* watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
* This also has an effect on RX/TX arbitration
*/
-static int rx_xoff_thresh_bytes = -1;
-module_param(rx_xoff_thresh_bytes, int, 0644);
+int efx_nic_rx_xoff_thresh = -1;
+module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
/* RX FIFO XON watermark
* watermark send XON. Only used if TX flow control is enabled (ethtool -A)
* This also has an effect on RX/TX arbitration
*/
-static int rx_xon_thresh_bytes = -1;
-module_param(rx_xon_thresh_bytes, int, 0644);
+int efx_nic_rx_xon_thresh = -1;
+module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
-/* If FALCON_MAX_INT_ERRORS internal errors occur within
- * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
+/* If EFX_MAX_INT_ERRORS internal errors occur within
+ * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
* disable it.
*/
-#define FALCON_INT_ERROR_EXPIRE 3600
-#define FALCON_MAX_INT_ERRORS 5
+#define EFX_INT_ERROR_EXPIRE 3600
+#define EFX_MAX_INT_ERRORS 5
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
*/
-#define FALCON_FLUSH_INTERVAL 10
-#define FALCON_FLUSH_POLL_COUNT 100
+#define EFX_FLUSH_INTERVAL 10
+#define EFX_FLUSH_POLL_COUNT 100
/**************************************************************************
*
*/
/* Size and alignment of special buffers (4KB) */
-#define FALCON_BUF_SIZE 4096
+#define EFX_BUF_SIZE 4096
/* Depth of RX flush request fifo */
-#define FALCON_RX_FLUSH_COUNT 4
-
-#define FALCON_IS_DUAL_FUNC(efx) \
- (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
+#define EFX_RX_FLUSH_COUNT 4
/**************************************************************************
*
- * Falcon hardware access
+ * Solarstorm hardware access
*
**************************************************************************/
-static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
- unsigned int index)
+static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
+ unsigned int index)
{
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
value, index);
}
/* Read the current event from the event queue */
-static inline efx_qword_t *falcon_event(struct efx_channel *channel,
- unsigned int index)
+static inline efx_qword_t *efx_event(struct efx_channel *channel,
+ unsigned int index)
{
return (((efx_qword_t *) (channel->eventq.addr)) + index);
}
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
-static inline int falcon_event_present(efx_qword_t *event)
+static inline int efx_event_present(efx_qword_t *event)
{
return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
EFX_DWORD_IS_ALL_ONES(event->dword[1])));
/**************************************************************************
*
- * Falcon special buffer handling
+ * Special buffer handling
* Special buffers are used for event queues and the TX and RX
* descriptor rings.
*
*************************************************************************/
/*
- * Initialise a Falcon special buffer
+ * Initialise a special buffer
*
* This will define a buffer (previously allocated via
- * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
+ * efx_alloc_special_buffer()) in the buffer table, allowing
* it to be used for event queues, descriptor rings etc.
*/
static void
-falcon_init_special_buffer(struct efx_nic *efx,
- struct efx_special_buffer *buffer)
+efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_qword_t buf_desc;
int index;
FRF_AZ_BUF_ADR_REGION, 0,
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
- falcon_write_buf_tbl(efx, &buf_desc, index);
+ efx_write_buf_tbl(efx, &buf_desc, index);
}
}
-/* Unmaps a buffer from Falcon and clears the buffer table entries */
+/* Unmaps a buffer and clears the buffer table entries */
static void
-falcon_fini_special_buffer(struct efx_nic *efx,
- struct efx_special_buffer *buffer)
+efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_oword_t buf_tbl_upd;
unsigned int start = buffer->index;
}
/*
- * Allocate a new Falcon special buffer
+ * Allocate a new special buffer
*
* This allocates memory for a new buffer, clears it and allocates a
- * new buffer ID range. It does not write into Falcon's buffer table.
+ * new buffer ID range. It does not write into the buffer table.
*
- * This call will allocate 4KB buffers, since Falcon can't use 8KB
- * buffers for event queues and descriptor rings.
