{
+       struct cpuset *cs = css_cs(css);
+       cpuset_filetype_t type = cft->private;
+       int retval = -ENODEV;
+
+       mutex_lock(&cpuset_mutex);
+       if (!is_cpuset_online(cs))
+               goto out_unlock;
+
+       switch (type) {
+       case FILE_SCHED_RELAX_DOMAIN_LEVEL:
+               retval = update_relax_domain_level(cs, val);
+               break;
+       default:
+               retval = -EINVAL;
+               break;
+       }
+out_unlock:
+       mutex_unlock(&cpuset_mutex);
+       return retval;
+}
+
+/*
+ * Common handling for a write to a "cpus" or "mems" file.
+ */
+static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
+                                   char *buf, size_t nbytes, loff_t off)
+{
+       struct cpuset *cs = css_cs(of_css(of));
+       struct cpuset *trialcs;
+       int retval = -ENODEV;
+
+       buf = strstrip(buf);
+
+       /*
+        * CPU or memory hotunplug may leave @cs w/o any execution
+        * resources, in which case the hotplug code asynchronously updates
+        * configuration and transfers all tasks to the nearest ancestor
+        * which can execute.
+        *
+        * As writes to "cpus" or "mems" may restore @cs's execution
+        * resources, wait for the previously scheduled operations before
+        * proceeding, so that we don't end up keep removing tasks added
+        * after execution capability is restored.
+        *
+        * cpuset_hotplug_work calls back into cgroup core via
+        * cgroup_transfer_tasks() and waiting for it from a cgroupfs
+        * operation like this one can lead to a deadlock through kernfs
+        * active_ref protection.  Let's break the protection.  Losing the
+        * protection is okay as we check whether @cs is online after
+        * grabbing cpuset_mutex anyway.  This only happens on the legacy
+        * hierarchies.
+        */
+       css_get(&cs->css);
+       kernfs_break_active_protection(of->kn);
+       flush_work(&cpuset_hotplug_work);
+
+       mutex_lock(&cpuset_mutex);
+       if (!is_cpuset_online(cs))
+               goto out_unlock;
+
+       trialcs = alloc_trial_cpuset(cs);
+       if (!trialcs) {
+               retval = -ENOMEM;
+               goto out_unlock;
+       }
+
+       switch (of_cft(of)->private) {
+       case FILE_CPULIST:
+               retval = update_cpumask(cs, trialcs, buf);
+               break;
+       case FILE_MEMLIST:
+               retval = update_nodemask(cs, trialcs, buf);
+               break;
+       default:
+               retval = -EINVAL;
+               break;
+       }
+
+       free_trial_cpuset(trialcs);
+out_unlock:
+       mutex_unlock(&cpuset_mutex);
+       kernfs_unbreak_active_protection(of->kn);
+       css_put(&cs->css);
+       flush_workqueue(cpuset_migrate_mm_wq);
+       return retval ?: nbytes;
+}
+
+/*
+ * These ascii lists should be read in a single call, by using a user
+ * buffer large enough to hold the entire map.  If read in smaller
+ * chunks, there is no guarantee of atomicity.  Since the display format
+ * used, list of ranges of sequential numbers, is variable length,
+ * and since these maps can change value dynamically, one could read
+ * gibberish by doing partial reads while a list was changing.
+ */
+static int cpuset_common_seq_show(struct seq_file *sf, void *v)
+{
+       struct cpuset *cs = css_cs(seq_css(sf));
+       cpuset_filetype_t type = seq_cft(sf)->private;
+       int ret = 0;
+
+       spin_lock_irq(&callback_lock);
+
+       switch (type) {
+       case FILE_CPULIST:
+               seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
+               break;
+       case FILE_MEMLIST:
+               seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
+               break;
+       case FILE_EFFECTIVE_CPULIST:
+               seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
+               break;
+       case FILE_EFFECTIVE_MEMLIST:
+               seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
+               break;
+       default:
+               ret = -EINVAL;
+       }
+
+       spin_unlock_irq(&callback_lock);
+       return ret;
+}
+
+static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+       struct cpuset *cs = css_cs(css);
+       cpuset_filetype_t type = cft->private;
+       switch (type) {
+       case FILE_CPU_EXCLUSIVE:
+               return is_cpu_exclusive(cs);
+       case FILE_MEM_EXCLUSIVE:
+               return is_mem_exclusive(cs);
+       case FILE_MEM_HARDWALL:
+               return is_mem_hardwall(cs);
+       case FILE_SCHED_LOAD_BALANCE:
+               return is_sched_load_balance(cs);
+       case FILE_MEMORY_MIGRATE:
+               return is_memory_migrate(cs);
+       case FILE_MEMORY_PRESSURE_ENABLED:
+               return cpuset_memory_pressure_enabled;
+       case FILE_MEMORY_PRESSURE:
+               return fmeter_getrate(&cs->fmeter);
+       case FILE_SPREAD_PAGE:
+               return is_spread_page(cs);
+       case FILE_SPREAD_SLAB:
+               return is_spread_slab(cs);
+       default:
+               BUG();
+       }
+
+       /* Unreachable but makes gcc happy */
+       return 0;
+}
+
+static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+       struct cpuset *cs = css_cs(css);
+       cpuset_filetype_t type = cft->private;
+       switch (type) {
+       case FILE_SCHED_RELAX_DOMAIN_LEVEL:
+               return cs->relax_domain_level;
+       default:
+               BUG();
+       }
+
+       /* Unrechable but makes gcc happy */
+       return 0;
+}
+
+
+/*
+ * for the common functions, 'private' gives the type of file
+ */
+
+static struct cftype files[] = {
+       {
+               .name = "cpus",
+               .seq_show = cpuset_common_seq_show,
+               .write = cpuset_write_resmask,
+               .max_write_len = (100U + 6 * NR_CPUS),
+               .private = FILE_CPULIST,
+       },
+
+       {
+               .name = "mems",
+               .seq_show = cpuset_common_seq_show,
+               .write = cpuset_write_resmask,
+               .max_write_len = (100U + 6 * MAX_NUMNODES),
+               .private = FILE_MEMLIST,
+       },
+
+       {
+               .name = "effective_cpus",
+               .seq_show = cpuset_common_seq_show,
+               .private = FILE_EFFECTIVE_CPULIST,
+       },
+
+       {
+               .name = "effective_mems",
+               .seq_show = cpuset_common_seq_show,
+               .private = FILE_EFFECTIVE_MEMLIST,
+       },
+
+       {
+               .name = "cpu_exclusive",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_CPU_EXCLUSIVE,
+       },
+
+       {
+               .name = "mem_exclusive",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_MEM_EXCLUSIVE,
+       },
+
+       {
+               .name = "mem_hardwall",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_MEM_HARDWALL,
+       },
+
+       {
+               .name = "sched_load_balance",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_SCHED_LOAD_BALANCE,
+       },
+
+       {
+               .name = "sched_relax_domain_level",
+               .read_s64 = cpuset_read_s64,
+               .write_s64 = cpuset_write_s64,
+               .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
+       },
+
+       {
+               .name = "memory_migrate",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_MEMORY_MIGRATE,
+       },
+
+       {
+               .name = "memory_pressure",
+               .read_u64 = cpuset_read_u64,
+       },
+
+       {
+               .name = "memory_spread_page",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_SPREAD_PAGE,
+       },
+
+       {
+               .name = "memory_spread_slab",
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_SPREAD_SLAB,
+       },
+
+       {
+               .name = "memory_pressure_enabled",
+               .flags = CFTYPE_ONLY_ON_ROOT,
+               .read_u64 = cpuset_read_u64,
+               .write_u64 = cpuset_write_u64,
+               .private = FILE_MEMORY_PRESSURE_ENABLED,
+       },
+
+       { }     /* terminate */
+};
+
+/*
+ *     cpuset_css_alloc - allocate a cpuset css
+ *     cgrp:   control group that the new cpuset will be part of
+ */
+
+static struct cgroup_subsys_state *
+cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+       struct cpuset *cs;
+
+       if (!parent_css)
+               return &top_cpuset.css;
+
+       cs = kzalloc(sizeof(*cs), GFP_KERNEL);
+       if (!cs)
+               return ERR_PTR(-ENOMEM);
+       if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
+               goto free_cs;
+       if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
+               goto free_cpus;
+
+       set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+       cpumask_clear(cs->cpus_allowed);
+       nodes_clear(cs->mems_allowed);
+       cpumask_clear(cs->effective_cpus);
+       nodes_clear(cs->effective_mems);
+       fmeter_init(&cs->fmeter);
+       cs->relax_domain_level = -1;
+
+       return &cs->css;
+
+free_cpus:
+       free_cpumask_var(cs->cpus_allowed);
+free_cs:
+       kfree(cs);
+       return ERR_PTR(-ENOMEM);
+}
+
+static int cpuset_css_online(struct cgroup_subsys_state *css)
+{
+       struct cpuset *cs = css_cs(css);
+       struct cpuset *parent = parent_cs(cs);
+       struct cpuset *tmp_cs;
+       struct cgroup_subsys_state *pos_css;
+
+       if (!parent)
+               return 0;
+
+       mutex_lock(&cpuset_mutex);
+
+       set_bit(CS_ONLINE, &cs->flags);
+       if (is_spread_page(parent))
+               set_bit(CS_SPREAD_PAGE, &cs->flags);
+       if (is_spread_slab(parent))
+               set_bit(CS_SPREAD_SLAB, &cs->flags);
+
+       cpuset_inc();
+
+       spin_lock_irq(&callback_lock);
+       if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
+               cpumask_copy(cs->effective_cpus, parent->effective_cpus);
+               cs->effective_mems = parent->effective_mems;
+       }
+       spin_unlock_irq(&callback_lock);
+
+       if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
+               goto out_unlock;
+
+       /*
+        * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
+        * set.  This flag handling is implemented in cgroup core for
+        * histrical reasons - the flag may be specified during mount.
+        *
+        * Currently, if any sibling cpusets have exclusive cpus or mem, we
+        * refuse to clone the configuration - thereby refusing the task to
+        * be entered, and as a result refusing the sys_unshare() or
+        * clone() which initiated it.  If this becomes a problem for some
+        * users who wish to allow that scenario, then this could be
+        * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
+        * (and likewise for mems) to the new cgroup.
+        */
+       rcu_read_lock();
+       cpuset_for_each_child(tmp_cs, pos_css, parent) {
+               if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
+                       rcu_read_unlock();
+                       goto out_unlock;
+               }
+       }
+       rcu_read_unlock();
+
+       spin_lock_irq(&callback_lock);
+       cs->mems_allowed = parent->mems_allowed;
+       cs->effective_mems = parent->mems_allowed;
+       cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
+       cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
+       spin_unlock_irq(&callback_lock);
+out_unlock:
+       mutex_unlock(&cpuset_mutex);
+       return 0;
+}
+
+/*
+ * If the cpuset being removed has its flag 'sched_load_balance'
+ * enabled, then simulate turning sched_load_balance off, which
+ * will call rebuild_sched_domains_locked().
+ */
+
+static void cpuset_css_offline(struct cgroup_subsys_state *css)
+{
+       struct cpuset *cs = css_cs(css);
+
+       mutex_lock(&cpuset_mutex);
+
+       if (is_sched_load_balance(cs))
+               update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
+
+       cpuset_dec();
+       clear_bit(CS_ONLINE, &cs->flags);
+
+       mutex_unlock(&cpuset_mutex);
+}
+
+static void cpuset_css_free(struct cgroup_subsys_state *css)
+{
+       struct cpuset *cs = css_cs(css);
+
+       free_cpumask_var(cs->effective_cpus);
+       free_cpumask_var(cs->cpus_allowed);
+       kfree(cs);
+}
+
+static void cpuset_bind(struct cgroup_subsys_state *root_css)
+{
+       mutex_lock(&cpuset_mutex);
+       spin_lock_irq(&callback_lock);
+
+       if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
+               cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
+               top_cpuset.mems_allowed = node_possible_map;
+       } else {
+               cpumask_copy(top_cpuset.cpus_allowed,
+                            top_cpuset.effective_cpus);
+               top_cpuset.mems_allowed = top_cpuset.effective_mems;
+       }
+
+       spin_unlock_irq(&callback_lock);
+       mutex_unlock(&cpuset_mutex);
+}
+
+/*
+ * Make sure the new task conform to the current state of its parent,
+ * which could have been changed by cpuset just after it inherits the
+ * state from the parent and before it sits on the cgroup's task list.
+ */
+static void cpuset_fork(struct task_struct *task)
+{
+       if (task_css_is_root(task, cpuset_cgrp_id))
+               return;
+
+       set_cpus_allowed_ptr(task, &current->cpus_allowed);
+       task->mems_allowed = current->mems_allowed;
+}
+
+struct cgroup_subsys cpuset_cgrp_subsys = {
+       .css_alloc      = cpuset_css_alloc,
+       .css_online     = cpuset_css_online,
+       .css_offline    = cpuset_css_offline,
+       .css_free       = cpuset_css_free,
+       .can_attach     = cpuset_can_attach,
+       .cancel_attach  = cpuset_cancel_attach,
+       .attach         = cpuset_attach,
+       .post_attach    = cpuset_post_attach,
+       .bind           = cpuset_bind,
+       .fork           = cpuset_fork,
+       .legacy_cftypes = files,
+       .early_init     = true,
+};
+
+/**
+ * cpuset_init - initialize cpusets at system boot
+ *
+ * Description: Initialize top_cpuset and the cpuset internal file system,
+ **/
+
+int __init cpuset_init(void)
+{
+       int err = 0;
+
+       if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
+               BUG();
+       if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
+               BUG();
+
+       cpumask_setall(top_cpuset.cpus_allowed);
+       nodes_setall(top_cpuset.mems_allowed);
+       cpumask_setall(top_cpuset.effective_cpus);
+       nodes_setall(top_cpuset.effective_mems);
+
+       fmeter_init(&top_cpuset.fmeter);
+       set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
+       top_cpuset.relax_domain_level = -1;
+
+       err = register_filesystem(&cpuset_fs_type);
+       if (err < 0)
+               return err;
+
+       if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
+               BUG();
+
+       return 0;
+}
+
+/*
+ * If CPU and/or memory hotplug handlers, below, unplug any CPUs
+ * or memory nodes, we need to walk over the cpuset hierarchy,
+ * removing that CPU or node from all cpusets.  If this removes the
+ * last CPU or node from a cpuset, then move the tasks in the empty
+ * cpuset to its next-highest non-empty parent.
+ */
+static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
+{
+       struct cpuset *parent;
+
+       /*
+        * Find its next-highest non-empty parent, (top cpuset
+        * has online cpus, so can't be empty).
+        */
+       parent = parent_cs(cs);
+       while (cpumask_empty(parent->cpus_allowed) ||
+                       nodes_empty(parent->mems_allowed))
+               parent = parent_cs(parent);
+
+       if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
+               pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
+               pr_cont_cgroup_name(cs->css.cgroup);
+               pr_cont("\n");
+       }
+}
+
+static void
+hotplug_update_tasks_legacy(struct cpuset *cs,
+                           struct cpumask *new_cpus, nodemask_t *new_mems,
+                           bool cpus_updated, bool mems_updated)
+{
+       bool is_empty;
+
+       spin_lock_irq(&callback_lock);
+       cpumask_copy(cs->cpus_allowed, new_cpus);
+       cpumask_copy(cs->effective_cpus, new_cpus);
+       cs->mems_allowed = *new_mems;
+       cs->effective_mems = *new_mems;
+       spin_unlock_irq(&callback_lock);
+
+       /*
+        * Don't call update_tasks_cpumask() if the cpuset becomes empty,
+        * as the tasks will be migratecd to an ancestor.
+        */
+       if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
+               update_tasks_cpumask(cs);
+       if (mems_updated && !nodes_empty(cs->mems_allowed))
+               update_tasks_nodemask(cs);
+
+       is_empty = cpumask_empty(cs->cpus_allowed) ||
+                  nodes_empty(cs->mems_allowed);
+
+       mutex_unlock(&cpuset_mutex);
+
+       /*
+        * Move tasks to the nearest ancestor with execution resources,
+        * This is full cgroup operation which will also call back into
+        * cpuset. Should be done outside any lock.
+        */
+       if (is_empty)
+               remove_tasks_in_empty_cpuset(cs);
+
+       mutex_lock(&cpuset_mutex);
+}
+
+static void
+hotplug_update_tasks(struct cpuset *cs,
+                    struct cpumask *new_cpus, nodemask_t *new_mems,
+                    bool cpus_updated, bool mems_updated)
+{
+       if (cpumask_empty(new_cpus))
+               cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
+       if (nodes_empty(*new_mems))
+               *new_mems = parent_cs(cs)->effective_mems;
+
+       spin_lock_irq(&callback_lock);
+       cpumask_copy(cs->effective_cpus, new_cpus);
+       cs->effective_mems = *new_mems;
+       spin_unlock_irq(&callback_lock);
+
+       if (cpus_updated)
+               update_tasks_cpumask(cs);
+       if (mems_updated)
+               update_tasks_nodemask(cs);
+}
+
+/**
+ * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
+ * @cs: cpuset in interest
+ *
+ * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
+ * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
+ * all its tasks are moved to the nearest ancestor with both resources.
+ */
+static void cpuset_hotplug_update_tasks(struct cpuset *cs)
+{
+       static cpumask_t new_cpus;
+       static nodemask_t new_mems;
+       bool cpus_updated;
+       bool mems_updated;
+retry:
+       wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
+
+       mutex_lock(&cpuset_mutex);
+
+       /*
+        * We have raced with task attaching. We wait until attaching
+        * is finished, so we won't attach a task to an empty cpuset.
+        */
+       if (cs->attach_in_progress) {
+               mutex_unlock(&cpuset_mutex);
+               goto retry;
+       }
+
+       cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
+       nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
+
+       cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
+       mems_updated = !nodes_equal(new_mems, cs->effective_mems);
+
+       if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
+               hotplug_update_tasks(cs, &new_cpus, &new_mems,
+                                    cpus_updated, mems_updated);
+       else
+               hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
+                                           cpus_updated, mems_updated);
+
+       mutex_unlock(&cpuset_mutex);
+}
+
+/**
+ * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
+ *
+ * This function is called after either CPU or memory configuration has
+ * changed and updates cpuset accordingly.  The top_cpuset is always
+ * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
+ * order to make cpusets transparent (of no affect) on systems that are
+ * actively using CPU hotplug but making no active use of cpusets.
+ *
+ * Non-root cpusets are only affected by offlining.  If any CPUs or memory
+ * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
+ * all descendants.
+ *
+ * Note that CPU offlining during suspend is ignored.  We don't modify
+ * cpusets across suspend/resume cycles at all.
+ */
+static void cpuset_hotplug_workfn(struct work_struct *work)
+{
+       static cpumask_t new_cpus;
+       static nodemask_t new_mems;
+       bool cpus_updated, mems_updated;
+       bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
+
+       mutex_lock(&cpuset_mutex);
+
+       /* fetch the available cpus/mems and find out which changed how */
+       cpumask_copy(&new_cpus, cpu_active_mask);
+       new_mems = node_states[N_MEMORY];
+
+       cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
+       mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
+
+       /* synchronize cpus_allowed to cpu_active_mask */
+       if (cpus_updated) {
+               spin_lock_irq(&callback_lock);
+               if (!on_dfl)
+                       cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
+               cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
+               spin_unlock_irq(&callback_lock);
+               /* we don't mess with cpumasks of tasks in top_cpuset */
+       }
+
+       /* synchronize mems_allowed to N_MEMORY */
+       if (mems_updated) {
+               spin_lock_irq(&callback_lock);
+               if (!on_dfl)
+                       top_cpuset.mems_allowed = new_mems;
+               top_cpuset.effective_mems = new_mems;
+               spin_unlock_irq(&callback_lock);
+               update_tasks_nodemask(&top_cpuset);
+       }
+
+       mutex_unlock(&cpuset_mutex);
+
+       /* if cpus or mems changed, we need to propagate to descendants */
+       if (cpus_updated || mems_updated) {
+               struct cpuset *cs;
+               struct cgroup_subsys_state *pos_css;
+
+               rcu_read_lock();
+               cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
+                       if (cs == &top_cpuset || !css_tryget_online(&cs->css))
+                               continue;
+                       rcu_read_unlock();
+
+                       cpuset_hotplug_update_tasks(cs);
+
+                       rcu_read_lock();
+                       css_put(&cs->css);
+               }
+               rcu_read_unlock();
+       }
+
+       /* rebuild sched domains if cpus_allowed has changed */
+       if (cpus_updated)
+               rebuild_sched_domains();
+}
+
+void cpuset_update_active_cpus(bool cpu_online)
+{
+       /*
+        * We're inside cpu hotplug critical region which usually nests
+        * inside cgroup synchronization.  Bounce actual hotplug processing
+        * to a work item to avoid reverse locking order.