+ * This call will allocate 4KB buffers, since 8KB buffers can't be
+ * used for event queues and descriptor rings.
*/
-static int falcon_alloc_special_buffer(struct efx_nic *efx,
- struct efx_special_buffer *buffer,
- unsigned int len)
+static int efx_alloc_special_buffer(struct efx_nic *efx,
+ struct efx_special_buffer *buffer,
+ unsigned int len)
{
- len = ALIGN(len, FALCON_BUF_SIZE);
+ len = ALIGN(len, EFX_BUF_SIZE);
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
- buffer->entries = len / FALCON_BUF_SIZE;
- BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
+ buffer->entries = len / EFX_BUF_SIZE;
+ BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
/* All zeros is a potentially valid event so memset to 0xff */
memset(buffer->addr, 0xff, len);
return 0;
}
-static void falcon_free_special_buffer(struct efx_nic *efx,
- struct efx_special_buffer *buffer)
+static void
+efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
if (!buffer->addr)
return;
/**************************************************************************
*
- * Falcon generic buffer handling
+ * Generic buffer handling
* These buffers are used for interrupt status and MAC stats
*
**************************************************************************/
-static int falcon_alloc_buffer(struct efx_nic *efx,
- struct efx_buffer *buffer, unsigned int len)
+int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
+ unsigned int len)
{
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
return 0;
}
-static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
+void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
if (buffer->addr) {
pci_free_consistent(efx->pci_dev, buffer->len,
/**************************************************************************
*
- * Falcon TX path
+ * TX path
*
**************************************************************************/
/* Returns a pointer to the specified transmit descriptor in the TX
* descriptor queue belonging to the specified channel.
*/
-static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
- unsigned int index)
+static inline efx_qword_t *
+efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
-static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
+static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned write_ptr;
efx_dword_t reg;
* descriptor in the hardware TX descriptor ring (in host memory), and
* write a doorbell.
*/
-void falcon_push_buffers(struct efx_tx_queue *tx_queue)
+void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
do {
write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
buffer = &tx_queue->buffer[write_ptr];
- txd = falcon_tx_desc(tx_queue, write_ptr);
+ txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
- falcon_notify_tx_desc(tx_queue);
+ efx_notify_tx_desc(tx_queue);
}
/* Allocate hardware resources for a TX queue */
-int falcon_probe_tx(struct efx_tx_queue *tx_queue)
+int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
EFX_TXQ_SIZE & EFX_TXQ_MASK);
- return falcon_alloc_special_buffer(efx, &tx_queue->txd,
- EFX_TXQ_SIZE * sizeof(efx_qword_t));
+ return efx_alloc_special_buffer(efx, &tx_queue->txd,
+ EFX_TXQ_SIZE * sizeof(efx_qword_t));
}
-void falcon_init_tx(struct efx_tx_queue *tx_queue)
+void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
efx_oword_t tx_desc_ptr;
struct efx_nic *efx = tx_queue->efx;
tx_queue->flushed = FLUSH_NONE;
/* Pin TX descriptor ring */
- falcon_init_special_buffer(efx, &tx_queue->txd);
+ efx_init_special_buffer(efx, &tx_queue->txd);
/* Push TX descriptor ring to card */
EFX_POPULATE_OWORD_10(tx_desc_ptr,
}
}
-static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
+static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_flush_descq;
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}
-void falcon_fini_tx(struct efx_tx_queue *tx_queue)
+void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_desc_ptr;
tx_queue->queue);
/* Unpin TX descriptor ring */
- falcon_fini_special_buffer(efx, &tx_queue->txd);
+ efx_fini_special_buffer(efx, &tx_queue->txd);
}
/* Free buffers backing TX queue */
-void falcon_remove_tx(struct efx_tx_queue *tx_queue)
+void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
- falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
+ efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}
/**************************************************************************
*
- * Falcon RX path
+ * RX path
*
**************************************************************************/
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
-static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
- unsigned int index)
+static inline efx_qword_t *
+efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}
/* This creates an entry in the RX descriptor queue */
-static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
- unsigned index)
+static inline void
+efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
- rxd = falcon_rx_desc(rx_queue, index);
+ rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_3(*rxd,
FSF_AZ_RX_KER_BUF_SIZE,
/* This writes to the RX_DESC_WPTR register for the specified receive
* descriptor ring.
*/
-void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
+void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
efx_dword_t reg;
unsigned write_ptr;
while (rx_queue->notified_count != rx_queue->added_count) {
- falcon_build_rx_desc(rx_queue,
- rx_queue->notified_count &
- EFX_RXQ_MASK);
+ efx_build_rx_desc(rx_queue,
+ rx_queue->notified_count &
+ EFX_RXQ_MASK);
++rx_queue->notified_count;
}
FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
}
-int falcon_probe_rx(struct efx_rx_queue *rx_queue)
+int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
EFX_RXQ_SIZE & EFX_RXQ_MASK);
- return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
- EFX_RXQ_SIZE * sizeof(efx_qword_t));
+ return efx_alloc_special_buffer(efx, &rx_queue->rxd,
+ EFX_RXQ_SIZE * sizeof(efx_qword_t));
}
-void falcon_init_rx(struct efx_rx_queue *rx_queue)
+void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
rx_queue->flushed = FLUSH_NONE;
/* Pin RX descriptor ring */
- falcon_init_special_buffer(efx, &rx_queue->rxd);
+ efx_init_special_buffer(efx, &rx_queue->rxd);
/* Push RX descriptor ring to card */
EFX_POPULATE_OWORD_10(rx_desc_ptr,
rx_queue->queue);
}
-static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
+static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_oword_t rx_flush_descq;
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}
-void falcon_fini_rx(struct efx_rx_queue *rx_queue)
+void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
rx_queue->queue);
/* Unpin RX descriptor ring */
- falcon_fini_special_buffer(efx, &rx_queue->rxd);
+ efx_fini_special_buffer(efx, &rx_queue->rxd);
}
/* Free buffers backing RX queue */
-void falcon_remove_rx(struct efx_rx_queue *rx_queue)
+void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
- falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
+ efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}
/**************************************************************************
*
- * Falcon event queue processing
+ * Event queue processing
* Event queues are processed by per-channel tasklets.
*
**************************************************************************/
* whereas channel->eventq_read_ptr contains the index of the "next to
* read" event.
*/
-void falcon_eventq_read_ack(struct efx_channel *channel)
+void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
efx_dword_t reg;
struct efx_nic *efx = channel->efx;
}
/* Use HW to insert a SW defined event */
-void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
+void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
efx_oword_t drv_ev_reg;
/* Handle a transmit completion event
*
- * Falcon batches TX completion events; the message we receive is of
+ * The NIC batches TX completion events; the message we receive is of
* the form "complete all TX events up to this index".
*/
-static void falcon_handle_tx_event(struct efx_channel *channel,
- efx_qword_t *event)
+static void
+efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
if (efx_dev_registered(efx))
netif_tx_lock(efx->net_dev);
- falcon_notify_tx_desc(tx_queue);
+ efx_notify_tx_desc(tx_queue);
if (efx_dev_registered(efx))
netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
}
/* Detect errors included in the rx_evt_pkt_ok bit. */
-static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
- const efx_qword_t *event,
- bool *rx_ev_pkt_ok,
- bool *discard)
+static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
+ const efx_qword_t *event,
+ bool *rx_ev_pkt_ok,
+ bool *discard)
{
struct efx_nic *efx = rx_queue->efx;
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
}
/* Handle receive events that are not in-order. */
-static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
- unsigned index)
+static void
+efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_nic *efx = rx_queue->efx;
unsigned expected, dropped;
/* Handle a packet received event
*
- * Falcon silicon gives a "discard" flag if it's a unicast packet with the
+ * The NIC gives a "discard" flag if it's a unicast packet with the
* wrong destination address
* Also "is multicast" and "matches multicast filter" flags can be used to
* discard non-matching multicast packets.