+        *
+        * We still need to do partition_sched_domains() synchronously;
+        * otherwise, the scheduler will get confused and put tasks to the
+        * dead CPU.  Fall back to the default single domain.
+        * cpuset_hotplug_workfn() will rebuild it as necessary.
+        */
+       partition_sched_domains(1, NULL, NULL);
+       schedule_work(&cpuset_hotplug_work);
+}
+
+/*
+ * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
+ * Call this routine anytime after node_states[N_MEMORY] changes.
+ * See cpuset_update_active_cpus() for CPU hotplug handling.
+ */
+static int cpuset_track_online_nodes(struct notifier_block *self,
+                               unsigned long action, void *arg)
+{
+       schedule_work(&cpuset_hotplug_work);
+       return NOTIFY_OK;
+}
+
+static struct notifier_block cpuset_track_online_nodes_nb = {
+       .notifier_call = cpuset_track_online_nodes,
+       .priority = 10,         /* ??! */
+};
+
+/**
+ * cpuset_init_smp - initialize cpus_allowed
+ *
+ * Description: Finish top cpuset after cpu, node maps are initialized
+ */
+void __init cpuset_init_smp(void)
+{
+       cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
+       top_cpuset.mems_allowed = node_states[N_MEMORY];
+       top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
+
+       cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
+       top_cpuset.effective_mems = node_states[N_MEMORY];
+
+       register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
+
+       cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
+       BUG_ON(!cpuset_migrate_mm_wq);
+}
+
+/**
+ * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
+ * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
+ * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
+ *
+ * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
+ * attached to the specified @tsk.  Guaranteed to return some non-empty
+ * subset of cpu_online_mask, even if this means going outside the
+ * tasks cpuset.
+ **/
+
+void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
+{
+       unsigned long flags;
+
+       spin_lock_irqsave(&callback_lock, flags);
+       rcu_read_lock();
+       guarantee_online_cpus(task_cs(tsk), pmask);
+       rcu_read_unlock();
+       spin_unlock_irqrestore(&callback_lock, flags);
+}
+
+void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
+{
+       rcu_read_lock();
+       do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
+       rcu_read_unlock();
+
+       /*
+        * We own tsk->cpus_allowed, nobody can change it under us.
+        *
+        * But we used cs && cs->cpus_allowed lockless and thus can
+        * race with cgroup_attach_task() or update_cpumask() and get
+        * the wrong tsk->cpus_allowed. However, both cases imply the
+        * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
+        * which takes task_rq_lock().
+        *
+        * If we are called after it dropped the lock we must see all
+        * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
+        * set any mask even if it is not right from task_cs() pov,
+        * the pending set_cpus_allowed_ptr() will fix things.
+        *
+        * select_fallback_rq() will fix things ups and set cpu_possible_mask
+        * if required.
+        */
+}
+
+void __init cpuset_init_current_mems_allowed(void)
+{
+       nodes_setall(current->mems_allowed);
+}
+
+/**
+ * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
+ * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
+ *
+ * Description: Returns the nodemask_t mems_allowed of the cpuset
+ * attached to the specified @tsk.  Guaranteed to return some non-empty
+ * subset of node_states[N_MEMORY], even if this means going outside the
+ * tasks cpuset.
+ **/
+
+nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
+{
+       nodemask_t mask;
+       unsigned long flags;
+
+       spin_lock_irqsave(&callback_lock, flags);
+       rcu_read_lock();
+       guarantee_online_mems(task_cs(tsk), &mask);
+       rcu_read_unlock();
+       spin_unlock_irqrestore(&callback_lock, flags);
+
+       return mask;
+}
+
+/**
+ * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
+ * @nodemask: the nodemask to be checked
+ *
+ * Are any of the nodes in the nodemask allowed in current->mems_allowed?
+ */
+int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
+{
+       return nodes_intersects(*nodemask, current->mems_allowed);
+}
+
+/*
+ * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
+ * mem_hardwall ancestor to the specified cpuset.  Call holding
+ * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
+ * (an unusual configuration), then returns the root cpuset.
+ */
+static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
+{
+       while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
+               cs = parent_cs(cs);
+       return cs;
+}
+
+/**
+ * cpuset_node_allowed - Can we allocate on a memory node?
+ * @node: is this an allowed node?
+ * @gfp_mask: memory allocation flags
+ *
+ * If we're in interrupt, yes, we can always allocate.  If @node is set in
+ * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
+ * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
+ * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
+ * Otherwise, no.
+ *
+ * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
+ * and do not allow allocations outside the current tasks cpuset
+ * unless the task has been OOM killed as is marked TIF_MEMDIE.
+ * GFP_KERNEL allocations are not so marked, so can escape to the
+ * nearest enclosing hardwalled ancestor cpuset.
+ *
+ * Scanning up parent cpusets requires callback_lock.  The
+ * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
+ * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
+ * current tasks mems_allowed came up empty on the first pass over
+ * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
+ * cpuset are short of memory, might require taking the callback_lock.
+ *
+ * The first call here from mm/page_alloc:get_page_from_freelist()
+ * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
+ * so no allocation on a node outside the cpuset is allowed (unless
+ * in interrupt, of course).
+ *
+ * The second pass through get_page_from_freelist() doesn't even call
+ * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
+ * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
+ * in alloc_flags.  That logic and the checks below have the combined
+ * affect that:
+ *     in_interrupt - any node ok (current task context irrelevant)
+ *     GFP_ATOMIC   - any node ok
+ *     TIF_MEMDIE   - any node ok
+ *     GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
+ *     GFP_USER     - only nodes in current tasks mems allowed ok.
+ */
+bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
+{
+       struct cpuset *cs;              /* current cpuset ancestors */
+       int allowed;                    /* is allocation in zone z allowed? */
+       unsigned long flags;
+
+       if (in_interrupt())
+               return true;
+       if (node_isset(node, current->mems_allowed))
+               return true;
+       /*
+        * Allow tasks that have access to memory reserves because they have
+        * been OOM killed to get memory anywhere.
+        */
+       if (unlikely(test_thread_flag(TIF_MEMDIE)))
+               return true;
+       if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
+               return false;
+
+       if (current->flags & PF_EXITING) /* Let dying task have memory */
+               return true;
+
+       /* Not hardwall and node outside mems_allowed: scan up cpusets */
+       spin_lock_irqsave(&callback_lock, flags);
+
+       rcu_read_lock();
+       cs = nearest_hardwall_ancestor(task_cs(current));
+       allowed = node_isset(node, cs->mems_allowed);
+       rcu_read_unlock();
+
+       spin_unlock_irqrestore(&callback_lock, flags);
+       return allowed;
+}
+
+/**
+ * cpuset_mem_spread_node() - On which node to begin search for a file page
+ * cpuset_slab_spread_node() - On which node to begin search for a slab page
+ *
+ * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
+ * tasks in a cpuset with is_spread_page or is_spread_slab set),
+ * and if the memory allocation used cpuset_mem_spread_node()
+ * to determine on which node to start looking, as it will for
+ * certain page cache or slab cache pages such as used for file
+ * system buffers and inode caches, then instead of starting on the
+ * local node to look for a free page, rather spread the starting
+ * node around the tasks mems_allowed nodes.
+ *
+ * We don't have to worry about the returned node being offline
+ * because "it can't happen", and even if it did, it would be ok.
+ *
+ * The routines calling guarantee_online_mems() are careful to
+ * only set nodes in task->mems_allowed that are online.  So it
+ * should not be possible for the following code to return an
+ * offline node.  But if it did, that would be ok, as this routine
+ * is not returning the node where the allocation must be, only
+ * the node where the search should start.  The zonelist passed to
+ * __alloc_pages() will include all nodes.  If the slab allocator
+ * is passed an offline node, it will fall back to the local node.
+ * See kmem_cache_alloc_node().
+ */
+
+static int cpuset_spread_node(int *rotor)
+{
+       return *rotor = next_node_in(*rotor, current->mems_allowed);
+}
+
+int cpuset_mem_spread_node(void)
+{
+       if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
+               current->cpuset_mem_spread_rotor =
+                       node_random(&current->mems_allowed);
+
+       return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
+}
+
+int cpuset_slab_spread_node(void)
+{
+       if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
+               current->cpuset_slab_spread_rotor =
+                       node_random(&current->mems_allowed);
+
+       return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
+}
+
+EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
+
+/**
+ * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
+ * @tsk1: pointer to task_struct of some task.
+ * @tsk2: pointer to task_struct of some other task.
+ *
+ * Description: Return true if @tsk1's mems_allowed intersects the
+ * mems_allowed of @tsk2.  Used by the OOM killer to determine if
+ * one of the task's memory usage might impact the memory available
+ * to the other.
+ **/
+
+int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
+                                  const struct task_struct *tsk2)
+{
+       return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
+}
+
+/**
+ * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
+ *
+ * Description: Prints current's name, cpuset name, and cached copy of its
+ * mems_allowed to the kernel log.
+ */
+void cpuset_print_current_mems_allowed(void)
+{
+       struct cgroup *cgrp;
+
+       rcu_read_lock();
+
+       cgrp = task_cs(current)->css.cgroup;
+       pr_info("%s cpuset=", current->comm);
+       pr_cont_cgroup_name(cgrp);
+       pr_cont(" mems_allowed=%*pbl\n",
+               nodemask_pr_args(&current->mems_allowed));
+
+       rcu_read_unlock();
+}
+
+/*
+ * Collection of memory_pressure is suppressed unless
+ * this flag is enabled by writing "1" to the special
+ * cpuset file 'memory_pressure_enabled' in the root cpuset.
+ */
+
+int cpuset_memory_pressure_enabled __read_mostly;
+
+/**
+ * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
+ *
+ * Keep a running average of the rate of synchronous (direct)
+ * page reclaim efforts initiated by tasks in each cpuset.
+ *
+ * This represents the rate at which some task in the cpuset
+ * ran low on memory on all nodes it was allowed to use, and
+ * had to enter the kernels page reclaim code in an effort to
+ * create more free memory by tossing clean pages or swapping
+ * or writing dirty pages.
+ *
+ * Display to user space in the per-cpuset read-only file
+ * "memory_pressure".  Value displayed is an integer
+ * representing the recent rate of entry into the synchronous
+ * (direct) page reclaim by any task attached to the cpuset.
+ **/
+
+void __cpuset_memory_pressure_bump(void)
+{
+       rcu_read_lock();
+       fmeter_markevent(&task_cs(current)->fmeter);
+       rcu_read_unlock();
+}
+
+#ifdef CONFIG_PROC_PID_CPUSET
+/*
+ * proc_cpuset_show()
+ *  - Print tasks cpuset path into seq_file.
+ *  - Used for /proc/<pid>/cpuset.
+ *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
+ *    doesn't really matter if tsk->cpuset changes after we read it,
+ *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
+ *    anyway.
+ */
+int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
+                    struct pid *pid, struct task_struct *tsk)
+{
+       char *buf;
+       struct cgroup_subsys_state *css;
+       int retval;
+
+       retval = -ENOMEM;
+       buf = kmalloc(PATH_MAX, GFP_KERNEL);
+       if (!buf)
+               goto out;
+
+       css = task_get_css(tsk, cpuset_cgrp_id);
+       retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
+                               current->nsproxy->cgroup_ns);
+       css_put(css);
+       if (retval >= PATH_MAX)
+               retval = -ENAMETOOLONG;
+       if (retval < 0)
+               goto out_free;
+       seq_puts(m, buf);
+       seq_putc(m, '\n');
+       retval = 0;
+out_free:
+       kfree(buf);
+out:
+       return retval;
+}
+#endif /* CONFIG_PROC_PID_CPUSET */
+
+/* Display task mems_allowed in /proc/<pid>/status file. */
+void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
+{
+       seq_printf(m, "Mems_allowed:\t%*pb\n",
+                  nodemask_pr_args(&task->mems_allowed));
+       seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
+                  nodemask_pr_args(&task->mems_allowed));
+}
diff --git a/kernel/cgroup/freezer.c b/kernel/cgroup/freezer.c
new file mode 100644 (file)
index 0000000..1b72d56
--- /dev/null
@@ -0,0 +1,481 @@
+/*
+ * cgroup_freezer.c -  control group freezer subsystem
+ *
+ * Copyright IBM Corporation, 2007
+ *
+ * Author : Cedric Le Goater <clg@fr.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2.1 of the GNU Lesser General Public License
+ * as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ */
+
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/cgroup.h>
+#include <linux/fs.h>
+#include <linux/uaccess.h>
+#include <linux/freezer.h>
+#include <linux/seq_file.h>
+#include <linux/mutex.h>
+
+/*
+ * A cgroup is freezing if any FREEZING flags are set.  FREEZING_SELF is
+ * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared
+ * for "THAWED".  FREEZING_PARENT is set if the parent freezer is FREEZING
+ * for whatever reason.  IOW, a cgroup has FREEZING_PARENT set if one of
+ * its ancestors has FREEZING_SELF set.
+ */
+enum freezer_state_flags {
+       CGROUP_FREEZER_ONLINE   = (1 << 0), /* freezer is fully online */
+       CGROUP_FREEZING_SELF    = (1 << 1), /* this freezer is freezing */
+       CGROUP_FREEZING_PARENT  = (1 << 2), /* the parent freezer is freezing */
+       CGROUP_FROZEN           = (1 << 3), /* this and its descendants frozen */
+
+       /* mask for all FREEZING flags */
+       CGROUP_FREEZING         = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT,
+};
+
+struct freezer {
+       struct cgroup_subsys_state      css;
+       unsigned int                    state;
+};
+
+static DEFINE_MUTEX(freezer_mutex);
+
+static inline struct freezer *css_freezer(struct cgroup_subsys_state *css)
+{
+       return css ? container_of(css, struct freezer, css) : NULL;
+}
+
+static inline struct freezer *task_freezer(struct task_struct *task)
+{
+       return css_freezer(task_css(task, freezer_cgrp_id));
+}
+
+static struct freezer *parent_freezer(struct freezer *freezer)
+{
+       return css_freezer(freezer->css.parent);
+}
+
+bool cgroup_freezing(struct task_struct *task)
+{
+       bool ret;
+
+       rcu_read_lock();
+       ret = task_freezer(task)->state & CGROUP_FREEZING;
+       rcu_read_unlock();
+
+       return ret;
+}
+
+static const char *freezer_state_strs(unsigned int state)
+{
+       if (state & CGROUP_FROZEN)
+               return "FROZEN";
+       if (state & CGROUP_FREEZING)
+               return "FREEZING";
+       return "THAWED";
+};
+
+static struct cgroup_subsys_state *
+freezer_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+       struct freezer *freezer;
+
+       freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL);
+       if (!freezer)
+               return ERR_PTR(-ENOMEM);
+
+       return &freezer->css;
+}
+
+/**
+ * freezer_css_online - commit creation of a freezer css
+ * @css: css being created
+ *
+ * We're committing to creation of @css.  Mark it online and inherit
+ * parent's freezing state while holding both parent's and our
+ * freezer->lock.
+ */
+static int freezer_css_online(struct cgroup_subsys_state *css)
+{
+       struct freezer *freezer = css_freezer(css);
+       struct freezer *parent = parent_freezer(freezer);
+
+       mutex_lock(&freezer_mutex);
+
+       freezer->state |= CGROUP_FREEZER_ONLINE;
+
+       if (parent && (parent->state & CGROUP_FREEZING)) {
+               freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN;
+               atomic_inc(&system_freezing_cnt);
+       }
+
+       mutex_unlock(&freezer_mutex);
+       return 0;
+}
+
+/**
+ * freezer_css_offline - initiate destruction of a freezer css
+ * @css: css being destroyed
+ *
+ * @css is going away.  Mark it dead and decrement system_freezing_count if
+ * it was holding one.
+ */
+static void freezer_css_offline(struct cgroup_subsys_state *css)
+{
+       struct freezer *freezer = css_freezer(css);
+
+       mutex_lock(&freezer_mutex);
+
+       if (freezer->state & CGROUP_FREEZING)
+               atomic_dec(&system_freezing_cnt);
+
+       freezer->state = 0;
+
+       mutex_unlock(&freezer_mutex);
+}
+
+static void freezer_css_free(struct cgroup_subsys_state *css)
+{
+       kfree(css_freezer(css));
+}
+
+/*
+ * Tasks can be migrated into a different freezer anytime regardless of its
+ * current state.  freezer_attach() is responsible for making new tasks
+ * conform to the current state.
+ *
+ * Freezer state changes and task migration are synchronized via
+ * @freezer->lock.  freezer_attach() makes the new tasks conform to the
+ * current state and all following state changes can see the new tasks.
+ */
+static void freezer_attach(struct cgroup_taskset *tset)
+{
+       struct task_struct *task;
+       struct cgroup_subsys_state *new_css;
+
+       mutex_lock(&freezer_mutex);
+
+       /*
+        * Make the new tasks conform to the current state of @new_css.
+        * For simplicity, when migrating any task to a FROZEN cgroup, we
+        * revert it to FREEZING and let update_if_frozen() determine the
+        * correct state later.
+        *
+        * Tasks in @tset are on @new_css but may not conform to its
+        * current state before executing the following - !frozen tasks may
+        * be visible in a FROZEN cgroup and frozen tasks in a THAWED one.
+        */
+       cgroup_taskset_for_each(task, new_css, tset) {
+               struct freezer *freezer = css_freezer(new_css);
+
+               if (!(freezer->state & CGROUP_FREEZING)) {
+                       __thaw_task(task);
+               } else {
+                       freeze_task(task);
+                       /* clear FROZEN and propagate upwards */
+                       while (freezer && (freezer->state & CGROUP_FROZEN)) {
+                               freezer->state &= ~CGROUP_FROZEN;
+                               freezer = parent_freezer(freezer);
+                       }
+               }
+       }
+
+       mutex_unlock(&freezer_mutex);
+}
+
+/**
+ * freezer_fork - cgroup post fork callback
+ * @task: a task which has just been forked
+ *
+ * @task has just been created and should conform to the current state of
+ * the cgroup_freezer it belongs to.  This function may race against
+ * freezer_attach().  Losing to freezer_attach() means that we don't have
+ * to do anything as freezer_attach() will put @task into the appropriate
+ * state.
+ */
+static void freezer_fork(struct task_struct *task)
+{
+       struct freezer *freezer;
+
+       /*
+        * The root cgroup is non-freezable, so we can skip locking the
+        * freezer.  This is safe regardless of race with task migration.
+        * If we didn't race or won, skipping is obviously the right thing
+        * to do.  If we lost and root is the new cgroup, noop is still the
+        * right thing to do.
+        */
+       if (task_css_is_root(task, freezer_cgrp_id))
+               return;
+
+       mutex_lock(&freezer_mutex);
+       rcu_read_lock();
+
+       freezer = task_freezer(task);
+       if (freezer->state & CGROUP_FREEZING)
+               freeze_task(task);
+
+       rcu_read_unlock();
+       mutex_unlock(&freezer_mutex);
+}
+
+/**
+ * update_if_frozen - update whether a cgroup finished freezing
+ * @css: css of interest
+ *
+ * Once FREEZING is initiated, transition to FROZEN is lazily updated by
+ * calling this function.  If the current state is FREEZING but not FROZEN,
+ * this function checks whether all tasks of this cgroup and the descendant
+ * cgroups finished freezing and, if so, sets FROZEN.
+ *
+ * The caller is responsible for grabbing RCU read lock and calling
+ * update_if_frozen() on all descendants prior to invoking this function.
+ *
+ * Task states and freezer state might disagree while tasks are being
+ * migrated into or out of @css, so we can't verify task states against
+ * @freezer state here.  See freezer_attach() for details.
+ */
+static void update_if_frozen(struct cgroup_subsys_state *css)
+{
+       struct freezer *freezer = css_freezer(css);
+       struct cgroup_subsys_state *pos;
+       struct css_task_iter it;
+       struct task_struct *task;
+
+       lockdep_assert_held(&freezer_mutex);
+
+       if (!(freezer->state & CGROUP_FREEZING) ||
+           (freezer->state & CGROUP_FROZEN))
+               return;
+
+       /* are all (live) children frozen? */
+       rcu_read_lock();
+       css_for_each_child(pos, css) {
+               struct freezer *child = css_freezer(pos);
+
+               if ((child->state & CGROUP_FREEZER_ONLINE) &&
+                   !(child->state & CGROUP_FROZEN)) {
+                       rcu_read_unlock();
+                       return;
+               }
+       }
+       rcu_read_unlock();
+
+       /* are all tasks frozen? */
+       css_task_iter_start(css, &it);
+
+       while ((task = css_task_iter_next(&it))) {
+               if (freezing(task)) {
+                       /*
+                        * freezer_should_skip() indicates that the task
+                        * should be skipped when determining freezing
+                        * completion.  Consider it frozen in addition to
+                        * the usual frozen condition.