*/
-static void falcon_handle_rx_event(struct efx_channel *channel,
- const efx_qword_t *event)
+static void
+efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
if (unlikely(rx_ev_desc_ptr != expected_ptr))
- falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
+ efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
if (likely(rx_ev_pkt_ok)) {
- /* If packet is marked as OK and packet type is TCP/IPv4 or
- * UDP/IPv4, then we can rely on the hardware checksum.
+ /* If packet is marked as OK and packet type is TCP/IP or
+ * UDP/IP, then we can rely on the hardware checksum.
*/
checksummed =
likely(efx->rx_checksum_enabled) &&
- (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
- rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
+ (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
+ rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
} else {
- falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
- &discard);
+ efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
checksummed = false;
}
}
/* Global events are basically PHY events */
-static void falcon_handle_global_event(struct efx_channel *channel,
- efx_qword_t *event)
+static void
+efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
bool handled = false;
EFX_QWORD_VAL(*event));
}
-static void falcon_handle_driver_event(struct efx_channel *channel,
- efx_qword_t *event)
+static void
+efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned int ev_sub_code;
}
}
-int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
+int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota)
{
unsigned int read_ptr;
efx_qword_t event, *p_event;
read_ptr = channel->eventq_read_ptr;
do {
- p_event = falcon_event(channel, read_ptr);
+ p_event = efx_event(channel, read_ptr);
event = *p_event;
- if (!falcon_event_present(&event))
+ if (!efx_event_present(&event))
/* End of events */
break;
switch (ev_code) {
case FSE_AZ_EV_CODE_RX_EV:
- falcon_handle_rx_event(channel, &event);
+ efx_handle_rx_event(channel, &event);
++rx_packets;
break;
case FSE_AZ_EV_CODE_TX_EV:
- falcon_handle_tx_event(channel, &event);
+ efx_handle_tx_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRV_GEN_EV:
channel->eventq_magic = EFX_QWORD_FIELD(
EFX_QWORD_VAL(event));
break;
case FSE_AZ_EV_CODE_GLOBAL_EV:
- falcon_handle_global_event(channel, &event);
+ efx_handle_global_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRIVER_EV:
- falcon_handle_driver_event(channel, &event);
+ efx_handle_driver_event(channel, &event);
break;
default:
EFX_ERR(channel->efx, "channel %d unknown event type %d"
}
/* Allocate buffer table entries for event queue */
-int falcon_probe_eventq(struct efx_channel *channel)
+int efx_nic_probe_eventq(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
EFX_EVQ_SIZE & EFX_EVQ_MASK);
- return falcon_alloc_special_buffer(efx, &channel->eventq,
- EFX_EVQ_SIZE * sizeof(efx_qword_t));
+ return efx_alloc_special_buffer(efx, &channel->eventq,
+ EFX_EVQ_SIZE * sizeof(efx_qword_t));
}
-void falcon_init_eventq(struct efx_channel *channel)
+void efx_nic_init_eventq(struct efx_channel *channel)
{
efx_oword_t evq_ptr;
struct efx_nic *efx = channel->efx;
channel->eventq.index + channel->eventq.entries - 1);
/* Pin event queue buffer */
- falcon_init_special_buffer(efx, &channel->eventq);
+ efx_init_special_buffer(efx, &channel->eventq);
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.addr, 0xff, channel->eventq.len);
efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
channel->channel);
- falcon_push_irq_moderation(channel);
+ efx->type->push_irq_moderation(channel);
}
-void falcon_fini_eventq(struct efx_channel *channel)
+void efx_nic_fini_eventq(struct efx_channel *channel)
{
efx_oword_t eventq_ptr;
struct efx_nic *efx = channel->efx;
channel->channel);
/* Unpin event queue */
- falcon_fini_special_buffer(efx, &channel->eventq);
+ efx_fini_special_buffer(efx, &channel->eventq);
}
/* Free buffers backing event queue */
-void falcon_remove_eventq(struct efx_channel *channel)
+void efx_nic_remove_eventq(struct efx_channel *channel)
{
- falcon_free_special_buffer(channel->efx, &channel->eventq);
+ efx_free_special_buffer(channel->efx, &channel->eventq);
}
* process_eventq() should pick up the event and place the value of
* "magic" into channel->eventq_magic;
*/
-void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
+void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
efx_qword_t test_event;
EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
FSE_AZ_EV_CODE_DRV_GEN_EV,
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
- falcon_generate_event(channel, &test_event);
+ efx_generate_event(channel, &test_event);
}
/**************************************************************************
**************************************************************************/
-static void falcon_poll_flush_events(struct efx_nic *efx)
+static void efx_poll_flush_events(struct efx_nic *efx)
{
struct efx_channel *channel = &efx->channel[0];
struct efx_tx_queue *tx_queue;
unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
do {
- efx_qword_t *event = falcon_event(channel, read_ptr);
+ efx_qword_t *event = efx_event(channel, read_ptr);
int ev_code, ev_sub_code, ev_queue;
bool ev_failed;
- if (!falcon_event_present(event))
+ if (!efx_event_present(event))
break;
ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
/* Handle tx and rx flushes at the same time, since they run in
* parallel in the hardware and there's no reason for us to
* serialise them */
-int falcon_flush_queues(struct efx_nic *efx)
+int efx_nic_flush_queues(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
struct efx_tx_queue *tx_queue;
/* Flush all tx queues in parallel */
efx_for_each_tx_queue(tx_queue, efx)
- falcon_flush_tx_queue(tx_queue);
+ efx_flush_tx_queue(tx_queue);
/* The hardware supports four concurrent rx flushes, each of which may
* need to be retried if there is an outstanding descriptor fetch */
- for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
+ for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
rx_pending = tx_pending = 0;
efx_for_each_rx_queue(rx_queue, efx) {
if (rx_queue->flushed == FLUSH_PENDING)
++rx_pending;
}
efx_for_each_rx_queue(rx_queue, efx) {
- if (rx_pending == FALCON_RX_FLUSH_COUNT)
+ if (rx_pending == EFX_RX_FLUSH_COUNT)
break;
if (rx_queue->flushed == FLUSH_FAILED ||
rx_queue->flushed == FLUSH_NONE) {
- falcon_flush_rx_queue(rx_queue);
+ efx_flush_rx_queue(rx_queue);
++rx_pending;
}
}
if (rx_pending == 0 && tx_pending == 0)
return 0;
- msleep(FALCON_FLUSH_INTERVAL);
- falcon_poll_flush_events(efx);
+ msleep(EFX_FLUSH_INTERVAL);
+ efx_poll_flush_events(efx);
}
/* Mark the queues as all flushed. We're going to return failure
/**************************************************************************
*
- * Falcon hardware interrupts
+ * Hardware interrupts
* The hardware interrupt handler does very little work; all the event
* queue processing is carried out by per-channel tasklets.
*
**************************************************************************/
-/* Enable/disable/generate Falcon interrupts */
-static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
- int force)
+/* Enable/disable/generate interrupts */
+static inline void efx_nic_interrupts(struct efx_nic *efx,
+ bool enabled, bool force)
{
efx_oword_t int_en_reg_ker;
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}
-void falcon_enable_interrupts(struct efx_nic *efx)
+void efx_nic_enable_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
/* Enable interrupts */
- falcon_interrupts(efx, 1, 0);
+ efx_nic_interrupts(efx, true, false);
/* Force processing of all the channels to get the EVQ RPTRs up to
date */
efx_schedule_channel(channel);
}
-void falcon_disable_interrupts(struct efx_nic *efx)
+void efx_nic_disable_interrupts(struct efx_nic *efx)
{
/* Disable interrupts */
- falcon_interrupts(efx, 0, 0);
+ efx_nic_interrupts(efx, false, false);
}
-/* Generate a Falcon test interrupt
+/* Generate a test interrupt
* Interrupt must already have been enabled, otherwise nasty things
* may happen.