+                        */
+                       if (!frozen(task) && !freezer_should_skip(task))
+                               goto out_iter_end;
+               }
+       }
+
+       freezer->state |= CGROUP_FROZEN;
+out_iter_end:
+       css_task_iter_end(&it);
+}
+
+static int freezer_read(struct seq_file *m, void *v)
+{
+       struct cgroup_subsys_state *css = seq_css(m), *pos;
+
+       mutex_lock(&freezer_mutex);
+       rcu_read_lock();
+
+       /* update states bottom-up */
+       css_for_each_descendant_post(pos, css) {
+               if (!css_tryget_online(pos))
+                       continue;
+               rcu_read_unlock();
+
+               update_if_frozen(pos);
+
+               rcu_read_lock();
+               css_put(pos);
+       }
+
+       rcu_read_unlock();
+       mutex_unlock(&freezer_mutex);
+
+       seq_puts(m, freezer_state_strs(css_freezer(css)->state));
+       seq_putc(m, '\n');
+       return 0;
+}
+
+static void freeze_cgroup(struct freezer *freezer)
+{
+       struct css_task_iter it;
+       struct task_struct *task;
+
+       css_task_iter_start(&freezer->css, &it);
+       while ((task = css_task_iter_next(&it)))
+               freeze_task(task);
+       css_task_iter_end(&it);
+}
+
+static void unfreeze_cgroup(struct freezer *freezer)
+{
+       struct css_task_iter it;
+       struct task_struct *task;
+
+       css_task_iter_start(&freezer->css, &it);
+       while ((task = css_task_iter_next(&it)))
+               __thaw_task(task);
+       css_task_iter_end(&it);
+}
+
+/**
+ * freezer_apply_state - apply state change to a single cgroup_freezer
+ * @freezer: freezer to apply state change to
+ * @freeze: whether to freeze or unfreeze
+ * @state: CGROUP_FREEZING_* flag to set or clear
+ *
+ * Set or clear @state on @cgroup according to @freeze, and perform
+ * freezing or thawing as necessary.
+ */
+static void freezer_apply_state(struct freezer *freezer, bool freeze,
+                               unsigned int state)
+{
+       /* also synchronizes against task migration, see freezer_attach() */
+       lockdep_assert_held(&freezer_mutex);
+
+       if (!(freezer->state & CGROUP_FREEZER_ONLINE))
+               return;
+
+       if (freeze) {
+               if (!(freezer->state & CGROUP_FREEZING))
+                       atomic_inc(&system_freezing_cnt);
+               freezer->state |= state;
+               freeze_cgroup(freezer);
+       } else {
+               bool was_freezing = freezer->state & CGROUP_FREEZING;
+
+               freezer->state &= ~state;
+
+               if (!(freezer->state & CGROUP_FREEZING)) {
+                       if (was_freezing)
+                               atomic_dec(&system_freezing_cnt);
+                       freezer->state &= ~CGROUP_FROZEN;
+                       unfreeze_cgroup(freezer);
+               }
+       }
+}
+
+/**
+ * freezer_change_state - change the freezing state of a cgroup_freezer
+ * @freezer: freezer of interest
+ * @freeze: whether to freeze or thaw
+ *
+ * Freeze or thaw @freezer according to @freeze.  The operations are
+ * recursive - all descendants of @freezer will be affected.
+ */
+static void freezer_change_state(struct freezer *freezer, bool freeze)
+{
+       struct cgroup_subsys_state *pos;
+
+       /*
+        * Update all its descendants in pre-order traversal.  Each
+        * descendant will try to inherit its parent's FREEZING state as
+        * CGROUP_FREEZING_PARENT.
+        */
+       mutex_lock(&freezer_mutex);
+       rcu_read_lock();
+       css_for_each_descendant_pre(pos, &freezer->css) {
+               struct freezer *pos_f = css_freezer(pos);
+               struct freezer *parent = parent_freezer(pos_f);
+
+               if (!css_tryget_online(pos))
+                       continue;
+               rcu_read_unlock();
+
+               if (pos_f == freezer)
+                       freezer_apply_state(pos_f, freeze,
+                                           CGROUP_FREEZING_SELF);
+               else
+                       freezer_apply_state(pos_f,
+                                           parent->state & CGROUP_FREEZING,
+                                           CGROUP_FREEZING_PARENT);
+
+               rcu_read_lock();
+               css_put(pos);
+       }
+       rcu_read_unlock();
+       mutex_unlock(&freezer_mutex);
+}
+
+static ssize_t freezer_write(struct kernfs_open_file *of,
+                            char *buf, size_t nbytes, loff_t off)
+{
+       bool freeze;
+
+       buf = strstrip(buf);
+
+       if (strcmp(buf, freezer_state_strs(0)) == 0)
+               freeze = false;
+       else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0)
+               freeze = true;
+       else
+               return -EINVAL;
+
+       freezer_change_state(css_freezer(of_css(of)), freeze);
+       return nbytes;
+}
+
+static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css,
+                                     struct cftype *cft)
+{
+       struct freezer *freezer = css_freezer(css);
+
+       return (bool)(freezer->state & CGROUP_FREEZING_SELF);
+}
+
+static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css,
+                                       struct cftype *cft)
+{
+       struct freezer *freezer = css_freezer(css);
+
+       return (bool)(freezer->state & CGROUP_FREEZING_PARENT);
+}
+
+static struct cftype files[] = {
+       {
+               .name = "state",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .seq_show = freezer_read,
+               .write = freezer_write,
+       },
+       {
+               .name = "self_freezing",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .read_u64 = freezer_self_freezing_read,
+       },
+       {
+               .name = "parent_freezing",
+               .flags = CFTYPE_NOT_ON_ROOT,
+               .read_u64 = freezer_parent_freezing_read,
+       },
+       { }     /* terminate */
+};
+
+struct cgroup_subsys freezer_cgrp_subsys = {
+       .css_alloc      = freezer_css_alloc,
+       .css_online     = freezer_css_online,
+       .css_offline    = freezer_css_offline,
+       .css_free       = freezer_css_free,
+       .attach         = freezer_attach,
+       .fork           = freezer_fork,
+       .legacy_cftypes = files,
+};
diff --git a/kernel/cgroup/pids.c b/kernel/cgroup/pids.c
new file mode 100644 (file)
index 0000000..2bd6737
--- /dev/null
@@ -0,0 +1,348 @@
+/*
+ * Process number limiting controller for cgroups.
+ *
+ * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
+ * after a certain limit is reached.
+ *
+ * Since it is trivial to hit the task limit without hitting any kmemcg limits
+ * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
+ * preventable in the scope of a cgroup hierarchy by allowing resource limiting
+ * of the number of tasks in a cgroup.
+ *
+ * In order to use the `pids` controller, set the maximum number of tasks in
+ * pids.max (this is not available in the root cgroup for obvious reasons). The
+ * number of processes currently in the cgroup is given by pids.current.
+ * Organisational operations are not blocked by cgroup policies, so it is
+ * possible to have pids.current > pids.max. However, it is not possible to
+ * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
+ * would cause a cgroup policy to be violated.
+ *
+ * To set a cgroup to have no limit, set pids.max to "max". This is the default
+ * for all new cgroups (N.B. that PID limits are hierarchical, so the most
+ * stringent limit in the hierarchy is followed).
+ *
+ * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
+ * a superset of parent/child/pids.current.
+ *
+ * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
+ *
+ * This file is subject to the terms and conditions of version 2 of the GNU
+ * General Public License.  See the file COPYING in the main directory of the
+ * Linux distribution for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/threads.h>
+#include <linux/atomic.h>
+#include <linux/cgroup.h>
+#include <linux/slab.h>
+
+#define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
+#define PIDS_MAX_STR "max"
+
+struct pids_cgroup {
+       struct cgroup_subsys_state      css;
+
+       /*
+        * Use 64-bit types so that we can safely represent "max" as
+        * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
+        */
+       atomic64_t                      counter;
+       int64_t                         limit;
+
+       /* Handle for "pids.events" */
+       struct cgroup_file              events_file;
+
+       /* Number of times fork failed because limit was hit. */
+       atomic64_t                      events_limit;
+};
+
+static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
+{
+       return container_of(css, struct pids_cgroup, css);
+}
+
+static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
+{
+       return css_pids(pids->css.parent);
+}
+
+static struct cgroup_subsys_state *
+pids_css_alloc(struct cgroup_subsys_state *parent)
+{
+       struct pids_cgroup *pids;
+
+       pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
+       if (!pids)
+               return ERR_PTR(-ENOMEM);
+
+       pids->limit = PIDS_MAX;
+       atomic64_set(&pids->counter, 0);
+       atomic64_set(&pids->events_limit, 0);
+       return &pids->css;
+}
+
+static void pids_css_free(struct cgroup_subsys_state *css)
+{
+       kfree(css_pids(css));
+}
+
+/**
+ * pids_cancel - uncharge the local pid count
+ * @pids: the pid cgroup state
+ * @num: the number of pids to cancel
+ *
+ * This function will WARN if the pid count goes under 0, because such a case is
+ * a bug in the pids controller proper.
+ */
+static void pids_cancel(struct pids_cgroup *pids, int num)
+{
+       /*
+        * A negative count (or overflow for that matter) is invalid,
+        * and indicates a bug in the `pids` controller proper.
+        */
+       WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
+}
+
+/**
+ * pids_uncharge - hierarchically uncharge the pid count
+ * @pids: the pid cgroup state
+ * @num: the number of pids to uncharge
+ */
+static void pids_uncharge(struct pids_cgroup *pids, int num)
+{
+       struct pids_cgroup *p;
+
+       for (p = pids; parent_pids(p); p = parent_pids(p))
+               pids_cancel(p, num);
+}
+
+/**
+ * pids_charge - hierarchically charge the pid count
+ * @pids: the pid cgroup state
+ * @num: the number of pids to charge
+ *
+ * This function does *not* follow the pid limit set. It cannot fail and the new
+ * pid count may exceed the limit. This is only used for reverting failed
+ * attaches, where there is no other way out than violating the limit.
+ */
+static void pids_charge(struct pids_cgroup *pids, int num)
+{
+       struct pids_cgroup *p;
+
+       for (p = pids; parent_pids(p); p = parent_pids(p))
+               atomic64_add(num, &p->counter);
+}
+
+/**
+ * pids_try_charge - hierarchically try to charge the pid count
+ * @pids: the pid cgroup state
+ * @num: the number of pids to charge
+ *
+ * This function follows the set limit. It will fail if the charge would cause
+ * the new value to exceed the hierarchical limit. Returns 0 if the charge
+ * succeeded, otherwise -EAGAIN.
+ */
+static int pids_try_charge(struct pids_cgroup *pids, int num)
+{
+       struct pids_cgroup *p, *q;
+
+       for (p = pids; parent_pids(p); p = parent_pids(p)) {
+               int64_t new = atomic64_add_return(num, &p->counter);
+
+               /*
+                * Since new is capped to the maximum number of pid_t, if
+                * p->limit is %PIDS_MAX then we know that this test will never
+                * fail.
+                */
+               if (new > p->limit)
+                       goto revert;
+       }
+
+       return 0;
+
+revert:
+       for (q = pids; q != p; q = parent_pids(q))
+               pids_cancel(q, num);
+       pids_cancel(p, num);
+
+       return -EAGAIN;
+}
+
+static int pids_can_attach(struct cgroup_taskset *tset)
+{
+       struct task_struct *task;
+       struct cgroup_subsys_state *dst_css;
+
+       cgroup_taskset_for_each(task, dst_css, tset) {
+               struct pids_cgroup *pids = css_pids(dst_css);
+               struct cgroup_subsys_state *old_css;
+               struct pids_cgroup *old_pids;
+
+               /*
+                * No need to pin @old_css between here and cancel_attach()
+                * because cgroup core protects it from being freed before
+                * the migration completes or fails.
+                */
+               old_css = task_css(task, pids_cgrp_id);
+               old_pids = css_pids(old_css);
+
+               pids_charge(pids, 1);
+               pids_uncharge(old_pids, 1);
+       }
+
+       return 0;
+}
+
+static void pids_cancel_attach(struct cgroup_taskset *tset)
+{
+       struct task_struct *task;
+       struct cgroup_subsys_state *dst_css;
+
+       cgroup_taskset_for_each(task, dst_css, tset) {
+               struct pids_cgroup *pids = css_pids(dst_css);
+               struct cgroup_subsys_state *old_css;
+               struct pids_cgroup *old_pids;
+
+               old_css = task_css(task, pids_cgrp_id);
+               old_pids = css_pids(old_css);
+
+               pids_charge(old_pids, 1);
+               pids_uncharge(pids, 1);
+       }
+}
+
+/*
+ * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
+ * on threadgroup_change_begin() held by the copy_process().
+ */
+static int pids_can_fork(struct task_struct *task)
+{
+       struct cgroup_subsys_state *css;
+       struct pids_cgroup *pids;
+       int err;
+
+       css = task_css_check(current, pids_cgrp_id, true);
+       pids = css_pids(css);
+       err = pids_try_charge(pids, 1);
+       if (err) {
+               /* Only log the first time events_limit is incremented. */
+               if (atomic64_inc_return(&pids->events_limit) == 1) {
+                       pr_info("cgroup: fork rejected by pids controller in ");
+                       pr_cont_cgroup_path(task_cgroup(current, pids_cgrp_id));
+                       pr_cont("\n");
+               }
+               cgroup_file_notify(&pids->events_file);
+       }
+       return err;
+}
+
+static void pids_cancel_fork(struct task_struct *task)
+{
+       struct cgroup_subsys_state *css;
+       struct pids_cgroup *pids;
+
+       css = task_css_check(current, pids_cgrp_id, true);
+       pids = css_pids(css);
+       pids_uncharge(pids, 1);
+}
+
+static void pids_free(struct task_struct *task)
+{
+       struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
+
+       pids_uncharge(pids, 1);
+}
+
+static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
+                             size_t nbytes, loff_t off)
+{
+       struct cgroup_subsys_state *css = of_css(of);
+       struct pids_cgroup *pids = css_pids(css);
+       int64_t limit;
+       int err;
+
+       buf = strstrip(buf);
+       if (!strcmp(buf, PIDS_MAX_STR)) {
+               limit = PIDS_MAX;
+               goto set_limit;
+       }
+
+       err = kstrtoll(buf, 0, &limit);
+       if (err)
+               return err;
+
+       if (limit < 0 || limit >= PIDS_MAX)
+               return -EINVAL;
+
+set_limit:
+       /*
+        * Limit updates don't need to be mutex'd, since it isn't
+        * critical that any racing fork()s follow the new limit.
+        */
+       pids->limit = limit;
+       return nbytes;
+}
+
+static int pids_max_show(struct seq_file *sf, void *v)
+{
+       struct cgroup_subsys_state *css = seq_css(sf);
+       struct pids_cgroup *pids = css_pids(css);
+       int64_t limit = pids->limit;
+
+       if (limit >= PIDS_MAX)
+               seq_printf(sf, "%s\n", PIDS_MAX_STR);
+       else
+               seq_printf(sf, "%lld\n", limit);
+
+       return 0;
+}
+
+static s64 pids_current_read(struct cgroup_subsys_state *css,
+                            struct cftype *cft)
+{
+       struct pids_cgroup *pids = css_pids(css);
+
+       return atomic64_read(&pids->counter);
+}
+
+static int pids_events_show(struct seq_file *sf, void *v)
+{
+       struct pids_cgroup *pids = css_pids(seq_css(sf));
+
+       seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit));
+       return 0;
+}
+
+static struct cftype pids_files[] = {
+       {
+               .name = "max",
+               .write = pids_max_write,
+               .seq_show = pids_max_show,
+               .flags = CFTYPE_NOT_ON_ROOT,
+       },
+       {
+               .name = "current",
+               .read_s64 = pids_current_read,
+               .flags = CFTYPE_NOT_ON_ROOT,
+       },
+       {
+               .name = "events",
+               .seq_show = pids_events_show,
+               .file_offset = offsetof(struct pids_cgroup, events_file),
+               .flags = CFTYPE_NOT_ON_ROOT,
+       },
+       { }     /* terminate */
+};
+
+struct cgroup_subsys pids_cgrp_subsys = {
+       .css_alloc      = pids_css_alloc,
+       .css_free       = pids_css_free,
+       .can_attach     = pids_can_attach,
+       .cancel_attach  = pids_cancel_attach,
+       .can_fork       = pids_can_fork,
+       .cancel_fork    = pids_cancel_fork,
+       .free           = pids_free,
+       .legacy_cftypes = pids_files,
+       .dfl_cftypes    = pids_files,
+};
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
deleted file mode 100644 (file)
index 1b72d56..0000000
+++ /dev/null
@@ -1,481 +0,0 @@
-/*
- * cgroup_freezer.c -  control group freezer subsystem
- *
- * Copyright IBM Corporation, 2007
- *
- * Author : Cedric Le Goater <clg@fr.ibm.com>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of version 2.1 of the GNU Lesser General Public License
- * as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it would be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- */
-
-#include <linux/export.h>
-#include <linux/slab.h>
-#include <linux/cgroup.h>
-#include <linux/fs.h>
-#include <linux/uaccess.h>
-#include <linux/freezer.h>
-#include <linux/seq_file.h>
-#include <linux/mutex.h>
-
-/*
- * A cgroup is freezing if any FREEZING flags are set.  FREEZING_SELF is
- * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared
- * for "THAWED".  FREEZING_PARENT is set if the parent freezer is FREEZING
- * for whatever reason.  IOW, a cgroup has FREEZING_PARENT set if one of
- * its ancestors has FREEZING_SELF set.
- */
-enum freezer_state_flags {
-       CGROUP_FREEZER_ONLINE   = (1 << 0), /* freezer is fully online */
-       CGROUP_FREEZING_SELF    = (1 << 1), /* this freezer is freezing */
-       CGROUP_FREEZING_PARENT  = (1 << 2), /* the parent freezer is freezing */
-       CGROUP_FROZEN           = (1 << 3), /* this and its descendants frozen */
-
-       /* mask for all FREEZING flags */
-       CGROUP_FREEZING         = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT,
-};
-
-struct freezer {
-       struct cgroup_subsys_state      css;
-       unsigned int                    state;
-};
-
-static DEFINE_MUTEX(freezer_mutex);
-
-static inline struct freezer *css_freezer(struct cgroup_subsys_state *css)
-{
-       return css ? container_of(css, struct freezer, css) : NULL;
-}
-
-static inline struct freezer *task_freezer(struct task_struct *task)
-{
-       return css_freezer(task_css(task, freezer_cgrp_id));
-}
-
-static struct freezer *parent_freezer(struct freezer *freezer)
-{
-       return css_freezer(freezer->css.parent);
-}
-
-bool cgroup_freezing(struct task_struct *task)
-{
-       bool ret;
-
-       rcu_read_lock();
-       ret = task_freezer(task)->state & CGROUP_FREEZING;
-       rcu_read_unlock();
-
-       return ret;
-}
-
-static const char *freezer_state_strs(unsigned int state)
-{
-       if (state & CGROUP_FROZEN)
-               return "FROZEN";
-       if (state & CGROUP_FREEZING)
-               return "FREEZING";
-       return "THAWED";
-};
-
-static struct cgroup_subsys_state *
-freezer_css_alloc(struct cgroup_subsys_state *parent_css)
-{
-       struct freezer *freezer;
-
-       freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL);
-       if (!freezer)
-               return ERR_PTR(-ENOMEM);
-
-       return &freezer->css;
-}
-
-/**
- * freezer_css_online - commit creation of a freezer css
- * @css: css being created
- *
- * We're committing to creation of @css.  Mark it online and inherit
- * parent's freezing state while holding both parent's and our
- * freezer->lock.
- */
-static int freezer_css_online(struct cgroup_subsys_state *css)
-{
-       struct freezer *freezer = css_freezer(css);
-       struct freezer *parent = parent_freezer(freezer);
-
-       mutex_lock(&freezer_mutex);
-
-       freezer->state |= CGROUP_FREEZER_ONLINE;
-
-       if (parent && (parent->state & CGROUP_FREEZING)) {
-               freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN;
-               atomic_inc(&system_freezing_cnt);
-       }
-
-       mutex_unlock(&freezer_mutex);
-       return 0;
-}
-
-/**
- * freezer_css_offline - initiate destruction of a freezer css
- * @css: css being destroyed
- *
- * @css is going away.  Mark it dead and decrement system_freezing_count if
- * it was holding one.