*/
-void falcon_generate_interrupt(struct efx_nic *efx)
+void efx_nic_generate_interrupt(struct efx_nic *efx)
{
- falcon_interrupts(efx, 1, 1);
+ efx_nic_interrupts(efx, true, true);
}
/* Acknowledge a legacy interrupt from Falcon
*
* NB most hardware supports MSI interrupts
*/
-static inline void falcon_irq_ack_a1(struct efx_nic *efx)
+inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
efx_dword_t reg;
/* Process a fatal interrupt
* Disable bus mastering ASAP and schedule a reset
*/
-static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
+irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t *int_ker = efx->irq_status.addr;
/* Disable both devices */
pci_clear_master(efx->pci_dev);
- if (FALCON_IS_DUAL_FUNC(efx))
+ if (efx_nic_is_dual_func(efx))
pci_clear_master(nic_data->pci_dev2);
- falcon_disable_interrupts(efx);
+ efx_nic_disable_interrupts(efx);
/* Count errors and reset or disable the NIC accordingly */
if (efx->int_error_count == 0 ||
time_after(jiffies, efx->int_error_expire)) {
efx->int_error_count = 0;
efx->int_error_expire =
- jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
+ jiffies + EFX_INT_ERROR_EXPIRE * HZ;
}
- if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
+ if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
} else {
return IRQ_HANDLED;
}
-/* Handle a legacy interrupt from Falcon
+/* Handle a legacy interrupt
* Acknowledges the interrupt and schedule event queue processing.
*/
-static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
+static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
efx_oword_t *int_ker = efx->irq_status.addr;
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
- return falcon_fatal_interrupt(efx);
+ return efx_nic_fatal_interrupt(efx);
/* Schedule processing of any interrupting queues */
efx_for_each_channel(channel, efx) {
if ((queues & 1) ||
- falcon_event_present(
- falcon_event(channel, channel->eventq_read_ptr))) {
+ efx_event_present(
+ efx_event(channel, channel->eventq_read_ptr))) {
efx_schedule_channel(channel);
result = IRQ_HANDLED;
}
}
-static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
+irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
efx_oword_t *int_ker = efx->irq_status.addr;
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
- return falcon_fatal_interrupt(efx);
+ return efx_nic_fatal_interrupt(efx);
/* Determine interrupting queues, clear interrupt status
* register and acknowledge the device interrupt.
return IRQ_HANDLED;
}
-/* Handle an MSI interrupt from Falcon
+/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
-static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
+static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
{
struct efx_channel *channel = dev_id;
struct efx_nic *efx = channel->efx;
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
- return falcon_fatal_interrupt(efx);
+ return efx_nic_fatal_interrupt(efx);
/* Schedule processing of the channel */
efx_schedule_channel(channel);
/* Setup RSS indirection table.
* This maps from the hash value of the packet to RXQ
*/
-static void falcon_setup_rss_indir_table(struct efx_nic *efx)
+static void efx_setup_rss_indir_table(struct efx_nic *efx)
{
int i = 0;
unsigned long offset;
/* Hook interrupt handler(s)
* Try MSI and then legacy interrupts.
*/
-int falcon_init_interrupt(struct efx_nic *efx)
+int efx_nic_init_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
if (!EFX_INT_MODE_USE_MSI(efx)) {
irq_handler_t handler;
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
- handler = falcon_legacy_interrupt_b0;
+ handler = efx_legacy_interrupt;
else
handler = falcon_legacy_interrupt_a1;
/* Hook MSI or MSI-X interrupt */
efx_for_each_channel(channel, efx) {
- rc = request_irq(channel->irq, falcon_msi_interrupt,
+ rc = request_irq(channel->irq, efx_msi_interrupt,
IRQF_PROBE_SHARED, /* Not shared */
channel->name, channel);
if (rc) {
return rc;
}
-void falcon_fini_interrupt(struct efx_nic *efx)
+void efx_nic_fini_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_oword_t reg;
efx->wanted_fc = EFX_FC_RX;
/* Allocate buffer for stats */
- rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
- FALCON_MAC_STATS_SIZE);
+ rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
+ FALCON_MAC_STATS_SIZE);
if (rc)
return rc;
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
static void falcon_remove_port(struct efx_nic *efx)
{
- falcon_free_buffer(efx, &efx->stats_buffer);
+ efx_nic_free_buffer(efx, &efx->stats_buffer);
}
/**************************************************************************
return falcon_read_nvram(efx, NULL);
}
-/* Registers tested in the falcon register test */
-static struct {
- unsigned address;
- efx_oword_t mask;
-} efx_test_registers[] = {
+static const struct efx_nic_register_test falcon_b0_register_tests[] = {
{ FR_AZ_ADR_REGION,
EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
{ FR_AZ_RX_CFG,
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}
-static int falcon_b0_test_registers(struct efx_nic *efx)
+int efx_nic_test_registers(struct efx_nic *efx,
+ const struct efx_nic_register_test *regs,
+ size_t n_regs)
{
unsigned address = 0, i, j;
efx_oword_t mask, imask, original, reg, buf;
/* Falcon should be in loopback to isolate the XMAC from the PHY */
WARN_ON(!LOOPBACK_INTERNAL(efx));
- for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
- address = efx_test_registers[i].address;
- mask = imask = efx_test_registers[i].mask;
+ for (i = 0; i < n_regs; ++i) {
+ address = regs[i].address;
+ mask = imask = regs[i].mask;
EFX_INVERT_OWORD(imask);
efx_reado(efx, &original, address);
return -EIO;
}
+static int falcon_b0_test_registers(struct efx_nic *efx)
+{
+ return efx_nic_test_registers(efx, falcon_b0_register_tests,
+ ARRAY_SIZE(falcon_b0_register_tests));
+}
+
/**************************************************************************
*
* Device reset
"function prior to hardware reset\n");
goto fail1;
}
- if (FALCON_IS_DUAL_FUNC(efx)) {
+ if (efx_nic_is_dual_func(efx)) {
rc = pci_save_state(nic_data->pci_dev2);
if (rc) {
EFX_ERR(efx, "failed to backup PCI state of "
/* Restore PCI configuration if needed */
if (method == RESET_TYPE_WORLD) {
- if (FALCON_IS_DUAL_FUNC(efx)) {
+ if (efx_nic_is_dual_func(efx)) {
rc = pci_restore_state(nic_data->pci_dev2);
if (rc) {
EFX_ERR(efx, "failed to restore PCI config for "
return rc;
}
+u32 efx_nic_fpga_ver(struct efx_nic *efx)
+{
+ efx_oword_t altera_build;
+
+ efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
+ return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
+}
+
/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
* count, port speed). Set workaround and feature flags accordingly.
*/
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
- efx_oword_t altera_build;
efx_oword_t nic_stat;
- efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
- if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
+ if (efx_nic_fpga_ver(efx) != 0) {
EFX_ERR(efx, "Falcon FPGA not supported\n");
return -ENODEV;
}
goto fail1;
/* Probe secondary function if expected */
- if (FALCON_IS_DUAL_FUNC(efx)) {
+ if (efx_nic_is_dual_func(efx)) {
struct pci_dev *dev = pci_dev_get(efx->pci_dev);
while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
}
/* Allocate memory for INT_KER */
- rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
+ rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
if (rc)
goto fail4;
BUG_ON(efx->irq_status.dma_addr & 0x0f);
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
fail5:
falcon_remove_spi_devices(efx);
- falcon_free_buffer(efx, &efx->irq_status);
+ efx_nic_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
if (nic_data->pci_dev2) {
const unsigned ctrl_xon_thr = 20;
const unsigned ctrl_xoff_thr = 25;
/* RX data FIFO thresholds (256-byte units; size varies) */
- int data_xon_thr = rx_xon_thresh_bytes >> 8;
- int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
+ int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
+ int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
efx_oword_t reg;
efx_reado(efx, ®, FR_AZ_RX_CFG);
efx_writeo(efx, ®, FR_AZ_RX_CFG);
}
-/* This call performs hardware-specific global initialisation, such as
- * defining the descriptor cache sizes and number of RSS channels.