- */
-static void freezer_css_offline(struct cgroup_subsys_state *css)
-{
-       struct freezer *freezer = css_freezer(css);
-
-       mutex_lock(&freezer_mutex);
-
-       if (freezer->state & CGROUP_FREEZING)
-               atomic_dec(&system_freezing_cnt);
-
-       freezer->state = 0;
-
-       mutex_unlock(&freezer_mutex);
-}
-
-static void freezer_css_free(struct cgroup_subsys_state *css)
-{
-       kfree(css_freezer(css));
-}
-
-/*
- * Tasks can be migrated into a different freezer anytime regardless of its
- * current state.  freezer_attach() is responsible for making new tasks
- * conform to the current state.
- *
- * Freezer state changes and task migration are synchronized via
- * @freezer->lock.  freezer_attach() makes the new tasks conform to the
- * current state and all following state changes can see the new tasks.
- */
-static void freezer_attach(struct cgroup_taskset *tset)
-{
-       struct task_struct *task;
-       struct cgroup_subsys_state *new_css;
-
-       mutex_lock(&freezer_mutex);
-
-       /*
-        * Make the new tasks conform to the current state of @new_css.
-        * For simplicity, when migrating any task to a FROZEN cgroup, we
-        * revert it to FREEZING and let update_if_frozen() determine the
-        * correct state later.
-        *
-        * Tasks in @tset are on @new_css but may not conform to its
-        * current state before executing the following - !frozen tasks may
-        * be visible in a FROZEN cgroup and frozen tasks in a THAWED one.
-        */
-       cgroup_taskset_for_each(task, new_css, tset) {
-               struct freezer *freezer = css_freezer(new_css);
-
-               if (!(freezer->state & CGROUP_FREEZING)) {
-                       __thaw_task(task);
-               } else {
-                       freeze_task(task);
-                       /* clear FROZEN and propagate upwards */
-                       while (freezer && (freezer->state & CGROUP_FROZEN)) {
-                               freezer->state &= ~CGROUP_FROZEN;
-                               freezer = parent_freezer(freezer);
-                       }
-               }
-       }
-
-       mutex_unlock(&freezer_mutex);
-}
-
-/**
- * freezer_fork - cgroup post fork callback
- * @task: a task which has just been forked
- *
- * @task has just been created and should conform to the current state of
- * the cgroup_freezer it belongs to.  This function may race against
- * freezer_attach().  Losing to freezer_attach() means that we don't have
- * to do anything as freezer_attach() will put @task into the appropriate
- * state.
- */
-static void freezer_fork(struct task_struct *task)
-{
-       struct freezer *freezer;
-
-       /*
-        * The root cgroup is non-freezable, so we can skip locking the
-        * freezer.  This is safe regardless of race with task migration.
-        * If we didn't race or won, skipping is obviously the right thing
-        * to do.  If we lost and root is the new cgroup, noop is still the
-        * right thing to do.
-        */
-       if (task_css_is_root(task, freezer_cgrp_id))
-               return;
-
-       mutex_lock(&freezer_mutex);
-       rcu_read_lock();
-
-       freezer = task_freezer(task);
-       if (freezer->state & CGROUP_FREEZING)
-               freeze_task(task);
-
-       rcu_read_unlock();
-       mutex_unlock(&freezer_mutex);
-}
-
-/**
- * update_if_frozen - update whether a cgroup finished freezing
- * @css: css of interest
- *
- * Once FREEZING is initiated, transition to FROZEN is lazily updated by
- * calling this function.  If the current state is FREEZING but not FROZEN,
- * this function checks whether all tasks of this cgroup and the descendant
- * cgroups finished freezing and, if so, sets FROZEN.
- *
- * The caller is responsible for grabbing RCU read lock and calling
- * update_if_frozen() on all descendants prior to invoking this function.
- *
- * Task states and freezer state might disagree while tasks are being
- * migrated into or out of @css, so we can't verify task states against
- * @freezer state here.  See freezer_attach() for details.
- */
-static void update_if_frozen(struct cgroup_subsys_state *css)
-{
-       struct freezer *freezer = css_freezer(css);
-       struct cgroup_subsys_state *pos;
-       struct css_task_iter it;
-       struct task_struct *task;
-
-       lockdep_assert_held(&freezer_mutex);
-
-       if (!(freezer->state & CGROUP_FREEZING) ||
-           (freezer->state & CGROUP_FROZEN))
-               return;
-
-       /* are all (live) children frozen? */
-       rcu_read_lock();
-       css_for_each_child(pos, css) {
-               struct freezer *child = css_freezer(pos);
-
-               if ((child->state & CGROUP_FREEZER_ONLINE) &&
-                   !(child->state & CGROUP_FROZEN)) {
-                       rcu_read_unlock();
-                       return;
-               }
-       }
-       rcu_read_unlock();
-
-       /* are all tasks frozen? */
-       css_task_iter_start(css, &it);
-
-       while ((task = css_task_iter_next(&it))) {
-               if (freezing(task)) {
-                       /*
-                        * freezer_should_skip() indicates that the task
-                        * should be skipped when determining freezing
-                        * completion.  Consider it frozen in addition to
-                        * the usual frozen condition.
-                        */
-                       if (!frozen(task) && !freezer_should_skip(task))
-                               goto out_iter_end;
-               }
-       }
-
-       freezer->state |= CGROUP_FROZEN;
-out_iter_end:
-       css_task_iter_end(&it);
-}
-
-static int freezer_read(struct seq_file *m, void *v)
-{
-       struct cgroup_subsys_state *css = seq_css(m), *pos;
-
-       mutex_lock(&freezer_mutex);
-       rcu_read_lock();
-
-       /* update states bottom-up */
-       css_for_each_descendant_post(pos, css) {
-               if (!css_tryget_online(pos))
-                       continue;
-               rcu_read_unlock();
-
-               update_if_frozen(pos);
-
-               rcu_read_lock();
-               css_put(pos);
-       }
-
-       rcu_read_unlock();
-       mutex_unlock(&freezer_mutex);
-
-       seq_puts(m, freezer_state_strs(css_freezer(css)->state));
-       seq_putc(m, '\n');
-       return 0;
-}
-
-static void freeze_cgroup(struct freezer *freezer)
-{
-       struct css_task_iter it;
-       struct task_struct *task;
-
-       css_task_iter_start(&freezer->css, &it);
-       while ((task = css_task_iter_next(&it)))
-               freeze_task(task);
-       css_task_iter_end(&it);
-}
-
-static void unfreeze_cgroup(struct freezer *freezer)
-{
-       struct css_task_iter it;
-       struct task_struct *task;
-
-       css_task_iter_start(&freezer->css, &it);
-       while ((task = css_task_iter_next(&it)))
-               __thaw_task(task);
-       css_task_iter_end(&it);
-}
-
-/**
- * freezer_apply_state - apply state change to a single cgroup_freezer
- * @freezer: freezer to apply state change to
- * @freeze: whether to freeze or unfreeze
- * @state: CGROUP_FREEZING_* flag to set or clear
- *
- * Set or clear @state on @cgroup according to @freeze, and perform
- * freezing or thawing as necessary.
- */
-static void freezer_apply_state(struct freezer *freezer, bool freeze,
-                               unsigned int state)
-{
-       /* also synchronizes against task migration, see freezer_attach() */
-       lockdep_assert_held(&freezer_mutex);
-
-       if (!(freezer->state & CGROUP_FREEZER_ONLINE))
-               return;
-
-       if (freeze) {
-               if (!(freezer->state & CGROUP_FREEZING))
-                       atomic_inc(&system_freezing_cnt);
-               freezer->state |= state;
-               freeze_cgroup(freezer);
-       } else {
-               bool was_freezing = freezer->state & CGROUP_FREEZING;
-
-               freezer->state &= ~state;
-
-               if (!(freezer->state & CGROUP_FREEZING)) {
-                       if (was_freezing)
-                               atomic_dec(&system_freezing_cnt);
-                       freezer->state &= ~CGROUP_FROZEN;
-                       unfreeze_cgroup(freezer);
-               }
-       }
-}
-
-/**
- * freezer_change_state - change the freezing state of a cgroup_freezer
- * @freezer: freezer of interest
- * @freeze: whether to freeze or thaw
- *
- * Freeze or thaw @freezer according to @freeze.  The operations are
- * recursive - all descendants of @freezer will be affected.
- */
-static void freezer_change_state(struct freezer *freezer, bool freeze)
-{
-       struct cgroup_subsys_state *pos;
-
-       /*
-        * Update all its descendants in pre-order traversal.  Each
-        * descendant will try to inherit its parent's FREEZING state as
-        * CGROUP_FREEZING_PARENT.
-        */
-       mutex_lock(&freezer_mutex);
-       rcu_read_lock();
-       css_for_each_descendant_pre(pos, &freezer->css) {
-               struct freezer *pos_f = css_freezer(pos);
-               struct freezer *parent = parent_freezer(pos_f);
-
-               if (!css_tryget_online(pos))
-                       continue;
-               rcu_read_unlock();
-
-               if (pos_f == freezer)
-                       freezer_apply_state(pos_f, freeze,
-                                           CGROUP_FREEZING_SELF);
-               else
-                       freezer_apply_state(pos_f,
-                                           parent->state & CGROUP_FREEZING,
-                                           CGROUP_FREEZING_PARENT);
-
-               rcu_read_lock();
-               css_put(pos);
-       }
-       rcu_read_unlock();
-       mutex_unlock(&freezer_mutex);
-}
-
-static ssize_t freezer_write(struct kernfs_open_file *of,
-                            char *buf, size_t nbytes, loff_t off)
-{
-       bool freeze;
-
-       buf = strstrip(buf);
-
-       if (strcmp(buf, freezer_state_strs(0)) == 0)
-               freeze = false;
-       else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0)
-               freeze = true;
-       else
-               return -EINVAL;
-
-       freezer_change_state(css_freezer(of_css(of)), freeze);
-       return nbytes;
-}
-
-static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css,
-                                     struct cftype *cft)
-{
-       struct freezer *freezer = css_freezer(css);
-
-       return (bool)(freezer->state & CGROUP_FREEZING_SELF);
-}
-
-static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css,
-                                       struct cftype *cft)
-{
-       struct freezer *freezer = css_freezer(css);
-
-       return (bool)(freezer->state & CGROUP_FREEZING_PARENT);
-}
-
-static struct cftype files[] = {
-       {
-               .name = "state",
-               .flags = CFTYPE_NOT_ON_ROOT,
-               .seq_show = freezer_read,
-               .write = freezer_write,
-       },
-       {
-               .name = "self_freezing",
-               .flags = CFTYPE_NOT_ON_ROOT,
-               .read_u64 = freezer_self_freezing_read,
-       },
-       {
-               .name = "parent_freezing",
-               .flags = CFTYPE_NOT_ON_ROOT,
-               .read_u64 = freezer_parent_freezing_read,
-       },
-       { }     /* terminate */
-};
-
-struct cgroup_subsys freezer_cgrp_subsys = {
-       .css_alloc      = freezer_css_alloc,
-       .css_online     = freezer_css_online,
-       .css_offline    = freezer_css_offline,
-       .css_free       = freezer_css_free,
-       .attach         = freezer_attach,
-       .fork           = freezer_fork,
-       .legacy_cftypes = files,
-};
diff --git a/kernel/cgroup_pids.c b/kernel/cgroup_pids.c
deleted file mode 100644 (file)
index 2bd6737..0000000
+++ /dev/null
@@ -1,348 +0,0 @@
-/*
- * Process number limiting controller for cgroups.
- *
- * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
- * after a certain limit is reached.
- *
- * Since it is trivial to hit the task limit without hitting any kmemcg limits
- * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
- * preventable in the scope of a cgroup hierarchy by allowing resource limiting
- * of the number of tasks in a cgroup.
- *
- * In order to use the `pids` controller, set the maximum number of tasks in
- * pids.max (this is not available in the root cgroup for obvious reasons). The
- * number of processes currently in the cgroup is given by pids.current.
- * Organisational operations are not blocked by cgroup policies, so it is
- * possible to have pids.current > pids.max. However, it is not possible to
- * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
- * would cause a cgroup policy to be violated.
- *
- * To set a cgroup to have no limit, set pids.max to "max". This is the default
- * for all new cgroups (N.B. that PID limits are hierarchical, so the most
- * stringent limit in the hierarchy is followed).
- *
- * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
- * a superset of parent/child/pids.current.
- *
- * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
- *
- * This file is subject to the terms and conditions of version 2 of the GNU
- * General Public License.  See the file COPYING in the main directory of the
- * Linux distribution for more details.
- */
-
-#include <linux/kernel.h>
-#include <linux/threads.h>
-#include <linux/atomic.h>
-#include <linux/cgroup.h>
-#include <linux/slab.h>
-
-#define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
-#define PIDS_MAX_STR "max"
-
-struct pids_cgroup {
-       struct cgroup_subsys_state      css;
-
-       /*
-        * Use 64-bit types so that we can safely represent "max" as
-        * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
-        */
-       atomic64_t                      counter;
-       int64_t                         limit;
-
-       /* Handle for "pids.events" */
-       struct cgroup_file              events_file;
-
-       /* Number of times fork failed because limit was hit. */
-       atomic64_t                      events_limit;
-};
-
-static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
-{
-       return container_of(css, struct pids_cgroup, css);
-}
-
-static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
-{
-       return css_pids(pids->css.parent);
-}
-
-static struct cgroup_subsys_state *
-pids_css_alloc(struct cgroup_subsys_state *parent)
-{
-       struct pids_cgroup *pids;
-
-       pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
-       if (!pids)
-               return ERR_PTR(-ENOMEM);
-
-       pids->limit = PIDS_MAX;
-       atomic64_set(&pids->counter, 0);
-       atomic64_set(&pids->events_limit, 0);
-       return &pids->css;
-}
-
-static void pids_css_free(struct cgroup_subsys_state *css)
-{
-       kfree(css_pids(css));
-}
-
-/**
- * pids_cancel - uncharge the local pid count
- * @pids: the pid cgroup state
- * @num: the number of pids to cancel
- *
- * This function will WARN if the pid count goes under 0, because such a case is
- * a bug in the pids controller proper.
- */
-static void pids_cancel(struct pids_cgroup *pids, int num)
-{
-       /*
-        * A negative count (or overflow for that matter) is invalid,
-        * and indicates a bug in the `pids` controller proper.
-        */
-       WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
-}
-
-/**
- * pids_uncharge - hierarchically uncharge the pid count
- * @pids: the pid cgroup state
- * @num: the number of pids to uncharge
- */
-static void pids_uncharge(struct pids_cgroup *pids, int num)
-{
-       struct pids_cgroup *p;
-
-       for (p = pids; parent_pids(p); p = parent_pids(p))
-               pids_cancel(p, num);
-}
-
-/**
- * pids_charge - hierarchically charge the pid count
- * @pids: the pid cgroup state
- * @num: the number of pids to charge
- *
- * This function does *not* follow the pid limit set. It cannot fail and the new
- * pid count may exceed the limit. This is only used for reverting failed
- * attaches, where there is no other way out than violating the limit.
- */
-static void pids_charge(struct pids_cgroup *pids, int num)
-{
-       struct pids_cgroup *p;
-
-       for (p = pids; parent_pids(p); p = parent_pids(p))
-               atomic64_add(num, &p->counter);
-}
-
-/**
- * pids_try_charge - hierarchically try to charge the pid count
- * @pids: the pid cgroup state
- * @num: the number of pids to charge
- *
- * This function follows the set limit. It will fail if the charge would cause
- * the new value to exceed the hierarchical limit. Returns 0 if the charge
- * succeeded, otherwise -EAGAIN.
- */
-static int pids_try_charge(struct pids_cgroup *pids, int num)
-{
-       struct pids_cgroup *p, *q;
-
-       for (p = pids; parent_pids(p); p = parent_pids(p)) {
-               int64_t new = atomic64_add_return(num, &p->counter);
-
-               /*
-                * Since new is capped to the maximum number of pid_t, if
-                * p->limit is %PIDS_MAX then we know that this test will never
-                * fail.
-                */
-               if (new > p->limit)
-                       goto revert;
-       }
-
-       return 0;
-
-revert:
-       for (q = pids; q != p; q = parent_pids(q))
-               pids_cancel(q, num);
-       pids_cancel(p, num);
-
-       return -EAGAIN;
-}
-
-static int pids_can_attach(struct cgroup_taskset *tset)
-{
-       struct task_struct *task;
-       struct cgroup_subsys_state *dst_css;
-
-       cgroup_taskset_for_each(task, dst_css, tset) {
-               struct pids_cgroup *pids = css_pids(dst_css);
-               struct cgroup_subsys_state *old_css;
-               struct pids_cgroup *old_pids;
-
-               /*
-                * No need to pin @old_css between here and cancel_attach()
-                * because cgroup core protects it from being freed before
-                * the migration completes or fails.
-                */
-               old_css = task_css(task, pids_cgrp_id);
-               old_pids = css_pids(old_css);
-
-               pids_charge(pids, 1);
-               pids_uncharge(old_pids, 1);
-       }
-
-       return 0;
-}
-
-static void pids_cancel_attach(struct cgroup_taskset *tset)
-{
-       struct task_struct *task;
-       struct cgroup_subsys_state *dst_css;
-
-       cgroup_taskset_for_each(task, dst_css, tset) {
-               struct pids_cgroup *pids = css_pids(dst_css);
-               struct cgroup_subsys_state *old_css;
-               struct pids_cgroup *old_pids;
-
-               old_css = task_css(task, pids_cgrp_id);
-               old_pids = css_pids(old_css);
-
-               pids_charge(old_pids, 1);
-               pids_uncharge(pids, 1);
-       }
-}
-
-/*
- * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
- * on threadgroup_change_begin() held by the copy_process().
- */
-static int pids_can_fork(struct task_struct *task)
-{
-       struct cgroup_subsys_state *css;
-       struct pids_cgroup *pids;
-       int err;
-
-       css = task_css_check(current, pids_cgrp_id, true);
-       pids = css_pids(css);
-       err = pids_try_charge(pids, 1);
-       if (err) {
-               /* Only log the first time events_limit is incremented. */
-               if (atomic64_inc_return(&pids->events_limit) == 1) {
-                       pr_info("cgroup: fork rejected by pids controller in ");
-                       pr_cont_cgroup_path(task_cgroup(current, pids_cgrp_id));
-                       pr_cont("\n");
-               }
-               cgroup_file_notify(&pids->events_file);
-       }
-       return err;
-}
-
-static void pids_cancel_fork(struct task_struct *task)
-{
-       struct cgroup_subsys_state *css;
-       struct pids_cgroup *pids;
-
-       css = task_css_check(current, pids_cgrp_id, true);
-       pids = css_pids(css);
-       pids_uncharge(pids, 1);
-}
-
-static void pids_free(struct task_struct *task)
-{
-       struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
-
-       pids_uncharge(pids, 1);
-}
-
-static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
-                             size_t nbytes, loff_t off)
-{
-       struct cgroup_subsys_state *css = of_css(of);
-       struct pids_cgroup *pids = css_pids(css);
-       int64_t limit;
-       int err;
-
-       buf = strstrip(buf);
-       if (!strcmp(buf, PIDS_MAX_STR)) {
-               limit = PIDS_MAX;
-               goto set_limit;
-       }
-
-       err = kstrtoll(buf, 0, &limit);
-       if (err)
-               return err;
-
-       if (limit < 0 || limit >= PIDS_MAX)
-               return -EINVAL;
-
-set_limit:
-       /*
-        * Limit updates don't need to be mutex'd, since it isn't
-        * critical that any racing fork()s follow the new limit.
-        */
-       pids->limit = limit;
-       return nbytes;
-}
-
-static int pids_max_show(struct seq_file *sf, void *v)
-{
-       struct cgroup_subsys_state *css = seq_css(sf);
-       struct pids_cgroup *pids = css_pids(css);
-       int64_t limit = pids->limit;
-
-       if (limit >= PIDS_MAX)
-               seq_printf(sf, "%s\n", PIDS_MAX_STR);
-       else
-               seq_printf(sf, "%lld\n", limit);
-
-       return 0;
-}
-
-static s64 pids_current_read(struct cgroup_subsys_state *css,
-                            struct cftype *cft)
-{
-       struct pids_cgroup *pids = css_pids(css);
-
-       return atomic64_read(&pids->counter);
-}
-
-static int pids_events_show(struct seq_file *sf, void *v)
-{
-       struct pids_cgroup *pids = css_pids(seq_css(sf));
-
-       seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit));
-       return 0;
-}
-
-static struct cftype pids_files[] = {
-       {
-               .name = "max",
-               .write = pids_max_write,
-               .seq_show = pids_max_show,
-               .flags = CFTYPE_NOT_ON_ROOT,
-       },
-       {
-               .name = "current",
-               .read_s64 = pids_current_read,
-               .flags = CFTYPE_NOT_ON_ROOT,
-       },
-       {
-               .name = "events",
-               .seq_show = pids_events_show,
-               .file_offset = offsetof(struct pids_cgroup, events_file),
-               .flags = CFTYPE_NOT_ON_ROOT,
-       },
-       { }     /* terminate */
-};
-
-struct cgroup_subsys pids_cgrp_subsys = {
-       .css_alloc      = pids_css_alloc,
-       .css_free       = pids_css_free,
-       .can_attach     = pids_can_attach,
-       .cancel_attach  = pids_cancel_attach,
-       .can_fork       = pids_can_fork,
-       .cancel_fork    = pids_cancel_fork,
-       .free           = pids_free,
-       .legacy_cftypes = pids_files,
-       .dfl_cftypes    = pids_files,
-};
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
deleted file mode 100644 (file)
index b308888..0000000
+++ /dev/null
@@ -1,2752 +0,0 @@
-/*
- *  kernel/cpuset.c
- *
- *  Processor and Memory placement constraints for sets of tasks.