- * It does not set up any buffers, descriptor rings or event queues.
- */
-static int falcon_init_nic(struct efx_nic *efx)
+void efx_nic_init_common(struct efx_nic *efx)
{
efx_oword_t temp;
- int rc;
-
- /* Use on-chip SRAM */
- efx_reado(efx, &temp, FR_AB_NIC_STAT);
- EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
- efx_writeo(efx, &temp, FR_AB_NIC_STAT);
-
- /* Set the source of the GMAC clock */
- if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
- efx_reado(efx, &temp, FR_AB_GPIO_CTL);
- EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
- efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
- }
-
- /* Select the correct MAC */
- falcon_clock_mac(efx);
-
- rc = falcon_reset_sram(efx);
- if (rc)
- return rc;
/* Set positions of descriptor caches in SRAM. */
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
- /* Clear the parity enables on the TX data fifos as
- * they produce false parity errors because of timing issues
- */
- if (EFX_WORKAROUND_5129(efx)) {
- efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
- EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
- efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
- }
-
/* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by
* falcon_interrupts()).
EFX_INVERT_OWORD(temp);
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
+ efx_setup_rss_indir_table(efx);
+
+ /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
+ * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
+ */
+ efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
+ /* Enable SW_EV to inherit in char driver - assume harmless here */
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
+ /* Prefetch threshold 2 => fetch when descriptor cache half empty */
+ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
+ /* Squash TX of packets of 16 bytes or less */
+ if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
+ EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
+ efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
+}
+
+/* This call performs hardware-specific global initialisation, such as
+ * defining the descriptor cache sizes and number of RSS channels.
+ * It does not set up any buffers, descriptor rings or event queues.
+ */
+static int falcon_init_nic(struct efx_nic *efx)
+{
+ efx_oword_t temp;
+ int rc;
+
+ /* Use on-chip SRAM */
+ efx_reado(efx, &temp, FR_AB_NIC_STAT);
+ EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
+ efx_writeo(efx, &temp, FR_AB_NIC_STAT);
+
+ /* Set the source of the GMAC clock */
+ if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
+ efx_reado(efx, &temp, FR_AB_GPIO_CTL);
+ EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
+ efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
+ }
+
+ /* Select the correct MAC */
+ falcon_clock_mac(efx);
+
+ rc = falcon_reset_sram(efx);
+ if (rc)
+ return rc;
+
+ /* Clear the parity enables on the TX data fifos as
+ * they produce false parity errors because of timing issues
+ */
+ if (EFX_WORKAROUND_5129(efx)) {
+ efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
+ EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
+ efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
+ }
+
if (EFX_WORKAROUND_7244(efx)) {
efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
}
- falcon_setup_rss_indir_table(efx);
-
/* XXX This is documented only for Falcon A0/A1 */
/* Setup RX. Wait for descriptor is broken and must
* be disabled. RXDP recovery shouldn't be needed, but is.
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
- /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
- * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
- */
- efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
- /* Enable SW_EV to inherit in char driver - assume harmless here */
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
- /* Prefetch threshold 2 => fetch when descriptor cache half empty */
- EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
- /* Squash TX of packets of 16 bytes or less */
- if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
- EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
- efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
-
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
* descriptors (which is bad).
*/
efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
}
+ efx_nic_init_common(efx);
+
return 0;
}
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
falcon_remove_spi_devices(efx);
- falcon_free_buffer(efx, &efx->irq_status);
+ efx_nic_free_buffer(efx, &efx->irq_status);
falcon_reset_hw(efx, RESET_TYPE_ALL);