- *
- *  Copyright (C) 2003 BULL SA.
- *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
- *  Copyright (C) 2006 Google, Inc
- *
- *  Portions derived from Patrick Mochel's sysfs code.
- *  sysfs is Copyright (c) 2001-3 Patrick Mochel
- *
- *  2003-10-10 Written by Simon Derr.
- *  2003-10-22 Updates by Stephen Hemminger.
- *  2004 May-July Rework by Paul Jackson.
- *  2006 Rework by Paul Menage to use generic cgroups
- *  2008 Rework of the scheduler domains and CPU hotplug handling
- *       by Max Krasnyansky
- *
- *  This file is subject to the terms and conditions of the GNU General Public
- *  License.  See the file COPYING in the main directory of the Linux
- *  distribution for more details.
- */
-
-#include <linux/cpu.h>
-#include <linux/cpumask.h>
-#include <linux/cpuset.h>
-#include <linux/err.h>
-#include <linux/errno.h>
-#include <linux/file.h>
-#include <linux/fs.h>
-#include <linux/init.h>
-#include <linux/interrupt.h>
-#include <linux/kernel.h>
-#include <linux/kmod.h>
-#include <linux/list.h>
-#include <linux/mempolicy.h>
-#include <linux/mm.h>
-#include <linux/memory.h>
-#include <linux/export.h>
-#include <linux/mount.h>
-#include <linux/namei.h>
-#include <linux/pagemap.h>
-#include <linux/proc_fs.h>
-#include <linux/rcupdate.h>
-#include <linux/sched.h>
-#include <linux/seq_file.h>
-#include <linux/security.h>
-#include <linux/slab.h>
-#include <linux/spinlock.h>
-#include <linux/stat.h>
-#include <linux/string.h>
-#include <linux/time.h>
-#include <linux/time64.h>
-#include <linux/backing-dev.h>
-#include <linux/sort.h>
-
-#include <linux/uaccess.h>
-#include <linux/atomic.h>
-#include <linux/mutex.h>
-#include <linux/cgroup.h>
-#include <linux/wait.h>
-
-DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
-
-/* See "Frequency meter" comments, below. */
-
-struct fmeter {
-       int cnt;                /* unprocessed events count */
-       int val;                /* most recent output value */
-       time64_t time;          /* clock (secs) when val computed */
-       spinlock_t lock;        /* guards read or write of above */
-};
-
-struct cpuset {
-       struct cgroup_subsys_state css;
-
-       unsigned long flags;            /* "unsigned long" so bitops work */
-
-       /*
-        * On default hierarchy:
-        *
-        * The user-configured masks can only be changed by writing to
-        * cpuset.cpus and cpuset.mems, and won't be limited by the
-        * parent masks.
-        *
-        * The effective masks is the real masks that apply to the tasks
-        * in the cpuset. They may be changed if the configured masks are
-        * changed or hotplug happens.
-        *
-        * effective_mask == configured_mask & parent's effective_mask,
-        * and if it ends up empty, it will inherit the parent's mask.
-        *
-        *
-        * On legacy hierachy:
-        *
-        * The user-configured masks are always the same with effective masks.
-        */
-
-       /* user-configured CPUs and Memory Nodes allow to tasks */
-       cpumask_var_t cpus_allowed;
-       nodemask_t mems_allowed;
-
-       /* effective CPUs and Memory Nodes allow to tasks */
-       cpumask_var_t effective_cpus;
-       nodemask_t effective_mems;
-
-       /*
-        * This is old Memory Nodes tasks took on.
-        *
-        * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
-        * - A new cpuset's old_mems_allowed is initialized when some
-        *   task is moved into it.
-        * - old_mems_allowed is used in cpuset_migrate_mm() when we change
-        *   cpuset.mems_allowed and have tasks' nodemask updated, and
-        *   then old_mems_allowed is updated to mems_allowed.
-        */
-       nodemask_t old_mems_allowed;
-
-       struct fmeter fmeter;           /* memory_pressure filter */
-
-       /*
-        * Tasks are being attached to this cpuset.  Used to prevent
-        * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
-        */
-       int attach_in_progress;
-
-       /* partition number for rebuild_sched_domains() */
-       int pn;
-
-       /* for custom sched domain */
-       int relax_domain_level;
-};
-
-static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
-{
-       return css ? container_of(css, struct cpuset, css) : NULL;
-}
-
-/* Retrieve the cpuset for a task */
-static inline struct cpuset *task_cs(struct task_struct *task)
-{
-       return css_cs(task_css(task, cpuset_cgrp_id));
-}
-
-static inline struct cpuset *parent_cs(struct cpuset *cs)
-{
-       return css_cs(cs->css.parent);
-}
-
-#ifdef CONFIG_NUMA
-static inline bool task_has_mempolicy(struct task_struct *task)
-{
-       return task->mempolicy;
-}
-#else
-static inline bool task_has_mempolicy(struct task_struct *task)
-{
-       return false;
-}
-#endif
-
-
-/* bits in struct cpuset flags field */
-typedef enum {
-       CS_ONLINE,
-       CS_CPU_EXCLUSIVE,
-       CS_MEM_EXCLUSIVE,
-       CS_MEM_HARDWALL,
-       CS_MEMORY_MIGRATE,
-       CS_SCHED_LOAD_BALANCE,
-       CS_SPREAD_PAGE,
-       CS_SPREAD_SLAB,
-} cpuset_flagbits_t;
-
-/* convenient tests for these bits */
-static inline bool is_cpuset_online(const struct cpuset *cs)
-{
-       return test_bit(CS_ONLINE, &cs->flags);
-}
-
-static inline int is_cpu_exclusive(const struct cpuset *cs)
-{
-       return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
-}
-
-static inline int is_mem_exclusive(const struct cpuset *cs)
-{
-       return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
-}
-
-static inline int is_mem_hardwall(const struct cpuset *cs)
-{
-       return test_bit(CS_MEM_HARDWALL, &cs->flags);
-}
-
-static inline int is_sched_load_balance(const struct cpuset *cs)
-{
-       return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
-}
-
-static inline int is_memory_migrate(const struct cpuset *cs)
-{
-       return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
-}
-
-static inline int is_spread_page(const struct cpuset *cs)
-{
-       return test_bit(CS_SPREAD_PAGE, &cs->flags);
-}
-
-static inline int is_spread_slab(const struct cpuset *cs)
-{
-       return test_bit(CS_SPREAD_SLAB, &cs->flags);
-}
-
-static struct cpuset top_cpuset = {
-       .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
-                 (1 << CS_MEM_EXCLUSIVE)),
-};
-
-/**
- * cpuset_for_each_child - traverse online children of a cpuset
- * @child_cs: loop cursor pointing to the current child
- * @pos_css: used for iteration
- * @parent_cs: target cpuset to walk children of
- *
- * Walk @child_cs through the online children of @parent_cs.  Must be used
- * with RCU read locked.
- */
-#define cpuset_for_each_child(child_cs, pos_css, parent_cs)            \
-       css_for_each_child((pos_css), &(parent_cs)->css)                \
-               if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
-
-/**
- * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
- * @des_cs: loop cursor pointing to the current descendant
- * @pos_css: used for iteration
- * @root_cs: target cpuset to walk ancestor of
- *
- * Walk @des_cs through the online descendants of @root_cs.  Must be used
- * with RCU read locked.  The caller may modify @pos_css by calling
- * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
- * iteration and the first node to be visited.
- */
-#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)       \
-       css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
-               if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
-
-/*
- * There are two global locks guarding cpuset structures - cpuset_mutex and
- * callback_lock. We also require taking task_lock() when dereferencing a
- * task's cpuset pointer. See "The task_lock() exception", at the end of this
- * comment.
- *
- * A task must hold both locks to modify cpusets.  If a task holds
- * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
- * is the only task able to also acquire callback_lock and be able to
- * modify cpusets.  It can perform various checks on the cpuset structure
- * first, knowing nothing will change.  It can also allocate memory while
- * just holding cpuset_mutex.  While it is performing these checks, various
- * callback routines can briefly acquire callback_lock to query cpusets.
- * Once it is ready to make the changes, it takes callback_lock, blocking
- * everyone else.
- *
- * Calls to the kernel memory allocator can not be made while holding
- * callback_lock, as that would risk double tripping on callback_lock
- * from one of the callbacks into the cpuset code from within
- * __alloc_pages().
- *
- * If a task is only holding callback_lock, then it has read-only
- * access to cpusets.
- *
- * Now, the task_struct fields mems_allowed and mempolicy may be changed
- * by other task, we use alloc_lock in the task_struct fields to protect
- * them.
- *
- * The cpuset_common_file_read() handlers only hold callback_lock across
- * small pieces of code, such as when reading out possibly multi-word
- * cpumasks and nodemasks.
- *
- * Accessing a task's cpuset should be done in accordance with the
- * guidelines for accessing subsystem state in kernel/cgroup.c
- */
-
-static DEFINE_MUTEX(cpuset_mutex);
-static DEFINE_SPINLOCK(callback_lock);
-
-static struct workqueue_struct *cpuset_migrate_mm_wq;
-
-/*
- * CPU / memory hotplug is handled asynchronously.
- */
-static void cpuset_hotplug_workfn(struct work_struct *work);
-static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
-
-static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
-
-/*
- * This is ugly, but preserves the userspace API for existing cpuset
- * users. If someone tries to mount the "cpuset" filesystem, we
- * silently switch it to mount "cgroup" instead
- */
-static struct dentry *cpuset_mount(struct file_system_type *fs_type,
-                        int flags, const char *unused_dev_name, void *data)
-{
-       struct file_system_type *cgroup_fs = get_fs_type("cgroup");
-       struct dentry *ret = ERR_PTR(-ENODEV);
-       if (cgroup_fs) {
-               char mountopts[] =
-                       "cpuset,noprefix,"
-                       "release_agent=/sbin/cpuset_release_agent";
-               ret = cgroup_fs->mount(cgroup_fs, flags,
-                                          unused_dev_name, mountopts);
-               put_filesystem(cgroup_fs);
-       }
-       return ret;
-}
-
-static struct file_system_type cpuset_fs_type = {
-       .name = "cpuset",
-       .mount = cpuset_mount,
-};
-
-/*
- * Return in pmask the portion of a cpusets's cpus_allowed that
- * are online.  If none are online, walk up the cpuset hierarchy
- * until we find one that does have some online cpus.
- *
- * One way or another, we guarantee to return some non-empty subset
- * of cpu_online_mask.
- *
- * Call with callback_lock or cpuset_mutex held.
- */
-static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
-{
-       while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
-               cs = parent_cs(cs);
-               if (unlikely(!cs)) {
-                       /*
-                        * The top cpuset doesn't have any online cpu as a
-                        * consequence of a race between cpuset_hotplug_work
-                        * and cpu hotplug notifier.  But we know the top
-                        * cpuset's effective_cpus is on its way to to be
-                        * identical to cpu_online_mask.
-                        */
-                       cpumask_copy(pmask, cpu_online_mask);
-                       return;
-               }
-       }
-       cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
-}
-
-/*
- * Return in *pmask the portion of a cpusets's mems_allowed that
- * are online, with memory.  If none are online with memory, walk
- * up the cpuset hierarchy until we find one that does have some
- * online mems.  The top cpuset always has some mems online.
- *
- * One way or another, we guarantee to return some non-empty subset
- * of node_states[N_MEMORY].
- *
- * Call with callback_lock or cpuset_mutex held.
- */
-static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
-{
-       while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
-               cs = parent_cs(cs);
-       nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
-}
-
-/*
- * update task's spread flag if cpuset's page/slab spread flag is set
- *
- * Call with callback_lock or cpuset_mutex held.
- */
-static void cpuset_update_task_spread_flag(struct cpuset *cs,
-                                       struct task_struct *tsk)
-{
-       if (is_spread_page(cs))
-               task_set_spread_page(tsk);
-       else
-               task_clear_spread_page(tsk);
-
-       if (is_spread_slab(cs))
-               task_set_spread_slab(tsk);
-       else
-               task_clear_spread_slab(tsk);
-}
-
-/*
- * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
- *
- * One cpuset is a subset of another if all its allowed CPUs and
- * Memory Nodes are a subset of the other, and its exclusive flags
- * are only set if the other's are set.  Call holding cpuset_mutex.
- */
-
-static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
-{
-       return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
-               nodes_subset(p->mems_allowed, q->mems_allowed) &&
-               is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
-               is_mem_exclusive(p) <= is_mem_exclusive(q);
-}
-
-/**
- * alloc_trial_cpuset - allocate a trial cpuset
- * @cs: the cpuset that the trial cpuset duplicates
- */
-static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
-{
-       struct cpuset *trial;
-
-       trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
-       if (!trial)
-               return NULL;
-
-       if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
-               goto free_cs;
-       if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
-               goto free_cpus;
-
-       cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
-       cpumask_copy(trial->effective_cpus, cs->effective_cpus);
-       return trial;
-
-free_cpus:
-       free_cpumask_var(trial->cpus_allowed);
-free_cs:
-       kfree(trial);
-       return NULL;
-}
-
-/**
- * free_trial_cpuset - free the trial cpuset
- * @trial: the trial cpuset to be freed
- */
-static void free_trial_cpuset(struct cpuset *trial)
-{
-       free_cpumask_var(trial->effective_cpus);
-       free_cpumask_var(trial->cpus_allowed);
-       kfree(trial);
-}
-
-/*
- * validate_change() - Used to validate that any proposed cpuset change
- *                    follows the structural rules for cpusets.
- *
- * If we replaced the flag and mask values of the current cpuset
- * (cur) with those values in the trial cpuset (trial), would
- * our various subset and exclusive rules still be valid?  Presumes
- * cpuset_mutex held.
- *
- * 'cur' is the address of an actual, in-use cpuset.  Operations
- * such as list traversal that depend on the actual address of the
- * cpuset in the list must use cur below, not trial.
- *
- * 'trial' is the address of bulk structure copy of cur, with
- * perhaps one or more of the fields cpus_allowed, mems_allowed,
- * or flags changed to new, trial values.
- *
- * Return 0 if valid, -errno if not.
- */
-
-static int validate_change(struct cpuset *cur, struct cpuset *trial)
-{
-       struct cgroup_subsys_state *css;
-       struct cpuset *c, *par;
-       int ret;
-
-       rcu_read_lock();
-
-       /* Each of our child cpusets must be a subset of us */
-       ret = -EBUSY;
-       cpuset_for_each_child(c, css, cur)
-               if (!is_cpuset_subset(c, trial))
-                       goto out;
-
-       /* Remaining checks don't apply to root cpuset */
-       ret = 0;
-       if (cur == &top_cpuset)
-               goto out;
-
-       par = parent_cs(cur);
-
-       /* On legacy hiearchy, we must be a subset of our parent cpuset. */
-       ret = -EACCES;
-       if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
-           !is_cpuset_subset(trial, par))
-               goto out;
-
-       /*
-        * If either I or some sibling (!= me) is exclusive, we can't
-        * overlap
-        */
-       ret = -EINVAL;
-       cpuset_for_each_child(c, css, par) {
-               if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
-                   c != cur &&
-                   cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
-                       goto out;
-               if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
-                   c != cur &&
-                   nodes_intersects(trial->mems_allowed, c->mems_allowed))
-                       goto out;
-       }
-
-       /*
-        * Cpusets with tasks - existing or newly being attached - can't
-        * be changed to have empty cpus_allowed or mems_allowed.
-        */
-       ret = -ENOSPC;
-       if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
-               if (!cpumask_empty(cur->cpus_allowed) &&
-                   cpumask_empty(trial->cpus_allowed))
-                       goto out;
-               if (!nodes_empty(cur->mems_allowed) &&
-                   nodes_empty(trial->mems_allowed))
-                       goto out;
-       }
-
-       /*
-        * We can't shrink if we won't have enough room for SCHED_DEADLINE
-        * tasks.
-        */
-       ret = -EBUSY;
-       if (is_cpu_exclusive(cur) &&
-           !cpuset_cpumask_can_shrink(cur->cpus_allowed,
-                                      trial->cpus_allowed))
-               goto out;
-
-       ret = 0;
-out:
-       rcu_read_unlock();
-       return ret;
-}
-
-#ifdef CONFIG_SMP
-/*
- * Helper routine for generate_sched_domains().
- * Do cpusets a, b have overlapping effective cpus_allowed masks?
- */
-static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
-{
-       return cpumask_intersects(a->effective_cpus, b->effective_cpus);
-}
-
-static void
-update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
-{
-       if (dattr->relax_domain_level < c->relax_domain_level)
-               dattr->relax_domain_level = c->relax_domain_level;
-       return;
-}
-
-static void update_domain_attr_tree(struct sched_domain_attr *dattr,
-                                   struct cpuset *root_cs)
-{
-       struct cpuset *cp;
-       struct cgroup_subsys_state *pos_css;
-
-       rcu_read_lock();
-       cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
-               /* skip the whole subtree if @cp doesn't have any CPU */
-               if (cpumask_empty(cp->cpus_allowed)) {
-                       pos_css = css_rightmost_descendant(pos_css);
-                       continue;
-               }
-
-               if (is_sched_load_balance(cp))
-                       update_domain_attr(dattr, cp);
-       }
-       rcu_read_unlock();
-}
-
-/*
- * generate_sched_domains()
- *
- * This function builds a partial partition of the systems CPUs
- * A 'partial partition' is a set of non-overlapping subsets whose
- * union is a subset of that set.
- * The output of this function needs to be passed to kernel/sched/core.c
- * partition_sched_domains() routine, which will rebuild the scheduler's
- * load balancing domains (sched domains) as specified by that partial
- * partition.
- *
- * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
- * for a background explanation of this.
- *
- * Does not return errors, on the theory that the callers of this
- * routine would rather not worry about failures to rebuild sched
- * domains when operating in the severe memory shortage situations
- * that could cause allocation failures below.
- *
- * Must be called with cpuset_mutex held.
- *
- * The three key local variables below are:
- *    q  - a linked-list queue of cpuset pointers, used to implement a
- *        top-down scan of all cpusets.  This scan loads a pointer
- *        to each cpuset marked is_sched_load_balance into the
- *        array 'csa'.  For our purposes, rebuilding the schedulers
- *        sched domains, we can ignore !is_sched_load_balance cpusets.
- *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
- *        that need to be load balanced, for convenient iterative
- *        access by the subsequent code that finds the best partition,
- *        i.e the set of domains (subsets) of CPUs such that the
- *        cpus_allowed of every cpuset marked is_sched_load_balance
- *        is a subset of one of these domains, while there are as
- *        many such domains as possible, each as small as possible.
- * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
- *        the kernel/sched/core.c routine partition_sched_domains() in a
- *        convenient format, that can be easily compared to the prior
- *        value to determine what partition elements (sched domains)
- *        were changed (added or removed.)
- *
- * Finding the best partition (set of domains):
- *     The triple nested loops below over i, j, k scan over the
- *     load balanced cpusets (using the array of cpuset pointers in
- *     csa[]) looking for pairs of cpusets that have overlapping
- *     cpus_allowed, but which don't have the same 'pn' partition
- *     number and gives them in the same partition number.  It keeps
- *     looping on the 'restart' label until it can no longer find
- *     any such pairs.
- *
- *     The union of the cpus_allowed masks from the set of
- *     all cpusets having the same 'pn' value then form the one
- *     element of the partition (one sched domain) to be passed to
- *     partition_sched_domains().
- */
-static int generate_sched_domains(cpumask_var_t **domains,
-                       struct sched_domain_attr **attributes)
-{
-       struct cpuset *cp;      /* scans q */
-       struct cpuset **csa;    /* array of all cpuset ptrs */
-       int csn;                /* how many cpuset ptrs in csa so far */
-       int i, j, k;            /* indices for partition finding loops */
-       cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
-       cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
-       struct sched_domain_attr *dattr;  /* attributes for custom domains */
-       int ndoms = 0;          /* number of sched domains in result */
-       int nslot;              /* next empty doms[] struct cpumask slot */
-       struct cgroup_subsys_state *pos_css;
-
-       doms = NULL;
-       dattr = NULL;
-       csa = NULL;
-
-       if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
-               goto done;
-       cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-
-       /* Special case for the 99% of systems with one, full, sched domain */
-       if (is_sched_load_balance(&top_cpuset)) {
-               ndoms = 1;
-               doms = alloc_sched_domains(ndoms);
-               if (!doms)
-                       goto done;
-
-               dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
-               if (dattr) {
-                       *dattr = SD_ATTR_INIT;
-                       update_domain_attr_tree(dattr, &top_cpuset);
-               }
-               cpumask_and(doms[0], top_cpuset.effective_cpus,
-                                    non_isolated_cpus);
-
-               goto done;
-       }
-
-       csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
-       if (!csa)
-               goto done;
-       csn = 0;
-
-       rcu_read_lock();
-       cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
-               if (cp == &top_cpuset)
-                       continue;
-               /*
-                * Continue traversing beyond @cp iff @cp has some CPUs and
-                * isn't load balancing.  The former is obvious.  The
-                * latter: All child cpusets contain a subset of the
-                * parent's cpus, so just skip them, and then we call
-                * update_domain_attr_tree() to calc relax_domain_level of
-                * the corresponding sched domain.
-                */
-               if (!cpumask_empty(cp->cpus_allowed) &&
-                   !(is_sched_load_balance(cp) &&
-                     cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
-                       continue;
-
-               if (is_sched_load_balance(cp))
-                       csa[csn++] = cp;
-
-               /* skip @cp's subtree */
-               pos_css = css_rightmost_descendant(pos_css);
-       }
-       rcu_read_unlock();
-
-       for (i = 0; i < csn; i++)
-               csa[i]->pn = i;
-       ndoms = csn;
-
-restart:
-       /* Find the best partition (set of sched domains) */
-       for (i = 0; i < csn; i++) {
-               struct cpuset *a = csa[i];
-               int apn = a->pn;
-
-               for (j = 0; j < csn; j++) {
-                       struct cpuset *b = csa[j];
-                       int bpn = b->pn;
-
-                       if (apn != bpn && cpusets_overlap(a, b)) {
-                               for (k = 0; k < csn; k++) {
-                                       struct cpuset *c = csa[k];
-
-                                       if (c->pn == bpn)
-                                               c->pn = apn;
-                               }
-                               ndoms--;        /* one less element */
-                               goto restart;
-                       }
-               }
-       }
-
-       /*
-        * Now we know how many domains to create.
-        * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
-        */
-       doms = alloc_sched_domains(ndoms);
-       if (!doms)
-               goto done;
-
-       /*
-        * The rest of the code, including the scheduler, can deal with
-        * dattr==NULL case. No need to abort if alloc fails.
-        */
-       dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
-
-       for (nslot = 0, i = 0; i < csn; i++) {
-               struct cpuset *a = csa[i];
-               struct cpumask *dp;
-               int apn = a->pn;
-
-               if (apn < 0) {
-                       /* Skip completed partitions */
-                       continue;
-               }
-
-               dp = doms[nslot];
-
-               if (nslot == ndoms) {
-                       static int warnings = 10;
-                       if (warnings) {
-                               pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
-                                       nslot, ndoms, csn, i, apn);
-                               warnings--;
-                       }
-                       continue;
-               }
-
-               cpumask_clear(dp);
-               if (dattr)
-                       *(dattr + nslot) = SD_ATTR_INIT;
-               for (j = i; j < csn; j++) {
-                       struct cpuset *b = csa[j];
-
-                       if (apn == b->pn) {
-                               cpumask_or(dp, dp, b->effective_cpus);
-                               cpumask_and(dp, dp, non_isolated_cpus);
-                               if (dattr)
-                                       update_domain_attr_tree(dattr + nslot, b);
-
-                               /* Done with this partition */
-                               b->pn = -1;
-                       }
-               }
-               nslot++;
-       }
-       BUG_ON(nslot != ndoms);
-
-done:
-       free_cpumask_var(non_isolated_cpus);
-       kfree(csa);
-
-       /*
-        * Fallback to the default domain if kmalloc() failed.
-        * See comments in partition_sched_domains().
-        */
-       if (doms == NULL)
-               ndoms = 1;
-
-       *domains    = doms;
-       *attributes = dattr;
-       return ndoms;
-}
-
-/*
- * Rebuild scheduler domains.
- *
- * If the flag 'sched_load_balance' of any cpuset with non-empty
- * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
- * which has that flag enabled, or if any cpuset with a non-empty
- * 'cpus' is removed, then call this routine to rebuild the
- * scheduler's dynamic sched domains.
- *
- * Call with cpuset_mutex held.  Takes get_online_cpus().
- */
-static void rebuild_sched_domains_locked(void)
-{
-       struct sched_domain_attr *attr;
-       cpumask_var_t *doms;
-       int ndoms;
-
-       lockdep_assert_held(&cpuset_mutex);
-       get_online_cpus();
-
-       /*
-        * We have raced with CPU hotplug. Don't do anything to avoid
-        * passing doms with offlined cpu to partition_sched_domains().
-        * Anyways, hotplug work item will rebuild sched domains.
-        */
-       if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
-               goto out;
-
-       /* Generate domain masks and attrs */
-       ndoms = generate_sched_domains(&doms, &attr);
-
-       /* Have scheduler rebuild the domains */
-       partition_sched_domains(ndoms, doms, attr);
-out:
-       put_online_cpus();
-}
-#else /* !CONFIG_SMP */
-static void rebuild_sched_domains_locked(void)
-{
-}
-#endif /* CONFIG_SMP */
-
-void rebuild_sched_domains(void)
-{
-       mutex_lock(&cpuset_mutex);
-       rebuild_sched_domains_locked();
-       mutex_unlock(&cpuset_mutex);
-}
-
-/**
- * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
- * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
- *
- * Iterate through each task of @cs updating its cpus_allowed to the
- * effective cpuset's.  As this function is called with cpuset_mutex held,
- * cpuset membership stays stable.
- */
-static void update_tasks_cpumask(struct cpuset *cs)
-{
-       struct css_task_iter it;
-       struct task_struct *task;
-
-       css_task_iter_start(&cs->css, &it);
-       while ((task = css_task_iter_next(&it)))
-               set_cpus_allowed_ptr(task, cs->effective_cpus);
-       css_task_iter_end(&it);
-}
-
-/*
- * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
- * @cs: the cpuset to consider
- * @new_cpus: temp variable for calculating new effective_cpus
- *
- * When congifured cpumask is changed, the effective cpumasks of this cpuset
- * and all its descendants need to be updated.
- *
- * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
- *
- * Called with cpuset_mutex held
- */
-static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
-{
-       struct cpuset *cp;
-       struct cgroup_subsys_state *pos_css;
-       bool need_rebuild_sched_domains = false;
-
-       rcu_read_lock();
-       cpuset_for_each_descendant_pre(cp, pos_css, cs) {
-               struct cpuset *parent = parent_cs(cp);
-
-               cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
-
-               /*
-                * If it becomes empty, inherit the effective mask of the
-                * parent, which is guaranteed to have some CPUs.
-                */
-               if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
-                   cpumask_empty(new_cpus))
-                       cpumask_copy(new_cpus, parent->effective_cpus);
-
-               /* Skip the whole subtree if the cpumask remains the same. */
-               if (cpumask_equal(new_cpus, cp->effective_cpus)) {
-                       pos_css = css_rightmost_descendant(pos_css);
-                       continue;
-               }
-
-               if (!css_tryget_online(&cp->css))
-                       continue;
-               rcu_read_unlock();
-
-               spin_lock_irq(&callback_lock);
-               cpumask_copy(cp->effective_cpus, new_cpus);
-               spin_unlock_irq(&callback_lock);
-
-               WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
-                       !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
-
-               update_tasks_cpumask(cp);
-
-               /*
-                * If the effective cpumask of any non-empty cpuset is changed,
-                * we need to rebuild sched domains.
-                */
-               if (!cpumask_empty(cp->cpus_allowed) &&
-                   is_sched_load_balance(cp))
-                       need_rebuild_sched_domains = true;
-
-               rcu_read_lock();
-               css_put(&cp->css);
-       }
-       rcu_read_unlock();
-
-       if (need_rebuild_sched_domains)
-               rebuild_sched_domains_locked();
-}
-
-/**
- * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
- * @cs: the cpuset to consider
- * @trialcs: trial cpuset
- * @buf: buffer of cpu numbers written to this cpuset
- */
-static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
-                         const char *buf)
-{
-       int retval;
-
-       /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
-       if (cs == &top_cpuset)
-               return -EACCES;
-
-       /*
-        * An empty cpus_allowed is ok only if the cpuset has no tasks.
-        * Since cpulist_parse() fails on an empty mask, we special case
-        * that parsing.  The validate_change() call ensures that cpusets
-        * with tasks have cpus.
-        */
-       if (!*buf) {
-               cpumask_clear(trialcs->cpus_allowed);
-       } else {
-               retval = cpulist_parse(buf, trialcs->cpus_allowed);
-               if (retval < 0)
-                       return retval;
-
-               if (!cpumask_subset(trialcs->cpus_allowed,
-                                   top_cpuset.cpus_allowed))
-                       return -EINVAL;
-       }
-
-       /* Nothing to do if the cpus didn't change */
-       if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
-               return 0;
-
-       retval = validate_change(cs, trialcs);
-       if (retval < 0)
-               return retval;
-
-       spin_lock_irq(&callback_lock);
-       cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
-       spin_unlock_irq(&callback_lock);
-
-       /* use trialcs->cpus_allowed as a temp variable */
-       update_cpumasks_hier(cs, trialcs->cpus_allowed);
-       return 0;
-}
-
-/*
- * Migrate memory region from one set of nodes to another.  This is
- * performed asynchronously as it can be called from process migration path
- * holding locks involved in process management.  All mm migrations are
- * performed in the queued order and can be waited for by flushing
- * cpuset_migrate_mm_wq.
- */
-
-struct cpuset_migrate_mm_work {
-       struct work_struct      work;
-       struct mm_struct        *mm;
-       nodemask_t              from;
-       nodemask_t              to;
-};
-
-static void cpuset_migrate_mm_workfn(struct work_struct *work)
-{
-       struct cpuset_migrate_mm_work *mwork =
-               container_of(work, struct cpuset_migrate_mm_work, work);
-
-       /* on a wq worker, no need to worry about %current's mems_allowed */
-       do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
-       mmput(mwork->mm);
-       kfree(mwork);
-}
-
-static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
-                                                       const nodemask_t *to)
-{
-       struct cpuset_migrate_mm_work *mwork;
-
-       mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
-       if (mwork) {
-               mwork->mm = mm;
-               mwork->from = *from;
-               mwork->to = *to;
-               INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
-               queue_work(cpuset_migrate_mm_wq, &mwork->work);
-       } else {
-               mmput(mm);
-       }
-}
-
-static void cpuset_post_attach(void)
-{
-       flush_workqueue(cpuset_migrate_mm_wq);
-}
-
-/*
- * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
- * @tsk: the task to change
- * @newmems: new nodes that the task will be set
- *
- * In order to avoid seeing no nodes if the old and new nodes are disjoint,
- * we structure updates as setting all new allowed nodes, then clearing newly
- * disallowed ones.
- */
-static void cpuset_change_task_nodemask(struct task_struct *tsk,
-                                       nodemask_t *newmems)
-{
-       bool need_loop;
-
-       task_lock(tsk);
-       /*
-        * Determine if a loop is necessary if another thread is doing
-        * read_mems_allowed_begin().  If at least one node remains unchanged and
-        * tsk does not have a mempolicy, then an empty nodemask will not be
-        * possible when mems_allowed is larger than a word.
-        */
-       need_loop = task_has_mempolicy(tsk) ||
-                       !nodes_intersects(*newmems, tsk->mems_allowed);
-
-       if (need_loop) {
-               local_irq_disable();
-               write_seqcount_begin(&tsk->mems_allowed_seq);
-       }
-
-       nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
-       mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
-
-       mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
-       tsk->mems_allowed = *newmems;
-
-       if (need_loop) {
-               write_seqcount_end(&tsk->mems_allowed_seq);
-               local_irq_enable();
-       }
-
-       task_unlock(tsk);
-}
-
-static void *cpuset_being_rebound;
-
-/**
- * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
- * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
- *
- * Iterate through each task of @cs updating its mems_allowed to the
- * effective cpuset's.  As this function is called with cpuset_mutex held,
- * cpuset membership stays stable.
- */
-static void update_tasks_nodemask(struct cpuset *cs)
-{
-       static nodemask_t newmems;      /* protected by cpuset_mutex */
-       struct css_task_iter it;
-       struct task_struct *task;
-
-       cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
-
-       guarantee_online_mems(cs, &newmems);
-
-       /*
-        * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
-        * take while holding tasklist_lock.  Forks can happen - the
-        * mpol_dup() cpuset_being_rebound check will catch such forks,
-        * and rebind their vma mempolicies too.  Because we still hold
-        * the global cpuset_mutex, we know that no other rebind effort
-        * will be contending for the global variable cpuset_being_rebound.
-        * It's ok if we rebind the same mm twice; mpol_rebind_mm()
-        * is idempotent.  Also migrate pages in each mm to new nodes.
-        */
-       css_task_iter_start(&cs->css, &it);
-       while ((task = css_task_iter_next(&it))) {
-               struct mm_struct *mm;
-               bool migrate;
-
-               cpuset_change_task_nodemask(task, &newmems);
-
-               mm = get_task_mm(task);
-               if (!mm)
-                       continue;
-
-               migrate = is_memory_migrate(cs);
-
-               mpol_rebind_mm(mm, &cs->mems_allowed);
-               if (migrate)
-                       cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
-               else
-                       mmput(mm);
-       }
-       css_task_iter_end(&it);
-
-       /*
-        * All the tasks' nodemasks have been updated, update
-        * cs->old_mems_allowed.
-        */
-       cs->old_mems_allowed = newmems;
-
-       /* We're done rebinding vmas to this cpuset's new mems_allowed. */
-       cpuset_being_rebound = NULL;
-}
-
-/*
- * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
- * @cs: the cpuset to consider
- * @new_mems: a temp variable for calculating new effective_mems
- *
- * When configured nodemask is changed, the effective nodemasks of this cpuset
- * and all its descendants need to be updated.
- *
- * On legacy hiearchy, effective_mems will be the same with mems_allowed.
- *
- * Called with cpuset_mutex held
- */
-static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
-{
-       struct cpuset *cp;
-       struct cgroup_subsys_state *pos_css;
-
-       rcu_read_lock();
-       cpuset_for_each_descendant_pre(cp, pos_css, cs) {
-               struct cpuset *parent = parent_cs(cp);
-
-               nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
-
-               /*
-                * If it becomes empty, inherit the effective mask of the
-                * parent, which is guaranteed to have some MEMs.
-                */
-               if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
-                   nodes_empty(*new_mems))
-                       *new_mems = parent->effective_mems;
-
-               /* Skip the whole subtree if the nodemask remains the same. */
-               if (nodes_equal(*new_mems, cp->effective_mems)) {
-                       pos_css = css_rightmost_descendant(pos_css);
-                       continue;
-               }
-
-               if (!css_tryget_online(&cp->css))
-                       continue;
-               rcu_read_unlock();
-
-               spin_lock_irq(&callback_lock);
-               cp->effective_mems = *new_mems;
-               spin_unlock_irq(&callback_lock);
-
-               WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
-                       !nodes_equal(cp->mems_allowed, cp->effective_mems));
-
-               update_tasks_nodemask(cp);
-
-               rcu_read_lock();
-               css_put(&cp->css);
-       }
-       rcu_read_unlock();
-}
-
-/*
- * Handle user request to change the 'mems' memory placement
- * of a cpuset.  Needs to validate the request, update the
- * cpusets mems_allowed, and for each task in the cpuset,
- * update mems_allowed and rebind task's mempolicy and any vma
- * mempolicies and if the cpuset is marked 'memory_migrate',
- * migrate the tasks pages to the new memory.
- *
- * Call with cpuset_mutex held. May take callback_lock during call.
- * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
- * lock each such tasks mm->mmap_sem, scan its vma's and rebind
- * their mempolicies to the cpusets new mems_allowed.
- */
-static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
-                          const char *buf)
-{
-       int retval;
-
-       /*
-        * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
-        * it's read-only
-        */
-       if (cs == &top_cpuset) {
-               retval = -EACCES;
-               goto done;
-       }
-
-       /*
-        * An empty mems_allowed is ok iff there are no tasks in the cpuset.
-        * Since nodelist_parse() fails on an empty mask, we special case
-        * that parsing.  The validate_change() call ensures that cpusets
-        * with tasks have memory.
-        */
-       if (!*buf) {
-               nodes_clear(trialcs->mems_allowed);
-       } else {
-               retval = nodelist_parse(buf, trialcs->mems_allowed);
-               if (retval < 0)
-                       goto done;
-
-               if (!nodes_subset(trialcs->mems_allowed,
-                                 top_cpuset.mems_allowed)) {
-                       retval = -EINVAL;
-                       goto done;
-               }
-       }
-
-       if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
-               retval = 0;             /* Too easy - nothing to do */
-               goto done;
-       }
-       retval = validate_change(cs, trialcs);
-       if (retval < 0)
-               goto done;
-
-       spin_lock_irq(&callback_lock);
-       cs->mems_allowed = trialcs->mems_allowed;
-       spin_unlock_irq(&callback_lock);
-
-       /* use trialcs->mems_allowed as a temp variable */
-       update_nodemasks_hier(cs, &trialcs->mems_allowed);
-done:
-       return retval;
-}
-
-int current_cpuset_is_being_rebound(void)
-{
-       int ret;
-
-       rcu_read_lock();
-       ret = task_cs(current) == cpuset_being_rebound;
-       rcu_read_unlock();
-
-       return ret;
-}
-
-static int update_relax_domain_level(struct cpuset *cs, s64 val)
-{
-#ifdef CONFIG_SMP
-       if (val < -1 || val >= sched_domain_level_max)
-               return -EINVAL;
-#endif
-
-       if (val != cs->relax_domain_level) {
-               cs->relax_domain_level = val;
-               if (!cpumask_empty(cs->cpus_allowed) &&
-                   is_sched_load_balance(cs))
-                       rebuild_sched_domains_locked();
-       }
-
-       return 0;
-}
-
-/**
- * update_tasks_flags - update the spread flags of tasks in the cpuset.
- * @cs: the cpuset in which each task's spread flags needs to be changed
- *
- * Iterate through each task of @cs updating its spread flags.  As this
- * function is called with cpuset_mutex held, cpuset membership stays
- * stable.
- */
-static void update_tasks_flags(struct cpuset *cs)
-{
-       struct css_task_iter it;
-       struct task_struct *task;
-
-       css_task_iter_start(&cs->css, &it);
-       while ((task = css_task_iter_next(&it)))
-               cpuset_update_task_spread_flag(cs, task);
-       css_task_iter_end(&it);
-}
-
-/*
- * update_flag - read a 0 or a 1 in a file and update associated flag
- * bit:                the bit to update (see cpuset_flagbits_t)
- * cs:         the cpuset to update
- * turning_on:         whether the flag is being set or cleared
- *
- * Call with cpuset_mutex held.
- */
-
-static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
-                      int turning_on)
-{
-       struct cpuset *trialcs;
-       int balance_flag_changed;
-       int spread_flag_changed;
-       int err;
-
-       trialcs = alloc_trial_cpuset(cs);
-       if (!trialcs)
-               return -ENOMEM;
-
-       if (turning_on)
-               set_bit(bit, &trialcs->flags);
-       else
-               clear_bit(bit, &trialcs->flags);
-
-       err = validate_change(cs, trialcs);
-       if (err < 0)
-               goto out;
-
-       balance_flag_changed = (is_sched_load_balance(cs) !=
-                               is_sched_load_balance(trialcs));
-
-       spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
-                       || (is_spread_page(cs) != is_spread_page(trialcs)));
-
-       spin_lock_irq(&callback_lock);
-       cs->flags = trialcs->flags;
-       spin_unlock_irq(&callback_lock);
-
-       if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
-               rebuild_sched_domains_locked();
-
-       if (spread_flag_changed)
-               update_tasks_flags(cs);
-out:
-       free_trial_cpuset(trialcs);
-       return err;
-}
-
-/*
- * Frequency meter - How fast is some event occurring?
- *
- * These routines manage a digitally filtered, constant time based,
- * event frequency meter.  There are four routines:
- *   fmeter_init() - initialize a frequency meter.
- *   fmeter_markevent() - called each time the event happens.
- *   fmeter_getrate() - returns the recent rate of such events.
- *   fmeter_update() - internal routine used to update fmeter.
- *
- * A common data structure is passed to each of these routines,
- * which is used to keep track of the state required to manage the
- * frequency meter and its digital filter.
- *
- * The filter works on the number of events marked per unit time.
- * The filter is single-pole low-pass recursive (IIR).  The time unit
- * is 1 second.  Arithmetic is done using 32-bit integers scaled to
- * simulate 3 decimal digits of precision (multiplied by 1000).
- *
- * With an FM_COEF of 933, and a time base of 1 second, the filter
- * has a half-life of 10 seconds, meaning that if the events quit
- * happening, then the rate returned from the fmeter_getrate()
- * will be cut in half each 10 seconds, until it converges to zero.
- *
- * It is not worth doing a real infinitely recursive filter.  If more
- * than FM_MAXTICKS ticks have elapsed since the last filter event,
- * just compute FM_MAXTICKS ticks worth, by which point the level
- * will be stable.
- *
- * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
- * arithmetic overflow in the fmeter_update() routine.
- *
- * Given the simple 32 bit integer arithmetic used, this meter works
- * best for reporting rates between one per millisecond (msec) and
- * one per 32 (approx) seconds.  At constant rates faster than one
- * per msec it maxes out at values just under 1,000,000.  At constant
- * rates between one per msec, and one per second it will stabilize
- * to a value N*1000, where N is the rate of events per second.
- * At constant rates between one per second and one per 32 seconds,
- * it will be choppy, moving up on the seconds that have an event,
- * and then decaying until the next event.  At rates slower than
- * about one in 32 seconds, it decays all the way back to zero between
- * each event.
- */
-
-#define FM_COEF 933            /* coefficient for half-life of 10 secs */
-#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
-#define FM_MAXCNT 1000000      /* limit cnt to avoid overflow */
-#define FM_SCALE 1000          /* faux fixed point scale */
-
-/* Initialize a frequency meter */
-static void fmeter_init(struct fmeter *fmp)
-{
-       fmp->cnt = 0;
-       fmp->val = 0;
-       fmp->time = 0;
-       spin_lock_init(&fmp->lock);
-}
-
-/* Internal meter update - process cnt events and update value */
-static void fmeter_update(struct fmeter *fmp)
-{
-       time64_t now;
-       u32 ticks;
-
-       now = ktime_get_seconds();
-       ticks = now - fmp->time;
-
-       if (ticks == 0)
-               return;
-
-       ticks = min(FM_MAXTICKS, ticks);
-       while (ticks-- > 0)
-               fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
-       fmp->time = now;
-
-       fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
-       fmp->cnt = 0;
-}
-
-/* Process any previous ticks, then bump cnt by one (times scale). */
-static void fmeter_markevent(struct fmeter *fmp)
-{
-       spin_lock(&fmp->lock);
-       fmeter_update(fmp);
-       fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
-       spin_unlock(&fmp->lock);
-}
-
-/* Process any previous ticks, then return current value. */
-static int fmeter_getrate(struct fmeter *fmp)
-{
-       int val;
-
-       spin_lock(&fmp->lock);
-       fmeter_update(fmp);
-       val = fmp->val;
-       spin_unlock(&fmp->lock);
-       return val;
-}
-
-static struct cpuset *cpuset_attach_old_cs;
-
-/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
-static int cpuset_can_attach(struct cgroup_taskset *tset)
-{
-       struct cgroup_subsys_state *css;
-       struct cpuset *cs;
-       struct task_struct *task;
-       int ret;
-
-       /* used later by cpuset_attach() */
-       cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
-       cs = css_cs(css);
-
-       mutex_lock(&cpuset_mutex);
-
-       /* allow moving tasks into an empty cpuset if on default hierarchy */
-       ret = -ENOSPC;
-       if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
-           (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
-               goto out_unlock;
-
-       cgroup_taskset_for_each(task, css, tset) {
-               ret = task_can_attach(task, cs->cpus_allowed);
-               if (ret)
-                       goto out_unlock;
-               ret = security_task_setscheduler(task);
-               if (ret)
-                       goto out_unlock;
-       }
-
-       /*
-        * Mark attach is in progress.  This makes validate_change() fail
-        * changes which zero cpus/mems_allowed.
-        */
-       cs->attach_in_progress++;
-       ret = 0;
-out_unlock:
-       mutex_unlock(&cpuset_mutex);
-       return ret;
-}
-
-static void cpuset_cancel_attach(struct cgroup_taskset *tset)
-{
-       struct cgroup_subsys_state *css;
-       struct cpuset *cs;
-
-       cgroup_taskset_first(tset, &css);
-       cs = css_cs(css);
-
-       mutex_lock(&cpuset_mutex);
-       css_cs(css)->attach_in_progress--;
-       mutex_unlock(&cpuset_mutex);
-}
-
-/*
- * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
- * but we can't allocate it dynamically there.  Define it global and
- * allocate from cpuset_init().
- */
-static cpumask_var_t cpus_attach;
-
-static void cpuset_attach(struct cgroup_taskset *tset)
-{
-       /* static buf protected by cpuset_mutex */
-       static nodemask_t cpuset_attach_nodemask_to;
-       struct task_struct *task;
-       struct task_struct *leader;
-       struct cgroup_subsys_state *css;
-       struct cpuset *cs;
-       struct cpuset *oldcs = cpuset_attach_old_cs;
-
-       cgroup_taskset_first(tset, &css);
-       cs = css_cs(css);
-
-       mutex_lock(&cpuset_mutex);
-
-       /* prepare for attach */
-       if (cs == &top_cpuset)
-               cpumask_copy(cpus_attach, cpu_possible_mask);
-       else
-               guarantee_online_cpus(cs, cpus_attach);
-
-       guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
-
-       cgroup_taskset_for_each(task, css, tset) {
-               /*
-                * can_attach beforehand should guarantee that this doesn't
-                * fail.  TODO: have a better way to handle failure here
-                */
-               WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
-
-               cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
-               cpuset_update_task_spread_flag(cs, task);
-       }
-
-       /*
-        * Change mm for all threadgroup leaders. This is expensive and may
-        * sleep and should be moved outside migration path proper.
-        */
-       cpuset_attach_nodemask_to = cs->effective_mems;
-       cgroup_taskset_for_each_leader(leader, css, tset) {
-               struct mm_struct *mm = get_task_mm(leader);
-
-               if (mm) {
-                       mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
-
-                       /*
-                        * old_mems_allowed is the same with mems_allowed
-                        * here, except if this task is being moved
-                        * automatically due to hotplug.  In that case
-                        * @mems_allowed has been updated and is empty, so
-                        * @old_mems_allowed is the right nodesets that we
-                        * migrate mm from.
-                        */
-                       if (is_memory_migrate(cs))
-                               cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
-                                                 &cpuset_attach_nodemask_to);
-                       else
-                               mmput(mm);
-               }
-       }
-
-       cs->old_mems_allowed = cpuset_attach_nodemask_to;
-
-       cs->attach_in_progress--;
-       if (!cs->attach_in_progress)
-               wake_up(&cpuset_attach_wq);
-
-       mutex_unlock(&cpuset_mutex);
-}
-
-/* The various types of files and directories in a cpuset file system */
-
-typedef enum {
-       FILE_MEMORY_MIGRATE,
-       FILE_CPULIST,
-       FILE_MEMLIST,
-       FILE_EFFECTIVE_CPULIST,
-       FILE_EFFECTIVE_MEMLIST,
-       FILE_CPU_EXCLUSIVE,
-       FILE_MEM_EXCLUSIVE,
-       FILE_MEM_HARDWALL,
-       FILE_SCHED_LOAD_BALANCE,
-       FILE_SCHED_RELAX_DOMAIN_LEVEL,
-       FILE_MEMORY_PRESSURE_ENABLED,
-       FILE_MEMORY_PRESSURE,
-       FILE_SPREAD_PAGE,
-       FILE_SPREAD_SLAB,
-} cpuset_filetype_t;
-
-static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
-                           u64 val)
-{
-       struct cpuset *cs = css_cs(css);
-       cpuset_filetype_t type = cft->private;
-       int retval = 0;
-
-       mutex_lock(&cpuset_mutex);
-       if (!is_cpuset_online(cs)) {
-               retval = -ENODEV;
-               goto out_unlock;
-       }
-
-       switch (type) {
-       case FILE_CPU_EXCLUSIVE:
-               retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
-               break;
-       case FILE_MEM_EXCLUSIVE:
-               retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
-               break;
-       case FILE_MEM_HARDWALL:
-               retval = update_flag(CS_MEM_HARDWALL, cs, val);
-               break;
-       case FILE_SCHED_LOAD_BALANCE:
-               retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
-               break;
-       case FILE_MEMORY_MIGRATE:
-               retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
-               break;
-       case FILE_MEMORY_PRESSURE_ENABLED:
-               cpuset_memory_pressure_enabled = !!val;
-               break;
-       case FILE_SPREAD_PAGE:
-               retval = update_flag(CS_SPREAD_PAGE, cs, val);
-               break;
-       case FILE_SPREAD_SLAB:
-               retval = update_flag(CS_SPREAD_SLAB, cs, val);
-               break;
-       default:
-               retval = -EINVAL;
-               break;
-       }
-out_unlock:
-       mutex_unlock(&cpuset_mutex);
-       return retval;
-}
-
-static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
-                           s64 val)
-{
-       struct cpuset *cs = css_cs(css);
-       cpuset_filetype_t type = cft->private;
-       int retval = -ENODEV;
-
-       mutex_lock(&cpuset_mutex);
-       if (!is_cpuset_online(cs))
-               goto out_unlock;
-
-       switch (type) {
-       case FILE_SCHED_RELAX_DOMAIN_LEVEL:
-               retval = update_relax_domain_level(cs, val);
-               break;
-       default:
-               retval = -EINVAL;
-               break;
-       }
-out_unlock:
-       mutex_unlock(&cpuset_mutex);
-       return retval;
-}
-
-/*
- * Common handling for a write to a "cpus" or "mems" file.
- */
-static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
-                                   char *buf, size_t nbytes, loff_t off)
-{
-       struct cpuset *cs = css_cs(of_css(of));
-       struct cpuset *trialcs;
-       int retval = -ENODEV;
-
-       buf = strstrip(buf);
-
-       /*
-        * CPU or memory hotunplug may leave @cs w/o any execution
-        * resources, in which case the hotplug code asynchronously updates
-        * configuration and transfers all tasks to the nearest ancestor
-        * which can execute.
-        *
-        * As writes to "cpus" or "mems" may restore @cs's execution
-        * resources, wait for the previously scheduled operations before
-        * proceeding, so that we don't end up keep removing tasks added
-        * after execution capability is restored.
-        *
-        * cpuset_hotplug_work calls back into cgroup core via
-        * cgroup_transfer_tasks() and waiting for it from a cgroupfs
-        * operation like this one can lead to a deadlock through kernfs
-        * active_ref protection.  Let's break the protection.  Losing the
-        * protection is okay as we check whether @cs is online after
-        * grabbing cpuset_mutex anyway.  This only happens on the legacy
-        * hierarchies.
-        */
-       css_get(&cs->css);
-       kernfs_break_active_protection(of->kn);
-       flush_work(&cpuset_hotplug_work);
-
-       mutex_lock(&cpuset_mutex);
-       if (!is_cpuset_online(cs))
-               goto out_unlock;
-
-       trialcs = alloc_trial_cpuset(cs);
-       if (!trialcs) {
-               retval = -ENOMEM;
-               goto out_unlock;
-       }
-
-       switch (of_cft(of)->private) {
-       case FILE_CPULIST:
-               retval = update_cpumask(cs, trialcs, buf);
-               break;
-       case FILE_MEMLIST:
-               retval = update_nodemask(cs, trialcs, buf);
-               break;
-       default:
-               retval = -EINVAL;
-               break;
-       }
-
-       free_trial_cpuset(trialcs);
-out_unlock:
-       mutex_unlock(&cpuset_mutex);
-       kernfs_unbreak_active_protection(of->kn);
-       css_put(&cs->css);
-       flush_workqueue(cpuset_migrate_mm_wq);
-       return retval ?: nbytes;
-}
-
-/*
- * These ascii lists should be read in a single call, by using a user
- * buffer large enough to hold the entire map.  If read in smaller
- * chunks, there is no guarantee of atomicity.  Since the display format
- * used, list of ranges of sequential numbers, is variable length,
- * and since these maps can change value dynamically, one could read
- * gibberish by doing partial reads while a list was changing.
- */
-static int cpuset_common_seq_show(struct seq_file *sf, void *v)
-{
-       struct cpuset *cs = css_cs(seq_css(sf));
-       cpuset_filetype_t type = seq_cft(sf)->private;
-       int ret = 0;
-
-       spin_lock_irq(&callback_lock);
-
-       switch (type) {
-       case FILE_CPULIST:
-               seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
-               break;
-       case FILE_MEMLIST:
-               seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
-               break;
-       case FILE_EFFECTIVE_CPULIST:
-               seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
-               break;
-       case FILE_EFFECTIVE_MEMLIST:
-               seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
-               break;
-       default:
-               ret = -EINVAL;
-       }
-
-       spin_unlock_irq(&callback_lock);
-       return ret;
-}
-
-static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
-{
-       struct cpuset *cs = css_cs(css);
-       cpuset_filetype_t type = cft->private;
-       switch (type) {
-       case FILE_CPU_EXCLUSIVE:
-               return is_cpu_exclusive(cs);
-       case FILE_MEM_EXCLUSIVE:
-               return is_mem_exclusive(cs);
-       case FILE_MEM_HARDWALL:
-               return is_mem_hardwall(cs);
-       case FILE_SCHED_LOAD_BALANCE:
-               return is_sched_load_balance(cs);
-       case FILE_MEMORY_MIGRATE:
-               return is_memory_migrate(cs);
-       case FILE_MEMORY_PRESSURE_ENABLED:
-               return cpuset_memory_pressure_enabled;
-       case FILE_MEMORY_PRESSURE:
-               return fmeter_getrate(&cs->fmeter);
-       case FILE_SPREAD_PAGE:
-               return is_spread_page(cs);
-       case FILE_SPREAD_SLAB:
-               return is_spread_slab(cs);
-       default:
-               BUG();
-       }
-
-       /* Unreachable but makes gcc happy */
-       return 0;
-}
-
-static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
-{
-       struct cpuset *cs = css_cs(css);
-       cpuset_filetype_t type = cft->private;
-       switch (type) {
-       case FILE_SCHED_RELAX_DOMAIN_LEVEL:
-               return cs->relax_domain_level;
-       default:
-               BUG();
-       }
-
-       /* Unrechable but makes gcc happy */
-       return 0;
-}
-
-
-/*
- * for the common functions, 'private' gives the type of file
- */
-
-static struct cftype files[] = {
-       {
-               .name = "cpus",
-               .seq_show = cpuset_common_seq_show,
-               .write = cpuset_write_resmask,
-               .max_write_len = (100U + 6 * NR_CPUS),
-               .private = FILE_CPULIST,
-       },
-
-       {
-               .name = "mems",
-               .seq_show = cpuset_common_seq_show,
-               .write = cpuset_write_resmask,
-               .max_write_len = (100U + 6 * MAX_NUMNODES),
-               .private = FILE_MEMLIST,
-       },
-
-       {
-               .name = "effective_cpus",
-               .seq_show = cpuset_common_seq_show,
-               .private = FILE_EFFECTIVE_CPULIST,
-       },
-
-       {
-               .name = "effective_mems",
-               .seq_show = cpuset_common_seq_show,
-               .private = FILE_EFFECTIVE_MEMLIST,
-       },
-
-       {
-               .name = "cpu_exclusive",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_CPU_EXCLUSIVE,
-       },
-
-       {
-               .name = "mem_exclusive",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_MEM_EXCLUSIVE,
-       },
-
-       {
-               .name = "mem_hardwall",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_MEM_HARDWALL,
-       },
-
-       {
-               .name = "sched_load_balance",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_SCHED_LOAD_BALANCE,
-       },
-
-       {
-               .name = "sched_relax_domain_level",
-               .read_s64 = cpuset_read_s64,
-               .write_s64 = cpuset_write_s64,
-               .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
-       },
-
-       {
-               .name = "memory_migrate",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_MEMORY_MIGRATE,
-       },
-
-       {
-               .name = "memory_pressure",
-               .read_u64 = cpuset_read_u64,
-       },
-
-       {
-               .name = "memory_spread_page",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_SPREAD_PAGE,
-       },
-
-       {
-               .name = "memory_spread_slab",
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_SPREAD_SLAB,
-       },
-
-       {
-               .name = "memory_pressure_enabled",
-               .flags = CFTYPE_ONLY_ON_ROOT,
-               .read_u64 = cpuset_read_u64,
-               .write_u64 = cpuset_write_u64,
-               .private = FILE_MEMORY_PRESSURE_ENABLED,
-       },
-
-       { }     /* terminate */
-};
-
-/*
- *     cpuset_css_alloc - allocate a cpuset css
- *     cgrp:   control group that the new cpuset will be part of
- */
-
-static struct cgroup_subsys_state *
-cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
-{
-       struct cpuset *cs;
-
-       if (!parent_css)
-               return &top_cpuset.css;
-
-       cs = kzalloc(sizeof(*cs), GFP_KERNEL);
-       if (!cs)
-               return ERR_PTR(-ENOMEM);
-       if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
-               goto free_cs;
-       if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
-               goto free_cpus;
-
-       set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
-       cpumask_clear(cs->cpus_allowed);
-       nodes_clear(cs->mems_allowed);
-       cpumask_clear(cs->effective_cpus);
-       nodes_clear(cs->effective_mems);
-       fmeter_init(&cs->fmeter);
-       cs->relax_domain_level = -1;
-
-       return &cs->css;
-
-free_cpus:
-       free_cpumask_var(cs->cpus_allowed);
-free_cs:
-       kfree(cs);
-       return ERR_PTR(-ENOMEM);
-}
-
-static int cpuset_css_online(struct cgroup_subsys_state *css)
-{
-       struct cpuset *cs = css_cs(css);
-       struct cpuset *parent = parent_cs(cs);
-       struct cpuset *tmp_cs;
-       struct cgroup_subsys_state *pos_css;
-
-       if (!parent)
-               return 0;
-
-       mutex_lock(&cpuset_mutex);
-
-       set_bit(CS_ONLINE, &cs->flags);
-       if (is_spread_page(parent))
-               set_bit(CS_SPREAD_PAGE, &cs->flags);
-       if (is_spread_slab(parent))
-               set_bit(CS_SPREAD_SLAB, &cs->flags);
-
-       cpuset_inc();
-
-       spin_lock_irq(&callback_lock);
-       if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
-               cpumask_copy(cs->effective_cpus, parent->effective_cpus);
-               cs->effective_mems = parent->effective_mems;
-       }
-       spin_unlock_irq(&callback_lock);
-
-       if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
-               goto out_unlock;
-
-       /*
-        * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
-        * set.  This flag handling is implemented in cgroup core for
-        * histrical reasons - the flag may be specified during mount.
-        *
-        * Currently, if any sibling cpusets have exclusive cpus or mem, we
-        * refuse to clone the configuration - thereby refusing the task to
-        * be entered, and as a result refusing the sys_unshare() or
-        * clone() which initiated it.  If this becomes a problem for some
-        * users who wish to allow that scenario, then this could be
-        * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
-        * (and likewise for mems) to the new cgroup.
-        */
-       rcu_read_lock();
-       cpuset_for_each_child(tmp_cs, pos_css, parent) {
-               if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
-                       rcu_read_unlock();
-                       goto out_unlock;
-               }
-       }
-       rcu_read_unlock();
-
-       spin_lock_irq(&callback_lock);
-       cs->mems_allowed = parent->mems_allowed;
-       cs->effective_mems = parent->mems_allowed;
-       cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
-       cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
-       spin_unlock_irq(&callback_lock);
-out_unlock:
-       mutex_unlock(&cpuset_mutex);
-       return 0;
-}
-
-/*
- * If the cpuset being removed has its flag 'sched_load_balance'
- * enabled, then simulate turning sched_load_balance off, which
- * will call rebuild_sched_domains_locked().
- */
-
-static void cpuset_css_offline(struct cgroup_subsys_state *css)
-{
-       struct cpuset *cs = css_cs(css);
-
-       mutex_lock(&cpuset_mutex);
-
-       if (is_sched_load_balance(cs))
-               update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
-
-       cpuset_dec();
-       clear_bit(CS_ONLINE, &cs->flags);
-
-       mutex_unlock(&cpuset_mutex);
-}
-
-static void cpuset_css_free(struct cgroup_subsys_state *css)
-{
-       struct cpuset *cs = css_cs(css);
-
-       free_cpumask_var(cs->effective_cpus);
-       free_cpumask_var(cs->cpus_allowed);
-       kfree(cs);
-}
-
-static void cpuset_bind(struct cgroup_subsys_state *root_css)
-{
-       mutex_lock(&cpuset_mutex);
-       spin_lock_irq(&callback_lock);
-
-       if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
-               cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
-               top_cpuset.mems_allowed = node_possible_map;
-       } else {
-               cpumask_copy(top_cpuset.cpus_allowed,
-                            top_cpuset.effective_cpus);
-               top_cpuset.mems_allowed = top_cpuset.effective_mems;
-       }
-
-       spin_unlock_irq(&callback_lock);
-       mutex_unlock(&cpuset_mutex);
-}
-
-/*
- * Make sure the new task conform to the current state of its parent,
- * which could have been changed by cpuset just after it inherits the
- * state from the parent and before it sits on the cgroup's task list.
- */
-static void cpuset_fork(struct task_struct *task)
-{
-       if (task_css_is_root(task, cpuset_cgrp_id))
-               return;
-
-       set_cpus_allowed_ptr(task, &current->cpus_allowed);
-       task->mems_allowed = current->mems_allowed;
-}
-
-struct cgroup_subsys cpuset_cgrp_subsys = {
-       .css_alloc      = cpuset_css_alloc,
-       .css_online     = cpuset_css_online,
-       .css_offline    = cpuset_css_offline,
-       .css_free       = cpuset_css_free,
-       .can_attach     = cpuset_can_attach,
-       .cancel_attach  = cpuset_cancel_attach,
-       .attach         = cpuset_attach,
-       .post_attach    = cpuset_post_attach,
-       .bind           = cpuset_bind,
-       .fork           = cpuset_fork,
-       .legacy_cftypes = files,
-       .early_init     = true,
-};
-
-/**
- * cpuset_init - initialize cpusets at system boot
- *
- * Description: Initialize top_cpuset and the cpuset internal file system,
- **/
-
-int __init cpuset_init(void)
-{
-       int err = 0;
-
-       if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
-               BUG();
-       if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
-               BUG();
-
-       cpumask_setall(top_cpuset.cpus_allowed);
-       nodes_setall(top_cpuset.mems_allowed);
-       cpumask_setall(top_cpuset.effective_cpus);
-       nodes_setall(top_cpuset.effective_mems);
-
-       fmeter_init(&top_cpuset.fmeter);
-       set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
-       top_cpuset.relax_domain_level = -1;
-
-       err = register_filesystem(&cpuset_fs_type);
-       if (err < 0)
-               return err;
-
-       if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
-               BUG();
-
-       return 0;
-}
-
-/*
- * If CPU and/or memory hotplug handlers, below, unplug any CPUs
- * or memory nodes, we need to walk over the cpuset hierarchy,
- * removing that CPU or node from all cpusets.  If this removes the
- * last CPU or node from a cpuset, then move the tasks in the empty
- * cpuset to its next-highest non-empty parent.
- */
-static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
-{
-       struct cpuset *parent;
-
-       /*
-        * Find its next-highest non-empty parent, (top cpuset
-        * has online cpus, so can't be empty).
-        */
-       parent = parent_cs(cs);
-       while (cpumask_empty(parent->cpus_allowed) ||
-                       nodes_empty(parent->mems_allowed))
-               parent = parent_cs(parent);
-
-       if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
-               pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
-               pr_cont_cgroup_name(cs->css.cgroup);
-               pr_cont("\n");
-       }
-}
-
-static void
-hotplug_update_tasks_legacy(struct cpuset *cs,
-                           struct cpumask *new_cpus, nodemask_t *new_mems,
-                           bool cpus_updated, bool mems_updated)
-{
-       bool is_empty;
-
-       spin_lock_irq(&callback_lock);
-       cpumask_copy(cs->cpus_allowed, new_cpus);
-       cpumask_copy(cs->effective_cpus, new_cpus);
-       cs->mems_allowed = *new_mems;
-       cs->effective_mems = *new_mems;
-       spin_unlock_irq(&callback_lock);
-
-       /*
-        * Don't call update_tasks_cpumask() if the cpuset becomes empty,
-        * as the tasks will be migratecd to an ancestor.
-        */
-       if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
-               update_tasks_cpumask(cs);
-       if (mems_updated && !nodes_empty(cs->mems_allowed))
-               update_tasks_nodemask(cs);
-
-       is_empty = cpumask_empty(cs->cpus_allowed) ||
-                  nodes_empty(cs->mems_allowed);
-
-       mutex_unlock(&cpuset_mutex);
-
-       /*
-        * Move tasks to the nearest ancestor with execution resources,
-        * This is full cgroup operation which will also call back into
-        * cpuset. Should be done outside any lock.
-        */
-       if (is_empty)
-               remove_tasks_in_empty_cpuset(cs);
-
-       mutex_lock(&cpuset_mutex);
-}
-
-static void
-hotplug_update_tasks(struct cpuset *cs,
-                    struct cpumask *new_cpus, nodemask_t *new_mems,
-                    bool cpus_updated, bool mems_updated)
-{
-       if (cpumask_empty(new_cpus))
-               cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
-       if (nodes_empty(*new_mems))
-               *new_mems = parent_cs(cs)->effective_mems;
-
-       spin_lock_irq(&callback_lock);
-       cpumask_copy(cs->effective_cpus, new_cpus);
-       cs->effective_mems = *new_mems;
-       spin_unlock_irq(&callback_lock);
-
-       if (cpus_updated)
-               update_tasks_cpumask(cs);
-       if (mems_updated)
-               update_tasks_nodemask(cs);
-}
-
-/**
- * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
- * @cs: cpuset in interest
- *
- * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
- * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
- * all its tasks are moved to the nearest ancestor with both resources.
- */
-static void cpuset_hotplug_update_tasks(struct cpuset *cs)
-{
-       static cpumask_t new_cpus;
-       static nodemask_t new_mems;
-       bool cpus_updated;
-       bool mems_updated;
-retry:
-       wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
-
-       mutex_lock(&cpuset_mutex);
-
-       /*
-        * We have raced with task attaching. We wait until attaching
-        * is finished, so we won't attach a task to an empty cpuset.
-        */
-       if (cs->attach_in_progress) {
-               mutex_unlock(&cpuset_mutex);
-               goto retry;
-       }
-
-       cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
-       nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
-
-       cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
-       mems_updated = !nodes_equal(new_mems, cs->effective_mems);
-
-       if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
-               hotplug_update_tasks(cs, &new_cpus, &new_mems,
-                                    cpus_updated, mems_updated);
-       else
-               hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
-                                           cpus_updated, mems_updated);
-
-       mutex_unlock(&cpuset_mutex);
-}
-
-/**
- * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
- *
- * This function is called after either CPU or memory configuration has
- * changed and updates cpuset accordingly.  The top_cpuset is always
- * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
- * order to make cpusets transparent (of no affect) on systems that are
- * actively using CPU hotplug but making no active use of cpusets.
- *
- * Non-root cpusets are only affected by offlining.  If any CPUs or memory
- * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
- * all descendants.
- *
- * Note that CPU offlining during suspend is ignored.  We don't modify
- * cpusets across suspend/resume cycles at all.
- */
-static void cpuset_hotplug_workfn(struct work_struct *work)
-{
-       static cpumask_t new_cpus;
-       static nodemask_t new_mems;
-       bool cpus_updated, mems_updated;
-       bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
-
-       mutex_lock(&cpuset_mutex);
-
-       /* fetch the available cpus/mems and find out which changed how */
-       cpumask_copy(&new_cpus, cpu_active_mask);
-       new_mems = node_states[N_MEMORY];
-
-       cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
-       mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
-
-       /* synchronize cpus_allowed to cpu_active_mask */
-       if (cpus_updated) {
-               spin_lock_irq(&callback_lock);
-               if (!on_dfl)
-                       cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
-               cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
-               spin_unlock_irq(&callback_lock);
-               /* we don't mess with cpumasks of tasks in top_cpuset */
-       }
-
-       /* synchronize mems_allowed to N_MEMORY */
-       if (mems_updated) {
-               spin_lock_irq(&callback_lock);
-               if (!on_dfl)
-                       top_cpuset.mems_allowed = new_mems;
-               top_cpuset.effective_mems = new_mems;
-               spin_unlock_irq(&callback_lock);
-               update_tasks_nodemask(&top_cpuset);
-       }
-
-       mutex_unlock(&cpuset_mutex);
-
-       /* if cpus or mems changed, we need to propagate to descendants */
-       if (cpus_updated || mems_updated) {
-               struct cpuset *cs;
-               struct cgroup_subsys_state *pos_css;
-
-               rcu_read_lock();
-               cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
-                       if (cs == &top_cpuset || !css_tryget_online(&cs->css))
-                               continue;
-                       rcu_read_unlock();
-
-                       cpuset_hotplug_update_tasks(cs);
-
-                       rcu_read_lock();
-                       css_put(&cs->css);
-               }
-               rcu_read_unlock();
-       }
-
-       /* rebuild sched domains if cpus_allowed has changed */
-       if (cpus_updated)
-               rebuild_sched_domains();
-}
-
-void cpuset_update_active_cpus(bool cpu_online)
-{
-       /*
-        * We're inside cpu hotplug critical region which usually nests
-        * inside cgroup synchronization.  Bounce actual hotplug processing
-        * to a work item to avoid reverse locking order.
-        *
-        * We still need to do partition_sched_domains() synchronously;
-        * otherwise, the scheduler will get confused and put tasks to the
-        * dead CPU.  Fall back to the default single domain.
-        * cpuset_hotplug_workfn() will rebuild it as necessary.
-        */
-       partition_sched_domains(1, NULL, NULL);
-       schedule_work(&cpuset_hotplug_work);
-}
-
-/*
- * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
- * Call this routine anytime after node_states[N_MEMORY] changes.
- * See cpuset_update_active_cpus() for CPU hotplug handling.
- */
-static int cpuset_track_online_nodes(struct notifier_block *self,
-                               unsigned long action, void *arg)
-{
-       schedule_work(&cpuset_hotplug_work);
-       return NOTIFY_OK;
-}
-
-static struct notifier_block cpuset_track_online_nodes_nb = {
-       .notifier_call = cpuset_track_online_nodes,
-       .priority = 10,         /* ??! */
-};
-
-/**
- * cpuset_init_smp - initialize cpus_allowed
- *
- * Description: Finish top cpuset after cpu, node maps are initialized
- */
-void __init cpuset_init_smp(void)
-{
-       cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
-       top_cpuset.mems_allowed = node_states[N_MEMORY];
-       top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
-
-       cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
-       top_cpuset.effective_mems = node_states[N_MEMORY];
-
-       register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
-
-       cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
-       BUG_ON(!cpuset_migrate_mm_wq);
-}
-
-/**
- * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
- * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
- * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
- *
- * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
- * attached to the specified @tsk.  Guaranteed to return some non-empty
- * subset of cpu_online_mask, even if this means going outside the
- * tasks cpuset.
- **/
-
-void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&callback_lock, flags);
-       rcu_read_lock();
-       guarantee_online_cpus(task_cs(tsk), pmask);
-       rcu_read_unlock();
-       spin_unlock_irqrestore(&callback_lock, flags);
-}
-
-void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
-{
-       rcu_read_lock();
-       do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
-       rcu_read_unlock();
-
-       /*
-        * We own tsk->cpus_allowed, nobody can change it under us.
-        *
-        * But we used cs && cs->cpus_allowed lockless and thus can
-        * race with cgroup_attach_task() or update_cpumask() and get
-        * the wrong tsk->cpus_allowed. However, both cases imply the
-        * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
-        * which takes task_rq_lock().
-        *
-        * If we are called after it dropped the lock we must see all
-        * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
-        * set any mask even if it is not right from task_cs() pov,
-        * the pending set_cpus_allowed_ptr() will fix things.
-        *
-        * select_fallback_rq() will fix things ups and set cpu_possible_mask
-        * if required.
-        */
-}
-
-void __init cpuset_init_current_mems_allowed(void)
-{
-       nodes_setall(current->mems_allowed);
-}
-
-/**
- * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
- * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
- *
- * Description: Returns the nodemask_t mems_allowed of the cpuset
- * attached to the specified @tsk.  Guaranteed to return some non-empty
- * subset of node_states[N_MEMORY], even if this means going outside the
- * tasks cpuset.
- **/
-
-nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
-{
-       nodemask_t mask;
-       unsigned long flags;
-
-       spin_lock_irqsave(&callback_lock, flags);
-       rcu_read_lock();
-       guarantee_online_mems(task_cs(tsk), &mask);
-       rcu_read_unlock();
-       spin_unlock_irqrestore(&callback_lock, flags);
-
-       return mask;
-}
-
-/**
- * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
- * @nodemask: the nodemask to be checked
- *
- * Are any of the nodes in the nodemask allowed in current->mems_allowed?
- */
-int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
-{
-       return nodes_intersects(*nodemask, current->mems_allowed);
-}
-
-/*
- * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
- * mem_hardwall ancestor to the specified cpuset.  Call holding
- * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
- * (an unusual configuration), then returns the root cpuset.
- */
-static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
-{
-       while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
-               cs = parent_cs(cs);
-       return cs;
-}
-
-/**
- * cpuset_node_allowed - Can we allocate on a memory node?
- * @node: is this an allowed node?
- * @gfp_mask: memory allocation flags
- *
- * If we're in interrupt, yes, we can always allocate.  If @node is set in
- * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
- * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
- * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
- * Otherwise, no.
- *
- * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
- * and do not allow allocations outside the current tasks cpuset
- * unless the task has been OOM killed as is marked TIF_MEMDIE.
- * GFP_KERNEL allocations are not so marked, so can escape to the
- * nearest enclosing hardwalled ancestor cpuset.
- *
- * Scanning up parent cpusets requires callback_lock.  The
- * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
- * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
- * current tasks mems_allowed came up empty on the first pass over
- * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
- * cpuset are short of memory, might require taking the callback_lock.
- *
- * The first call here from mm/page_alloc:get_page_from_freelist()
- * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
- * so no allocation on a node outside the cpuset is allowed (unless
- * in interrupt, of course).
- *
- * The second pass through get_page_from_freelist() doesn't even call
- * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
- * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
- * in alloc_flags.  That logic and the checks below have the combined
- * affect that:
- *     in_interrupt - any node ok (current task context irrelevant)
- *     GFP_ATOMIC   - any node ok
- *     TIF_MEMDIE   - any node ok
- *     GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
- *     GFP_USER     - only nodes in current tasks mems allowed ok.
- */
-bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
-{
-       struct cpuset *cs;              /* current cpuset ancestors */
-       int allowed;                    /* is allocation in zone z allowed? */
-       unsigned long flags;
-
-       if (in_interrupt())
-               return true;
-       if (node_isset(node, current->mems_allowed))
-               return true;
-       /*
-        * Allow tasks that have access to memory reserves because they have
-        * been OOM killed to get memory anywhere.
-        */
-       if (unlikely(test_thread_flag(TIF_MEMDIE)))
-               return true;
-       if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
-               return false;
-
-       if (current->flags & PF_EXITING) /* Let dying task have memory */
-               return true;
-
-       /* Not hardwall and node outside mems_allowed: scan up cpusets */
-       spin_lock_irqsave(&callback_lock, flags);
-
-       rcu_read_lock();
-       cs = nearest_hardwall_ancestor(task_cs(current));
-       allowed = node_isset(node, cs->mems_allowed);
-       rcu_read_unlock();
-
-       spin_unlock_irqrestore(&callback_lock, flags);
-       return allowed;
-}
-
-/**
- * cpuset_mem_spread_node() - On which node to begin search for a file page
- * cpuset_slab_spread_node() - On which node to begin search for a slab page
- *
- * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
- * tasks in a cpuset with is_spread_page or is_spread_slab set),
- * and if the memory allocation used cpuset_mem_spread_node()
- * to determine on which node to start looking, as it will for
- * certain page cache or slab cache pages such as used for file
- * system buffers and inode caches, then instead of starting on the
- * local node to look for a free page, rather spread the starting
- * node around the tasks mems_allowed nodes.
- *
- * We don't have to worry about the returned node being offline
- * because "it can't happen", and even if it did, it would be ok.
- *
- * The routines calling guarantee_online_mems() are careful to
- * only set nodes in task->mems_allowed that are online.  So it
- * should not be possible for the following code to return an
- * offline node.  But if it did, that would be ok, as this routine
- * is not returning the node where the allocation must be, only
- * the node where the search should start.  The zonelist passed to
- * __alloc_pages() will include all nodes.  If the slab allocator
- * is passed an offline node, it will fall back to the local node.
- * See kmem_cache_alloc_node().
- */
-
-static int cpuset_spread_node(int *rotor)
-{
-       return *rotor = next_node_in(*rotor, current->mems_allowed);
-}
-
-int cpuset_mem_spread_node(void)
-{
-       if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
-               current->cpuset_mem_spread_rotor =
-                       node_random(&current->mems_allowed);
-
-       return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
-}
-
-int cpuset_slab_spread_node(void)
-{
-       if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
-               current->cpuset_slab_spread_rotor =
-                       node_random(&current->mems_allowed);
-
-       return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
-}
-
-EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
-
-/**
- * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
- * @tsk1: pointer to task_struct of some task.
- * @tsk2: pointer to task_struct of some other task.
- *
- * Description: Return true if @tsk1's mems_allowed intersects the
- * mems_allowed of @tsk2.  Used by the OOM killer to determine if
- * one of the task's memory usage might impact the memory available
- * to the other.
- **/
-
-int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
-                                  const struct task_struct *tsk2)
-{
-       return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
-}
-
-/**
- * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
- *
- * Description: Prints current's name, cpuset name, and cached copy of its
- * mems_allowed to the kernel log.
- */
-void cpuset_print_current_mems_allowed(void)
-{
-       struct cgroup *cgrp;
-
-       rcu_read_lock();
-
-       cgrp = task_cs(current)->css.cgroup;
-       pr_info("%s cpuset=", current->comm);
-       pr_cont_cgroup_name(cgrp);
-       pr_cont(" mems_allowed=%*pbl\n",
-               nodemask_pr_args(&current->mems_allowed));
-
-       rcu_read_unlock();
-}
-
-/*
- * Collection of memory_pressure is suppressed unless
- * this flag is enabled by writing "1" to the special
- * cpuset file 'memory_pressure_enabled' in the root cpuset.
- */
-
-int cpuset_memory_pressure_enabled __read_mostly;
-
-/**
- * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
- *
- * Keep a running average of the rate of synchronous (direct)
- * page reclaim efforts initiated by tasks in each cpuset.
- *
- * This represents the rate at which some task in the cpuset
- * ran low on memory on all nodes it was allowed to use, and
- * had to enter the kernels page reclaim code in an effort to
- * create more free memory by tossing clean pages or swapping
- * or writing dirty pages.
- *
- * Display to user space in the per-cpuset read-only file
- * "memory_pressure".  Value displayed is an integer
- * representing the recent rate of entry into the synchronous
- * (direct) page reclaim by any task attached to the cpuset.
- **/
-
-void __cpuset_memory_pressure_bump(void)
-{
-       rcu_read_lock();
-       fmeter_markevent(&task_cs(current)->fmeter);
-       rcu_read_unlock();
-}
-
-#ifdef CONFIG_PROC_PID_CPUSET
-/*
- * proc_cpuset_show()
- *  - Print tasks cpuset path into seq_file.
- *  - Used for /proc/<pid>/cpuset.
- *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
- *    doesn't really matter if tsk->cpuset changes after we read it,
- *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
- *    anyway.
- */
-int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
-                    struct pid *pid, struct task_struct *tsk)
-{
-       char *buf;
-       struct cgroup_subsys_state *css;
-       int retval;
-
-       retval = -ENOMEM;
-       buf = kmalloc(PATH_MAX, GFP_KERNEL);
-       if (!buf)
-               goto out;
-
-       css = task_get_css(tsk, cpuset_cgrp_id);
-       retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
-                               current->nsproxy->cgroup_ns);
-       css_put(css);
-       if (retval >= PATH_MAX)
-               retval = -ENAMETOOLONG;
-       if (retval < 0)
-               goto out_free;
-       seq_puts(m, buf);
-       seq_putc(m, '\n');
-       retval = 0;
-out_free:
-       kfree(buf);
-out:
-       return retval;
-}
-#endif /* CONFIG_PROC_PID_CPUSET */
-
-/* Display task mems_allowed in /proc/<pid>/status file. */
-void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
-{
-       seq_printf(m, "Mems_allowed:\t%*pb\n",
-                  nodemask_pr_args(&task->mems_allowed));
-       seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
-                  nodemask_pr_args(&task->mems_allowed));
-}